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Abstract. In this paper, the Hopf-pitchfork bifurcation of coupled van der Pol with delay is studied.
The interaction coefficient and time delay are taken as two bifurcation parameters. Firstly, the
normal form is gotten by performing a center manifold reduction and using the normal form
theory developed by Faria and Magalhães. Secondly, bifurcation diagrams and phase portraits are
given through analyzing the unfolding structure. Finally, numerical simulations are used to support
theoretical analysis.
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1 Introduction or the first section

The coupling of nonlinear systems comes naturally from physics and engineering, for
example, in electronics, nonlinear systems have been long used as an efficient system
to generate higher harmonics from a given signal [26]. Studying of coupled nonlinear
systems is significant in a number of areas of fundamental and applied mathematics, such
as bifurcation in the presence of symmetries, chaos theory, nonlinear electronics.

In the research of nonlinear dynamical system, van der Pol equation is one of the
most intensely studied equation (see [14, 15]). This celebrated equation has a nonlinear
damping

ẍ+ ε
(
x2 − 1

)
ẋ+ x = f(x),

which originally was a model for an electrical circuit with a triode valve and was exten-
sively studied as a host of a rich class of dynamical behavior, including relaxation oscilla-
tions, quasi-periodicity, elementary bifurcations, and chaos [1]. Noting that most practical
implementations of feedback have inherent delays, some researchers have considered the
effect of time delay in van der Pol’s oscillator [8,18,19,25,32,35,36]. It is shown that the
presence of time delay can change the amplitude of limit cycle oscillations. Thus, time
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delay is inevitable in coupled systems, and effects of time delay are also very popular in
the study of dynamical systems with many delay factors that appear in state variables,
and some of them appear in parameters [42]. When time delay becomes a parameter,
structural properties of dynamical systems (such as the number of equilibrium, stability,
ect.) will change, then the question belongs to the bifurcation question. Now, there are
some articles on Hopf bifurcation in delay differential equations (see [2,29,34]). However,
there are other articles on Hopf-pitchfork bifurcation in delay differential equations (see
[3–6,10,17,22,24,27,30,31,38,41]). Particularly, by our existing knowledge, there is no
study in Hopf-pitchfork bifurcation of coupled van der Pol’s equation with time delay.

In recent years, various aspects of the van der Pol have been studied [28, 40]. Wen
et al. [33] investigate the dynamics of Mathieu equation with two kinds of van der Pol
fractional-order terms. Euzebio and Llibre [9] discuss some aspects on the periodic solu-
tions of the extended Duffing–van der Pol oscillator. They show that it can bifurcate one or
three periodic solutions from a two-dimensional manifold filled by periodic solutions of
the referred system. Kumar et al. [20] carry out investigations on the bifurcation character-
istics of a Duffing–van der Pol oscillator subjected to white noise excitations. Fu et al. [13]
discuss noise-induced and delay-induced bifurcations in a bistable Duffing–van der Pol
oscillator under time delay and join noises theoretically and numerically. Dubkov and
Litovsky [7] investigate that the exact Fokker–Planck equation for the joint probability
distribution of amplitude and phase of a van der Pol oscillator perturbed by both additive
and multiplicative noise sources with arbitrary nonlinear damping is first derived by the
method of functional splitting of averages. Yonkeu et al. [39] propose to compute the
effective activation energy, usually referred to a pseudopotential or quasipotential, of
a birhythmic system – a van der Pol-like oscillator – in the presence of correlated noise. Ji
and Zhang [16] use the method of multiple time scales to investigate the following system
with both external force and feedback control:

ẍ−
(
µ− βx2

)
ẋ+ ωx+ αx3

= e0 cos(Ω0t) + px(t− τ) + qẋ(t− τ) + k1x
3(t− τ)

+ k2ẋ
3 + k3ẋ(t− τ)x2(t− τ) + k4ẋ

2(t− τ)x(t− τ).

Njah [23] studied the synchronization and antisynchronization of the following van der
Pol systems based on the theory of Lyapunov stability and Routh–Hurwitz criteria:

ẍ− µ
(
1− x2

)
ẋ+ αx+ βx3 = 2F cos(Ω0t).

Yamapi and Filatrella [37] studied the strange attractors of the following coupled van der
Pol systems:

ẍ− µ
(
1− x2

)
ẋ+ x+ βx3 = F cos(Ω0t),

ÿ − µ
(
1− y2

)
ẏ + y + βy3 = F cos(Ω0t)−K(y − x)H(t− T0),

where H(t) is the Heaviside function.
In [37], they have obtained the stability of the equilibrium and the existence of Hopf

bifurcation. Using the center manifold reduction technique and normal form theory, they
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give the direction of the Hopf bifurcation. Therefore, I want to know if this model can
produce Hopf-pitchfork bifurcation, and whether we can apply these theories to analyse
of the Hopf-pitchfork bifurcation.

Because there are only some articles to study Hopf-pitchfork bifurcation of coupled
van der Pol with delay, in order to get more dynamic behaviors, we have the reason to
believe that investigating Hopf-pitchfork bifurcation of coupled van der Pol with delay is
interesting and worthwhile. Consider the following coupled van der Pol systems:

ẍ−
(
α− x2

)
ẋ+ x+ βx3 = k1g

(
y(t− τ)

)
,

ÿ −
(
α− y2

)
ẏ + y + βy3 = k2g

(
x(t− τ)

)
.

(1)

Let x = x1, ẋ = x2, y = x3, ẏ = x4, then equation (1) can be written as follows:

ẋ1 = x2,

ẋ2 = −x1 + αx2 − x21x2 − βx31 + k1g
(
x3(t− τ)

)
,

ẋ3 = x4,

ẋ4 = −x3 + αx4 − x23x4 − βx33 + k2g
(
x1(t− τ)

)
.

(2)

Because the activate function g(t) belongs to sigmoidal function (see [12, p. 356]), we
assume g(0) = g′′(0) = 0, g′(0) = 1, and g′′′(0) 6= 0 throughout this paper. Clearly, we
probe dynamical behaviors of system (1) equaling to investigate that of system (2).

The rest of the article is organized as follows. In Section 2, we will give the existence
condition of the Hopf-pitchfork bifurcation by taking interaction coefficient and delay as
two parameters. In Section 3, we use center manifold theory and normal form method
[11, 30] to investigate Hopf-pitchfork bifurcation with original parameters. In Section 4,
we given some numerical simulations to support the analytic results. Finally, we draw the
conclution in Section 5.

2 The existence of Hopf-pitchfork bifurcation

In the following, if the characteristic equation (2) has a simple root 0 and a simple pair
of purely imaginary roots ±iω0, and all other roots of the characteristic equation have
negative real parts, then the Hopf-zero bifurcation will occur. The linearization equation
of system (2) at the origin is

ẋ1 = x2,

ẋ2 = −x1 + αx2 + k1x3(t− τ),
ẋ3 = x4,

ẋ4 = −x3 + αx4 + k2x1(t− τ).

(3)

The characteristic equation of system (3) is

E(λ) =
(
λ2 − αλ+ 1− ae−λτ

)(
λ2 − αλ+ 1 + ae−λτ

)
= 0, (4)

https://www.mii.vu.lt/NA
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where a =
√
k1k2, k1k2 > 0. If λ = 0 is one root of equation (4), we obtain a = ±1. By

above analysis, we know a > 0, so we get a = 1. If τ = 0, then

H(λ) =
(
λ2 − αλ+ 2

)(
λ2 − αλ

)
= 0.

We obtain that if τ = 0, then α < 0. Except a single zero eigenvalue, all the roots of
equation (4) have negative real parts.

Next, we consider the case of τ 6= 0. Let iω, ω > 0, be such a root of λ2 − αλ+ 1 +
e−λτ = 0, then the following holds:

(iω)2 − α(iω) + 1− e−iωτ = 0.

Separating the real and imaginary parts, we have

ω2 − 1 = cosωτ, −αω = sinωτ. (5)

It follows that ω satisfies
ω2
(
ω2 + α2 − 2

)
= 0.

If α2−2 > 0, then equation (5) has no positive solutions. If α2−2 < 0, then equation (5)
has a positive solution ω0 with

ω0 =
√
2− α2.

If−
√
2 < α < 0, then sinω0τ > 0, cosω0τ > 0, we know the point in the first quadrant,

then
τk =

1

ω0

{
arccos

(
ω2
0 − 1

)
+ 2kπ

}
, k = 0, 1, 2, . . . .

We can obtain the following lemma immediately.

Lemma 1. If a = 1 that means
√
k1k2 = 1 and −

√
2 < α < 0 hold, when τ = τk

(k = 0, 1, 2, . . . ), system (2) undergoes a Hopf-zero bifurcation at equilibrium (0, 0, 0, 0).

3 Normal form for Hopf-zero bifurcation

In this section, center manifold theory and normal form method [11,30] are used to study
Hopf-pitchfork bifurcation. After scaling t→ t/τ , system (2) can be written as

ẋ1 = τx2,

ẋ2 = τ
(
−x1 + αx2 − x21x2 − βx31

)
+ τk1g

(
x3(t− 1)

)
,

ẋ3 = τx4,

ẋ4 = τ
(
−x3 + αx4 − x23x4 − βx33

)
+ τk2g

(
x1(t− 1)

)
.

(6)

Let the Taylor expansion of g be

g(s) = g(0) + g′(0)s+
1

2
g′′(0)s2 +

1

6
g′′′(0)s3 +O

(
|s|4
)
,

where g(0) = g′′(0) = 0, g′(0) = 1.
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Let τ = τ0 + µ1 and k1 = 1/k2 + µ2, µ1 and µ2 are bifurcation parameters and
expand the function g, equation (6) becomes

ẋ1 = (τ0 + µ1)x2,

ẋ2 = (τ0 + µ1)
(
−x1 + αx2 − x21x2 − βx31

)
+ (τ0 + µ1)

(
1

k2
+ µ2

)[
x3(t− 1) +

g′′′(0)

6
x33(t− 1)

]
,

ẋ3 = (τ0 + µ1)x4,

ẋ4 = (τ0 + µ1)
(
−x3 + αx4 − x23x4 − βx33

)
+ (τ0 + µ1)k2

[
x1(t− 1) +

g′′′(0)

6
x31(t− 1)

]
.

(7)

Choosing the phase space C = C([−1, 0];R4) with supreme norm, Xt ∈ C is defined by
Xt(θ) = X(t+ θ), −τ 6 θ 6 0, and ‖Xt‖ = sup |Xt(θ)|. Then system (7) becomes

Ẋ(t) = L(µ)Xt + F (Xt, µ), (8)

where

L(µ)Xt = (τ0 + µ1)


x2(t)

−x1(t) + αx2(t) + ( 1
k2

+ µ2)x3(t− 1)

x4(t)
−x3(t) + αx4 + k2x1(t− 1)


and

F (Xt, µ) =


0

(τ0 + µ1)(−x21(t)x2(t)− βx31(t) + ( 1
k2

+ µ2)
g′′′(0)

6 x33(t− 1))

0

(τ0 + µ1)(−x23(t)x4(t)− βx33(t) + k2
g′′′(0)

6 x31(t− 1))

 ,

where L(µ)ϕ =
∫ 0

−1 dη(θ, µ)ϕ(ξ) dξ for ϕ ∈ ([−1, 0],R4),

η(θ, µ) =


0, θ = 0,

−(τ0 + µ1)A, θ ∈ (−1, 0),
−(τ0 + µ1)(A+B), θ = −1,

with

A =


0 1 0 0
−1 α 0 0
0 0 0 1
0 0 −1 α

 , B =


0 0 0 0
0 0 1

k2
0

0 0 0 0
k2 0 0 0

 .

Consider the following linear system:

Ẋ(t) = L(0)Xt.
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Define the bilinear form between C and C ′ = C([0, τ ], Cn∗) by

(
ψ(s), ϕ(θ)

)
= ψ(0)ϕ(0)−

0∫
−1

θ∫
0

ψ(ξ − θ) dη(θ, 0)ϕ(ξ) dξ ∀ψ ∈ C ′, ∀ϕ ∈ C,

where ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C, ψ(s) = (ψ1(s), ψ2(s), ψ3(s))
T ∈ C∗.

Because L(0) has a simple 0 and a pair of purely imaginary eigenvalues±iω0, ω > 0,
all other eigenvalues have negative real parts. Let Λ = {0, iω0,−iω0}, P can be the
generalized eigenspace associated with Λ, and P ∗ – the space adjoint with P . ThenC can
be decomposed asC = P⊕Q, whereQ = {ϕ ∈ C: (ψ,ϕ) = 0 for all ψ ∈ P ∗}. Choose
the bases Φ and Ψ for P and P ∗ such that (Ψ(s), Φ(θ)) = I , Φ̇ = ΦJ , and −Ψ = JΨ ,
where J = diag(0, iω0,−iω0).

By calculating, we choose

Φ(θ) =


1 eiw0τ0θ e−iw0τ0θ

0 iw0e
iw0τ0θ −iw0e

−iw0τ0θ

k2 −k2eiw0τ0θ −k2e−iw0τ0θ

0 −iw0k2e
iw0τ0θ iw0k2e

−iw0τ0θ


and

Ψ(s) =

 D1(−αk2) D1k2 D1(−α) D1

D2(α−iw0)k2e
−iw0τ0s −D2k2e

−iw0τ0s D2(iw0−α)e−iw0τ0s D2e
−iw0τ0s

D2(α+iw0)k2e
iw0τ0s −D2k2e

iw0τ0s D2(−iw0−α)eiw0τ0s D2e
iw0τ0s

,
where

D1 =
1

2τ0k2 − 2αk2
, D2 =

1

2αk2 − 4iwk2 + 2τ0k2e−iw0τ0
.

To consider system (8), we need to enlarge the space C to the following:

BC =
{
ϕ is continuous functions on [−1, 0), and lim

θ→0−
ϕ(θ) exists

}
.

Its elements can be written as φ = ϕ+ Y0c with ϕ ∈ C, c ∈ R4, and

Y0(θ) =

{
0, θ ∈ [−1, 0),
I, θ = 0.

In BC , equation (8) becomes an abstract ODE

d

dt
Xt = Au+ Y0F̃ (u, µ), (9)

where u ∈ C, A is defined by

A : C1 → BC , Au = u̇+ Y0
[
L(0)u− u̇(0)

]
,
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and
F̃ (u, µ) =

[
L(µ)− L0

]
u+ F (u, µ).

Then the enlarged phase space BC can be decomposed as BC = P ⊕ Kerπ. Let Xt =
Φz(t) + ỹ(θ), where z(t) = (z1, z2, z3)

T, namely

x1(θ) = z1 + eiw0τ0θz2 + e−iw0τ0θz3 + y1(θ),

x2(θ) = iweiw0τ0θz2 − iwe−iw0τ0θz3 + y2(θ),

x3(θ) = k2z1 − k2eiw0τ0θz2 − k2e−iw0τ0θz3 + y3(θ),

x4(θ) = −iwk2eiw0τ0θz2 +
i wk2e

−iw0τ0θz3 + y4(θ).

Let

Ψ(0) =

ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34


=

 D1(−αk2) D1k2 D1(−α) D1

D2(α− iw0)k2 −D2k2 D2(iw0 − α) D2

D2(α+ iw0)k2 −D2k2 D2(−iw0 − α) D2

 .

System (9) can be decomposed as

ż = Jz + Ψ(0)F̃
(
Φz + ỹ(θ), µ

)
,

˙̃y = AQ1ỹ + (I − π)Y0F̃
(
Φz + ỹ(0), µ

)
,

(10)

where ỹ(θ) ∈ Q1 := Q∩C1 ⊂ Kerπ, AQ1 is the restriction ofA as an operator fromQ1

to the Banach space Kerπ. Neglecting higher-order terms with respect to parameters µ1

and µ2, equation (11) can be written as

ż1ż2
ż3

 =

ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34



F 1
2 + F 1

3 +O(‖x‖4)
F 2
2 + F 2

3 +O(‖x‖4)
F 3
2 + F 3

3 +O(‖x‖4)
F 4
2 + F 4

3 +O(‖x‖4)

 ,

where

F 1
2 = µ1

(
iωz2 − iωz3 + y2(0)

)
,

F 2
2 = −µ1

(
z1 + z2 + z3 + y1(0)

)
+ αµ1

(
iωz2 − iωz3 + y2(0)

)
+

(
τ0µ2 + µ1µ2 + µ1

(
1

k2

))(
k2z1 − k2e−iω0τ0z2 − k2eiω0τ0z3 + y3(−1)

)
,

F 3
2 = µ1

(
−iωk2z2 + iωk2z3 + y4(0)

)
,

F 4
2 = −µ1

(
k2z1 − k2z2 − k2z3 + y3(0)

)
+ αµ1

(
−iωk2z2 + iωk2z3 + y4(0)

)
+ µ1k2

(
z1 + e−iτ0ω0z2 + eiτ0ω0z3 + y1(−1)

)
,
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F 1
3 = 0,

F 2
3 = (τ0 + µ1)

(
−
(
z1 + z2 + z3 + y1(0)

)2(
iωz2 − iωz3 + y2(0)

)
− β(z1 + z2 + z3 + y1(0)

)3
,

+

(
1

k2
+ µ2

)
g′′′(0)

6

(
k2z1 − k2e−iω0τ0z2 − k2eiω0τ0z3 + y3(−1)3

)
,

F 3
3 = 0,

F 4
3 = (τ0 + µ1)

(
−
(
k2z1 − k2z2 − k2z3 + y3(0)

)2(−iωk2z2 + iωk2z3 + y4(0)
)

− β
(
k2z1 − k2z2 − k2z3 + y3(0)

)3
+ k2

g′′′(0)

6

(
z1 + e−iω0τ0z2 + eiω0τ0z3 + y1(−1)3

)
.

According to [30], (Im(M1
2 ))

c is spanned by{
z21e1, z2z3e1, z1µie1, µ1µ2e1, z1z2e2, z2µie2, z1z3e3, z3µie3

}
, i = 1, 2,

with e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T.
If g is an odd function, the Hopf-pitchfork will occur.
(Im(M1

3 ))
c is spanned by{

z31e1, z1z2z3e1, z
2
1z2e2, z

2
2z3e2, z

2
1z3e3, z2z

2
3e3
}
.

Then we get

g12(x, 0, µ) = Proj(Im(M1
2 ))

c f12 (x, 0, µ) = ProjS1
f12 (x, 0, µ) +O

(
|µ|2

)
,

g13(x, 0, µ) = Proj(Im(M1
3 ))

c f̃13 (x, 0, µ) = ProjS1
f̃13 (x, 0, 0) +O

(
|µ|2|x|+ |µ||x|2

)
,

where S1 and S2 are spanned, respectively, by{
z1µie1, z2µie2, z3µie3

}
, i = 1, 2,

and {
z31e1, z1z2z3e1, z

2
1z2e2, z

2
2z3e2, z

2
1z3e3, z2z

2
3e3}.

On the center manifold, (8) can be transform as the following normal form:

ż = Jz +
1

2!
g12(z, 0, µ) +

1

3!
g13(z, 0, 0) + h.o.t.

with g13(z, 0, 0) = Proj(Im(M1
3 ))

c f13 (z, 0, 0). According to [11, Thm. 2.1], we obtain the
dynamical behavior of (8) near Xt = 0, which is governed by the general normal form of
the third order. Then the equation becomes

ż1 = b11µ1z1 + b12µ2z1 + c11z
3
1 + c12z1z2z3 + h.o.t.,

ż2 = iτ0ω0z2 + b21µ1z2 + b22µ2z2 + c21z
2
1z2 + c22z

2
2z3 + h.o.t.,

ż3 = −iτ0ω0z3 + b21µ1z3 + b22µ2z3 + c21z
2
1z3 + c22z2z

2
3 + h.o.t.,

(11)

Nonlinear Anal. Model. Control, 22(5):598–613
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where

b11 = 0, b12 = D1τ0k
2
2,

c11 = D1τ0
(g′′′(0)− 6β)(k32 + k2)

6
,

c12 = D1τ0
(
g′′′(0)− 6β

)(
k32 + k2

)
,

b21 = 2D2k2
(
ω2 + e−iτ0ω0 + 1

)
,

b22 = D2τ0k
2
2e
−iτ0ω0 ,

c21 = D2τ0k2

[(
1 + k22

)(
iω + 3β +

g′′′(0)

2
e−iτ0ω0

)]
,

c22 = D2τ0k2

[(
1 + k22

)(
iω + 3β +

g′′′(0)

2
e−iτ0ω0

)]
.

Through the change of variables z1 = ω1, z2 = ω2 + iω3, z3 = ω2 − iω3 and then
a change to cylindrical coordinates according to ω1 = ζ, ω2 = r cos θ, ω3 = r sin θ,
r > 0, system (11) becomes

ṙ = Re(b21)µ1r +Re(b22)µ2r +Re(c21)rζ
2 +Re(c22)r

3,

ζ̇ = b12µ2ζ + c11ζ
3 + c12ζr

2,

θ̇ = τ0ω0 + µ1 Im(b21) + µ2 Im(b22) + Im(c21)ζ
2 + Im(c22)r

2.

(12)

Let ζ̂ = ζ
√
|c11| and r̂ = r

√
|Re(c22)|, after dropping the hats, equation (12) can be

written as

ṙ = r

(
c1 +

Re(c22)

|Re(c22)|
r2 +

Re(c21)

|c21|
ζ2
)
,

ζ̇ = ζ

(
c2 +

c12
|Re(c22)|

r2 +
c11
|c11|

ζ2
)
,

(13)

where c1 = Re(b21)µ1 +Re(b22)µ2, c2 = b12µ2.
If c11 < 0 and Re(c22) < 0, then (13) becomes

ṙ = r
(
c1 − r2 − σζ2

)
, ζ̇ = ζ

(
c2 − δr2 − ζ2

)
, (14)

where σ = Re(c21)/c11, δ = c12/Re(c22).
In equation (14), M0 = (r, ζ) = (0, 0) is always an equilibrium, and the other

equilibria are

M1 = (
√
c1, 0) for c1 > 0, M±2 = (0,±

√
c2) for c2 > 0,

M±3 =

(√
σc2 − c1
σδ − 1

,±
√
δc1 − c2
σδ − 1

)
for

σc2 − c1
1− σδ

> 0,
δc1 − c2
1− σδ

> 0.
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Table 1. The five unfoldings of system (14)
as σ > δ.

Case I II III IV V
σ + + + − −
δ + + − − −
σδ − 1 + − − +

Figure 1. Bifurcation diagrams for system (14) with parameter (c1, c2) around (0, 0) (see [31].)

Figure 2. Phase portraits in D1–D7 (see [31]).

From [21] we obtain that if c11 < 0 and Re(c22) < 0, σ, δ, σ− δ, and σδ− 1 are five
distinct types of unfolding with respect to different signs in system (14), we demonstrate
this in [21, Sect. 8.6.2] corresponding to Table 1.

From [31] we can obtain

Theorem 1. If the assumptions of Lemma 1 are satisfied, σ > δ, σδ > 1, and
sign(g′′′(0)) sign(β) < 0 hold, then system (2) undergoes a Hopf-pitchfork bifurcation
of case I at equilibrium (0, 0, 0, 0), which is shown in Fig. 2, where σ, δ are expressed
as (14).

Nonlinear Anal. Model. Control, 22(5):598–613
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Since system (12) rotates around theZ-axis, the correspondences between two-dimen-
sional flows for (14) and three-dimensional flows (12) can be established. Thus, for (12),
the equilibria on the Z-axis in (14) remain equilibria, while the equilibria outside the
Z-axis in (14) become periodic orbits.

Therefore, if case I occurs, then the detailed dynamics of system (2) in D1–D6 near
the original parameters (1/k2, τ0) are as follows:

• In D1, (2) has only one trivial equilibrium M0, which is a sink.
• In D2, the trivial equilibrium (corresponding to M0) becomes a saddle from a sink,

and a stable periodic orbit (corresponding to M1) appears.
• In D3, the trivial equilibrium (corresponding to M0) becomes a source from a sad-

dle, a pair of unstable semitrivial equilibria (corresponding to M±2 ) appear, and the
periodic orbit (corresponding to M1) remains stable.

• In D4, the semitrivial equilibria (corresponding to M±2 ) become stable from its
unstable state, a pair of unstable periodic orbits (corresponding toM±3 ) appear, and
the periodic orbit (corresponding to M1) remains stable.

• In D5, the unstable periodic orbit (corresponding to M±3 ) disappear, the periodic
orbit (corresponding to M1) becomes unstable, and the semitrivial equilibria (cor-
responding to M±2 ) remains stable.

• In D6, the periodic orbit (corresponding to M1) disappears, the trivial equilibrium
(corresponding toM0) becomes a saddle from a source, and the semitrivial equilib-
ria (corresponding to M±2 ) remains stable.

Theorem 2. If the assumptions of Lemma 1 are satisfied, σ > δ, σδ < 1, and
sign(f ′′′(0)) sign(β) < 0 hold, then system (2) undergoes a Hopf-pitchfork bifurcation
of case II at equilibrium (0, 0, 0, 0), which is shown in Fig. 2, where σ, δ are expressed
as (14).

Noticing that if case II arises, then the detailed dynamics of system (2) in D1, D2,
D3, D5, and D6 are the same as that in case I, except in D7. In D7, system (2) has a pair
of stable periodic orbits (corresponding to M±3 ), a pair of unstable semitrivial equilibria
(corresponding toM±2 ), an unstable periodic orbit (corresponding toM1), and an unstable
trivial equilibrium (corresponding to M0).

By analysing above, we can obtain the bifurcation critical lines as follows:

L1: τ =
Re(b22)

Re(b21)

(
k1 −

1

k2

)
+ τ0

corresponding to

µ1 =
Re(b22)

Re(b21)
µ2;

L2: k1 =
1

k2
corresponding to

µ2 = 0;
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L3: τ =

[
Re(c21)b12
c11 Re(b21)

− Re(b22)

Re(b21)

](
k1 −

1

k2

)
+ τ0

corresponding to

µ1 =

[
σb12

Re(b21)
− Re(b22)

Re(b21)

]
µ2;

L4: τ =
Re(c22)b12 + c12 Re(b22)

c12 Re(b21)

(
k1 −

1

k2

)
+ τ0

corresponding to

µ1 =
b12 + δRe(b22)

δRe(b21)
µ2.

4 Numerical simulations

In this section, some examples are given to illustrate the theoretical results. We select
α = −1.3 and g(t) = tanh(t) into system (2). From Theorem 1, if k1 = 1/k2 = 2
and τ = τ0 = 4.1887, then system (2) undergoes a Hopf-pitchfork bifurcation at (0, 0).
According to the calculation, we obtain ω = 0.5568, sinωτ = 0.5285, cosωτ = 0.8490,
D1 = 0.1822, D2 = −0.1206 + 0.1193i, g′′′(0) = −2, b11 = 0, b12 = 0.1908, c11 =
−0.6358, c12 = −3.8150, b21 = 0.0116 + 0.1613i, b22 = 0.1776 + 0.0052i, c21 =
−1.5650 + 0.7481i, c22 = −1.5650 + 0.7481i, Re(c22) < 0, c11 < 0, c1 = 0.0116µ1 +
0.1776µ2, c2 = 0.1908µ2, σ = 2.4615 > 0, δ = 2.4377 > 0, σδ = 6.0004 > 1. Here,
in Fig. 1, bifurcation critical lines are, respectively,

L1: τ = 15.3101(k1 − 2) + 4.1887, i.e. µ1 = 15.310µ2;

L2: k1 = 2, i.e. µ2 = 0;

L3: τ = 40.4869(k1 − 2) + 4.1887, k1 > 2, i.e. µ1 = 40.4869µ2, µ2 > 0;

L4: τ = 22.0578(k1 − 2) + 4.1887, k1 > 2, i.e. µ1 = 22.0578µ2, µ2 > 0.

Through the above analysis, we can obtain Figs. 3–7.

Figure 3. The bifurcation set.

Nonlinear Anal. Model. Control, 22(5):598–613



610 Y. Cai, C. Zhang

Figure 4. The stable trivial equilibrium in D1: (µ1, µ2) = (−1.87,−1.913), using the red line is
(0.1, 0.1, 0.02,−0.5) and the blue line is (−0.1,−0.1,−0.02, 0.5). Phase diagram for variable (x1, x2, x3)
in left. Waveform diagram for variable of x4 in right. (Online version in color.)

Figure 5. The stable periodic orbit in D2: (µ1, µ2) = (−0.01, 0.01), the initial value is (0.2,−0.2,
−0.2, 0.2). Phase diagram for variable (x1, x2, x3) in left. Waveform diagram for variable of x4 in right.

Figure 6. The stable periodic orbit in D3: (µ1, µ2) = (−0.02, 0.01), the initial value is (−0.2, 0.2,
0.2,−0.2). Phase diagram for variable (x1, x2, x3) in left. Waveform diagram for variable of x4 in right.
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Figure 7. Two stable nontrivial equilibria and a stable periodic orbit coexist in D4: (µ1, µ2) = (0.01,
−0.05). The red line expresses the initial values of (0.5, 0.5, 0.08,−0.5), the blue line expresses the
value of (−0.5,−0.5,−0.08, 0.5) and (0.3,−0.3,−0.3, 0.3) for magenta line. Phase diagram for variable
(x1, x2, x3) in left. Waveform diagram for variable of x4 in right. (Online version in color.)

5 Conclusions

In this paper, we have investigated the Hopf-pitchfork bifurcation of coupled van der Pol
oscillator with delay. Our contributions include the following:

1. By analyzing the distribution of the eigenvalues of the corresponding characteristic
equation of its linearized equation, we find the conditions for the occurrence of
Hopf-pitchfork bifurcation.

2. By using the normal form method and the center manifold theorem, we have
derived the normal form of the reduced system on the center manifold, discussed
the Hopf-pitchfork bifurcation with the parameter in system (2), and analyzed the
stability. Furthermore, we can obtain the coexistence of periodic orbits.

3. By comparing system (2) in this paper with non-coupled van der Pol system in [20],
we obtain the coexistence of a pair of stable nontrivial equilibria and the coexis-
tence of a stable periodic orbit and a pair of stable nontrivial equilibria. We know
that the periodic orbit is stable, corresponding to the periodic spiking behavior.

Our work is a further study of van der Pol oscillator, which is helpful in the study of
the complex phenomenon caused by high co-dimensional bifurcation of delay differential
equation.

Acknowledgment. The authors would like to express their gratitude for valuable com-
ments on this manuscript from the referees and the editor.
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