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Abstract. In this paper, we consider the existence and multiplicity of solutions for fractional
Schrédinger equations with critical nonlinearity in RY. We use the fractional version of Lions’
second concentration-compactness principle and concentration-compactness principle at infinity to
prove that (PS.) condition holds locally. Under suitable assumptions, we prove that it has at least
one solution and, for any m € N, it has at least m pairs of solutions. Moreover, these solutions can
converge to zero in some Sobolev space as € — 0.
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1 Introduction

The main purpose of this paper is to study the existence and multiplicity of solutions of
the following fractional Schrodinger equations with critical nonlinearity:

v

272+ h(z,u), zeRY,

u(z) = 0 asl|z| — oo,

6]

:|u
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Solutions of stationary Kirchhoff equations involving nonlocal operators 615

where e > 0, N > 25,0 < s < 1,2* =2N/(N — 2s), and

H*(RY) := {u e L2(RV): ||Z($)y_|N%ﬁ)s e L2(RV x RN)}.

We make the following assumptions on V' (), g(x), and h(x) throughout this paper:

(V) V(z) € C(RY,R), V(z9) = minV = 0, and there is 70 > 0 such that the set
VT = {z € RM: V(x) < 10} has finite Lebesgue measure;
(@) (g1) There exists cg > 0 such that nondecreasing function g(t) > «g forall t > 0;
(g92) There ex1sts X satlsfylng 2/p < ¥ < land G(t) > Xg(t)t forallt > 0,
where G(t fo
(H) (h1) h e C(RN x R,R) and h(ar t) = o(|t|) uniformly in z as t — 0;
(ha) There are ¢g > 0 and g € (2,2%) such that |h(z,t)| < co(1 +t971);
(hg) There Iy > 0, 7 > 2, and 2 < p < 2} such that H(x t) = lp|t|” and
pH (z,t) < h(z,t)t for all (z,t), where H (z,t) fo x,8)ds.

The fractional Laplacian operator (—A)® (up to normalization constants) may be
defined as

(A u-PV/‘ |N+2g dy, zeRY,

where P.V. stands for the principal value. It may be viewed as the infinitesimal gener-
ators of a Lévy stable diffusion processes [1]. This operator arises in the description of
various phenomena in the applied sciences, such as phase transitions, materials science,
conservation laws, minimal surfaces, water waves, optimization, plasma physics, and so
on; see [21] and references therein for more detailed introduction.

In these last years, a great deal of work has been devoted to the study of semiclassical
standing waves for the fractional nonlinear Schrédinger equation of the form

51/) 25(

ie— =¢

oy =AY+ Pl)y = f(@, [¢l), =eRY, @)

where ¢ is a small positive constant, which corresponds to the Planck constant, (—A)?,
0 < s < 1, is the fractional Laplacian, P(x) is a potential function. Problem (2) models
naturally many physical problems, such as phase transition, conservation laws, especially
in fractional quantum mechanics, etc.; see [14]. It was introduced by Laskin [16, 17]
as a fundamental equation of fractional quantum mechanics in the study of particles on
stochastic fields modeled by Lévy process. We refer to [21] for more physical background.

To obtain standing waves of the fractional nonlinear Schrodinger equation (2), we set
Y(x,t) = e Ft/5y(z) for some function u € H*(RN), and let V(x) = P(z) — E. Then
problem (2) is reduced to the following equation:

e (—=Au+V(z)u= f(z,u), xR, 3)
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616 Z. Piao et al.

In quantum mechanics, when ¢ tends to zero, the existence and multiplicity of solutions
to (3) is of particular importance.

In the nonlocal case, that is, when s € (0, 1), the nonlocal model has attracted
much attentions recently. For the case of a bounded domain, Ricceri [24] established
a theorem tailor-made for a class of nonlocal problems involving nonlinearities with
bounded primitive. In [8], Molica Bisci and Repovs studied a class of nonlocal fractional
Laplacian equations depending on two real parameters and obtained the existence of three
weak solutions by exploiting the result established by Ricceri in [24]. For more related
results, we refer the readers to [3,4,6,7, 11, 13, 18] and the references therein. For the
whole space RY were also studied by a number of authors. Felmer et al. [14] studied the
existence and regularity of positive solution when f has subcritical growth and satisfies
the Ambrosetti-Rabinowitz condition. Secchi [25] obtained the existence of ground state
solutions of (3) when V(z) — oo as |x| — oo and Ambrosetti-Rabinowitz condition
holds. In [29], the authors obtained the existence of infinitely many weak solutions for (3)
by variant fountain theorem when f has subcritical growth. For the case of critical growth,
Shang and Zhang [26] studied the existence and multiplicity of solutions for the critical
fractional Schrodinger equation

2 (=A)u+ V(z)u = |u>* " 2u+ \f(u), zeRY 4)

Based on variational methods, they showed that problem (4) has a nonnegative ground
state solution for all sufficiently large A\ and small . Moreover, Shen and Gao in [28] ob-
tained the existence of nontrivial solutions for problem (4) under various assumptions on f
and potential function V' (z), in which the authors assumed the well-known Ambrosetti—
Rabinowitz condition. See also recent papers [2,22,25,27] on the fractional Schrédinger
equations (4). In [32], the fractional Schrodinger equations with a critical nonlinearity
considered by using fractional version of concentration-compactness principle and radi-
ally decreasing rearrangements, they obtained the existence of a ground state solutions.
However, there are no such results on Kirchhoff type problems (1).

The interest in studying problems like problem (1) relies not only on mathematical
purposes but also on their significance in real models. For example, in the Appendix
of paper [15], the authors construct a stationary Kirchhoff variational problem, which
models, as a special significant case, the nonlocal aspect of the tension arising from
nonlocal measurements of the fractional length of the string.

In this paper, inspired by [12, 31], we consider the existence and multiplicity of
standing wave solutions of the fractional Schrodinger equation (1). To the best of our
knowledge, the existence and multiplicity of standing wave solutions to problem (1) on
RY has not ever been studied by variational methods. To prove all the results, we mainly
follow the ideas in [12,31]. Our proofs are based on variational methods. Let us point out
that although the idea was used before for other problems, the adaptation to the procedure
to our problem is not trivial at all. Because the appearance of non-local term and the
function g, we must reconsider this problem and need more delicate estimates.

Our main result is the following.
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Solutions of stationary Kirchhoff equations involving nonlocal operators 617

Theorem 1. Let (V), (G), and (H) be satisfied. Thus:

(1) Forany k > 0, there is £, > 0 such that if e < & problem (1) has at least one
solution u. satisfying

2% — % 2 1
¥ /H(x,us)dx+ (2 22) /|us
RN RN
) 1 2s s/2, |2 1 1 2 N
(Q—M)ao/a |(—=A) / u | dz + (2—ﬂ> /V(x)\u€| dz < ke™. (6)
RN RN

Moreover, u. — 0in H*(RN) ase — 0.

(ii) Assume additionally that h(x,t) is odd in t, for any m € N and k > 0, there is
Emr > 0 such that if e < Ep,;, problem (1) has at least m pairs of solutions u. ;,
Ue,—i, © = 1,2,...,m, which satisfy estimates (5) and (6). Moreover, uc; — 0
in H*RN)ase - 0,i=1,2,...,m.

% do < keV, (5)

Remark 1. We should point out that Theorem 1 is different from the previous results
of [12,31] in two main directions:

(i) g(t) £ C. There exist many functions ¢(t) satisfying condition (g;)—(g2), for
example, g(t) = a+ bt,a,b > 0,and X' = 1/2.

(ii) Other potentials V' (x) guaranteeing compactness of the embedding from F <
H*(R™) can also be used in this paper.

(iii) We use the fractional version of Lions’ second concentration-compactness prin-
ciple and concentration-compactness principle at infinity to prove that (PS.) con-
dition holds, which is different from methods used in [12].

(iv) The method are employed to establish the existence and multiplicity of standing
wave solutions for problems (1), which is different from methods used in [31].

This paper is organized as follows: Section 2 is devoted to preliminary. In Section 3,
we introduce the variational framework and restate the problem in a equivalent form by
replacing £ 2% with \. Furthermore, we describe the corresponding main results (Theo-
rem 3). In Section 4, we prove the behaviors of the bounded (PS) sequences and then show
that the energy functional satisfies (PS.) by using the fractional version of concentration-
compactness principle. In Section 4, we give behaviors of (PS.) sequences and its conse-
quences. In Section 4, we verify the geometry of the mountain pass theorem and estimate
the minimax value. At last, we give the proof of the main results.

2 Preliminaries

For the convenience of the reader, in this part we recall some definitions and basic prop-
erties of fractional Sobolev spaces H*(R™). For a deeper treatment on these spaces and
their applications to fractional Laplacian problems of elliptic type, we refer to [9,21] and
references therein.

Nonlinear Anal. Model. Control, 22(5):614-635



618 Z. Piao et al.

For any s € (0, 1), the fractional Sobolev space H*(R%) is defined by
H*(RY) = {u € L*(RY): [u]gs@n) < oo},

where [u] 7+ vy denotes the so-called Gagliardo semi-norm, that is
o) = u@)? N
[u] s (mvy = (/ = g dx dy ,
R2N
and H*(RY) is endowed with the norm
lull s mnvy = [u] s mvy + llull L2 @y
As it is well known, H*(R™) turns out to be a Hilbert space with scalar product

(u, ) = @™y // TZ%)S_ v(v)) drdy + /u(m)v(m) dz

RN

for any u,v € H*(RY). The space H*(R") is defined as the completion of C5°(RY)
under the norm [u] 7= ().
By Proposition 3.6 in [21], we have

5/2

[Wlge vy = [|(=4) HL2(RN)

for any u € H*(RY), i.e.

u s 2
/ ||izy|N+2s dzdy = /| /2“(”5)| dz.
R2N

Thus,
@) =0@) =AY 2l - (A o) da
R[N/ |z,y‘N+25 dz dy —R[( A Pu(z) - (—A)* 2o(x) de.

Theorem 2. (See [14, Lemma 2.1].) The embedding H*(RY) — LP(RY) is continuous
for any p € [2,2%), and the embedding H*(R™)) — LI (RN)) is compact for any
€ [2,2%).

3 An equivalent variational problem

We set A = £~2% and rewrite (1) in the following form:
|u(z) — u(y)? s
R2N

272y 4 M(z,u), xRN,

u(z) =0 asl|z] = o0

(7

for A\ — oo.
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Solutions of stationary Kirchhoff equations involving nonlocal operators 619

We introduce the space

o {u e H°(RY): R[ V(@)|uf? dz < oo},

which is a reflexive Banach space under the scalar product

(v1,v2)p = /(—A)S/Qvl(—A)s/%g dz—O—/V(m)mw dz.
RN RN

The norm induced by the product (-, -) g is

ullz = \/m foru € HS(RN).

By assumption (1), we know that the embedding E' < H*(R") is continuous. Note that
the norm ||-|| ¢ is equivalent to the one ||-||» defined by

el = (/ ayPufar i [ V($)|u2dx>1/2
s

RN

for each A > 0. It is obvious that for each s € [2,2¥], there is ¢, > 0 independent of
A > 1 such that

luls < esllullp < csllullr ®)
In the following, we denote by |-|s the norm in L*(RY) and by ||-||z the norm in
H*(R™N). Note that the norm ||-|| ¢ is equivalent to the ||-|| for each A > 0.
The energy functional J : E — R associated with problem (7)

Jx(u) = ;G</ |(A)S/2u|2dx> +%/>\V(x)|u|2
RN RN
—)\R[H(x,u)dx

is well defined. Define the Nahari manifold
N ={ue E: (J\(u),u), = 0}.

Under the assumptions, it is easy to check that as arguments [23,30] J, € C'(E,R) and
its critical points are solutions of (7).
We say that u € E is a weak solution of (7) if

(J5 (u) _g</} A2y >/(A)5/2u-(A)S/2vdx
BN

+A/V(m)uvdx—)\/ \u|2:_2uvda:—)\/h($,u)vdm,
RN

RN RN

where v € FE.

Nonlinear Anal. Model. Control, 22(5):614-635



620 Z. Piao et al.

We are going to prove the following result.
Theorem 3. Let (V), (G) and (H) be satisfied. Thus:

(1) Forany k > 0, there is A, > 0 such that if A > A, problem (7) has at least one
solution uy, satisfying

20— X 2 1 -
M /H(x,u,\) dx + ( — 2*> / |u/\|2s dx < Ii)\—N/(Zs)’ )
S ]RN

X X
N

R
2 1 s 2 1 1
(- D)oo [l-ar72u e (5- 23 [viias
RN RY

< RATN/(29), (10)

Moreover;, uy — 0 in H*(RY) as A — oo.

(ii) Assume additionally that h(x,t) is odd in t, for any m € N and k > 0, there is
A > Osuch that if X\ > Ay, problem (7) has at least m pairs of solutions w ;,
Ux,—4, © = 1,2, ..., m, which satisfy estimates (9) and (10). Moreover, uy ; — 0
in H¥RN)as A — 00, i =1,2,...,m.

4 Behaviors of (PS) sequences

We recall the fractional version of concentration-compactness principle in the fractional
Sobolev space [31,32], which due to Lions [19, 20].

Lemma 1. (See [31,32].) Let 2 C RN be an open subset, and let {u,} be a weakly
convergent sequence to u in H*(R™) weakly converging to u as n — oo and such that
|y, % = vand |(—=A)*?u,|?> — p in the sense of measures. Then, either u, — w in
L (RN or there exists a (at most countable) set of distinct points {z;};e;r C 2 and

loc
positive numbers {v;}jcr such that

v=|ul* + E 0o, v, v > 0.
jE€l

If, in addition, (2 is bounded, then there exist a positive measure [i € MRN) with
supp i C {2 and positive numbers {i;} e such that

p= (=02 T+ by, p >0,
jeI
and
v < (57 u({s)) "%,
where S is the best Sobolev constant, i.e.
fRN |(—A)/?ul? dz
w€Hs(RN) S Jul?dz

M IS RN, 5% are Dirac measures at Zj, and Wj, V5 are constants.

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 621

Remark 2. In the case £2 = RY, the above principle of concentration-compactness does
not provide any information about the possible loss of mass at infinity. The following
result expresses this fact in quantitative terms.

Lemma 2. (See [31,32].) Let {u,} C H*(R") such that u,, — u weakly in H*(RY),
[un|% — vand |(—A)*?u,|? — p weakly-x in M(RN), and define

(1) poo = hm lim sup / |(—A)s/2un’2dx,
—0 n—oo
{z€RN: |z|>R}

.
(i) Voo = hm lim sup % de.
R—o0 nooo

{z€RN: |z|>R}

The quantities v, and L~ exist and satisfy

(iii) limsup/|(—A)s/2un’2dx: /du+uoc,

n—oo
RN

(iv) limsup/|un|2: dz = /dl/+l/oo,

n—00
RN RN

(V) Voo < (Sflyoo)2:/2.

We recall that a C'! functional J on Banach space X is said to satisfy the Palais—
Smale condition at level ¢ ((PS.) in short) if every sequence {u,} C X satisfying
limy, o0 Jx(n) = ¢ and lim,, o || J} (un)||x+ = 0 has a convergent subsequence.

Lemma 3. Suppose that (V) and (H) hold. Then any (PS.) sequence {u,} is bounded
inFEandc>0.

Proof. Let {u,} be a sequence in E such that

c+o(1) = Ja(uy)

1
G(/’ S/Qun‘zdﬂc) +§/)\V(x)\un\2dx

_23\()/|Un| dx—)\/Hx uy,) dz, (11)

(I3 (un),v) = g(/ (- S/2un|2dx) /(—A)S/gun (=AY v da

RN

+)\/V(a:)unvda:—/\/|u\2:_2unvdx—)\/h(x,un)vdm

= o(1)[unll (12)

Nonlinear Anal. Model. Control, 22(5):614-635



622 Z. Piao et al.

By (11), (12), and condition (h3), we have
¢+ o(1)[ua|

= Ja(un) — 1<J)\(un) Up )

G( / (- S/2un|2dx) —g(R[ |(—A)S/2un|2dx>RZ (= 8)"2u, [ da

1 1 1 1 .
+<>>\/ V(z )|un2dx+<>>\/ % dx
2 uw no 2%
RN RN
1
+ /\/ [h(l’,un)un - H(I,un)] dz
RN :
XY o1 1 1
> <2 — u)ao / }(—A)S/Qun|2dx + (2 — M))\ / V(z)|up|? dz. (13)
RN RN
Therefore, inequality (13) imply that {u,, } is bounded in E. Taking the limit in (13), we
show that ¢ > 0. This completes the proof of Lemma 3. O

The main result in this section is the following compactness result.

Lemma 4. Suppose that (V), (G), and (H) hold. For any A > 1, Jy satisfies (PS.)
condition for all ¢ € (0, So\'=N/29)) where Xy == (1/p — 1/25)SN/ %), that is any
(PS.)-sequence (u,) C E has a strongly convergent subsequence in E.

Proof. Let {u,} be a (PS,) sequence. By Lemma 3, {u,, } is bounded in E. Hence, up to
a subsequence, we may assume that

uy, — u weakly in F,

Up, — U a.e. in RN ,

u, = u inL{ (RY), 1<t <2
Moreover, by Prokhorov’s theorem (see [7, Thm. 8.6.2]) there exist u,v € M(RN )
such that

‘(—A)“"/Qun]2 — o (weak*-sense of measures),

lun|? — v (weak*-sense of measures),

where . and 1/ are a nonnegatlve bounded measures on RY. It follows from Lemma 1 that
Up —>u1nL (]RN) orv =
{vj} clo, ). {w;} CRY.

S+ del e, vj as n — oo, where [ is a countable set,

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 623

Take ¢ € C3°(RY) such that 0 < ¢ < 1; ¢ = 1in B(xy,¢), #(z) = 0in RV \
B(z,,2¢). For any € > 0, define ¢. = ¢((x — x;)/e), where j € I. It follows that

// o) _y|N+<2 oW 4,4,

// i)~ () ¢2<>dxdy+2/ 6c(2) = 0 0) Plun()?

y|N+28 |$—y|N+2S
|un (@) — un(y)]? |¢s — 0(y) *|un (@) ?
R2N

Similarly to the proof of Lemma 3.4 in [31], we have

2
/ [9:(z d’syMlﬁ‘”(x)' dedy < Ce=2 / fun(@)] da + CK N, (15)

B(z;,Ke)

where K > 4. As {u,} is bounded in H*(RY), it follows from (14) and (15) that {u,, ¢, }
is bounded in H*(RY). Then (J{(un), un¢e) — 0, which implies

o [1arufas) [a0720, (- P uno) o
RN RN

:—)\/V(a:)ufl@dx—i—)\/|u|2:¢5dm+)\/h(m,u)¢5dx+on(1). (16)
]RN N

RN

Since

/ (—A) 2wy - (— D) () da

_ // (un () — un(y))(un()de () — un(y) = (y)) dz dy

|z —y| N+

R2N

=

// e —un|>><¢€<> Gey)un(@) 4

€T — |N+25

R2N

it is easy to verify that

/ / un( lx—“anlj‘bf(y) dz dy —>R[ e dp

Nonlinear Anal. Model. Control, 22(5):614-635




624 Z. Piao et al.

asmn — oo and

/</’>a dp — p({z})

as ¢ — 0. Note that the Holder’s inequality implies

[ b= un<|y>><¢g<x> Sl 4,

xr — y|N+25
R2N
/ | |N+28 dx dy
RZN
()]0 (2) — b2 (y) V2
(/ 7= |N+2S dz dy . 17
Similarly to the proof of Lemma 3.4 in [31], we have

o 2( — ¢e(y))? _
Elg%nh—?;o // \x—y|N+25 dxdy = 0. (18)

In the following, we just give a sketch of the proof for the reader’s convenience.
On the one hand, we have

RY x RY = ((RV \ B(w;,2¢)) U B(z;,2¢)) x ((RY \ B(y,2¢)) U B(x;, 2¢))
= ((RN \ B(w;,2¢)) x (RN\B(ati,25))) U (B(i, 2¢) x RN)
U ((RY \ B(4,2¢)) x B(x;,2¢)).

On the other hand, we have

s |x-y|zv+‘f5( - deay

- [ R

B(z;,2e) xRN
up (2)(¢=(2) — ¢ (y))?
i EEE

(RN\B(z;,2¢)) X B(z;,2¢)

. 2/23
<Ce™* / u? (z) dx + CK_N< / |un () % dx)
B(z;,Ke) RN\B(z;,Ke)

<Ce* / u?(z)dz + CK V.

B(Ii,KE)

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 625

Note that u,, —u weakly in E. By Theorem 1, we obtain w,, —u in L! (RN), 1<t <2;,

loc
which implies

Ce™% / u?(z)dz + CKN — Ce™? / u?(z)dz + CK N

B(z;,Ke) B(z;,Ke)

as n — oo. Then

Ce™2s / uw?(z)dz + CK N

B(Ii,KE)
. 2/2% 1-2/27
< 0628( / |un(a:) s dx) ( / d:z:> +CKN
B(zi,Ke) B(z;,Ke)
g* 2/23
:CK25< / |un (z) de) +CK N CcK™VN
B(zi,KE)

as ¢ — 0. Furthermore, we have

. . — ¢:(y))?
lim sup lim su dx d
5—>0p n%oop// |l‘— y|N+2$ Y
R2N
_ — ¢(y))? _
= lgno<> hren_%lp hyrlri)solip // |N+28 dzdy = 0.
It follows from the definition of ¢. and w,, — w in L} _ (RN), 1 <t < 2%, that
lim lim /h(x,un)ungf)E dx =0. (19)
e—0n—o0
RN

Since ¢. has compact support, letting n — oo in (16), we deduce from (17), (18), and
(19) that

aop({z;}) < Av;.
Combing this with Lemma 1, we obtain v; > ao)\_lSV?/ % This result implies that

either (I) I/j = 0 or (II) Vj > (Ol())\ IS) N/ 25)

To obtain the possible concentration of mass at infinity, similarly, we define a cut off

function ¢pr € C§°(RY) such that ¢ (x) = Oon |z| < Rand ¢g(x) = lon|z| > R+1.
We could verify that {u,,¢r} is bounded in E, hence, (J3 (u,), un¢r) — 0asn — oo,

Nonlinear Anal. Model. Control, 22(5):614-635



626 Z. Piao et al.

which implies

o [leariufar) [arto,: oo
J

RN

— / V(a)lon da:+>\/ uf% ¢ dz+>\/h(x,u)¢R dz+on(1).  (20)
N RN RN

Notice that

/(—A)S” (=) (undr) da

// up () — un(y))(un(2)dr(x) — un(y)Pr(Y)) dz dy

|z —y|N+2e
R2N
n - Un ¢
// - |x—u |N+2s =y )dxdy
R2N
n - (b ¢ n
b [[ Gnle) —un)Gnle) ~onnte) g,
R2N

It is easy to verify that

lim sup lim sup // tn |$__UTL|N+2S¢R( y) drdy = oo

R—oo n—oo

and
n - (b ¢ n
‘ // ta(e) = )1 ~ 60 unls) dxdy‘
2)|or(z) = dr(y)P V2
<of [t )
R2N
Note that

R—oo n—oo

= lim sup lim sup // (O ¢R 7)) = (1 = ¢r(y)))’ dz dy.

N+2
R—o0 n—oo y\ +2s

limsuplimsup// n( |x— |N+ff( v)* dz dy

Similarly to the proof of Lemma 3.4 in [31], we have

lim sup lim sup // (L= dn(x) = (1 = ory))* drdy = 0.

R—oco n—oo |$* |N+25

https://www.mii.vu.lt/NA
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It follows from the definition of ¢. that

Rll_{noo nl;rrgo h(z, up)upprde = 0.
RN
Letting R — oo in (20), we obtain

Qo Moo < AVOO'

By Lemma 2, we obtain v, > agA~LS u[i{ 2:. This result implies that

either (III) Voo = 0 or (IV) Voo 2 (Oéo/\_ls) N/(QS).

627

Next, we claim that (IT) and (IV) cannot occur. If case (IV) holds for some j € I, then by

using Lemma 2 and condition (hg), we have that

c= lm (J,\(un) - i(Jg(un),un>>

(bl fior
RN RN
+ (; - ;))\R[ V(2)|un|? dz + (; - 21:>>\R‘1 |,

4 )\/ Bh(x,un)un - H(a:,un)] dz

RN

2 dx

where Xy = (1/p~1/2%)SN/(29) This is impossible. Consequently, v; = 0 forall j € J.

Similarly, we can prove that (II) cannot occur for each j. Thus,

/ un|? dz — / lul?% da.
RN RN
As |u, — ul® < 2% (Jun|* + |u|?), it follows from the Fatou lemma that
/22:+1\u|22s dz = /liminf (22:‘|un|225 4 2% u|225 — |ty — u|22'§)dx
n—oo
RN RN
< liminf/ (22: un|225 422 u|225 — |ty — u|225)dx
n— oo
RN
= /22:+1|u|225 dz — limsup/ [wn, — u|22s dz,
n—oo
RN RN
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< dx = 0. Then

which implies that limsup,, , ., [p~ |tn
Up — u in L% (RN) as n — oo.

Thus, from the weak lower semicontinuity of the norm, conditon (g;), and Brezis—
Lieb lemma [10] we have

o()l[unl = (JX(un), un)
(o) csroat
RN RN

+)\/V(x)|un|2 dz — )\/ [un)? ) dz — )\/h(a:,un)un dz
RN RN RN

>a0/ (|(=2)"2u,|* - |(—A)S/2u|2)dx+)\/V(x)(\un|2—|u\2)dx
RN

RN

+g</|( )/ 2ul? dx)/} A)/2y, dx+A/V(x)\u|2dx
RN RN
—)\/|u|2*(s) dx—/\/h(aj,u)udx
RN RN

= min{ao, 1}un — ull3 + o(1)[ul|.

Here we use J}(u) = 0. Thus, we prove that {u,,} strongly converges to u in E. This
completes the proof of Lemma 4. O

5 Proof of Theorem 3

In the following, we always consider A > 1. By assumptions (V), (G), and (H), one can
see that J (u) has mountain pass geometry.

Lemma 5. Assume (V), (G), and (H) hold. There exist ax, py > 0 such that Jy(u) > 0
ifu € By, \ {0} and J\(u) > a ifu € OB,,, where B,, = {u € E: |Jul|x < pa}

Proof. By (hl)—(hg) for § < (2min{Xag/2,1/2} \u3) "1, there is Cs > 0 such that

% dx + / H(z,u)dx < 6|ulz + C'(;|u|2*,
RN
where c; is the embeddlng constant of (8). It follows that

G(/‘ ‘5'/2u‘ dx) /)\V(x)\u|2dx
/\u|2 dr — X /ku )dx
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X 1 *
> mind Z02. 2l - 301 - ACul:
1 b)) 1 *
> 3 Inin{;éo7 2}||u§ - A\Cslu gg
1 . 20&0 1 2% 2%
> 2mln{27 2}||u§\ — ACspas [ully

Since 2} > 2, we know that the conclusion of Lemma 5 holds. This completes the proof
of Lemma 5. O

Lemma 6. Under the assumption of Lemma 5, for any finite dimensional subspace F C E,

Jra(u) = —oco asu € F, |lul]|x — 0.

Proof. On the one hand, by integrating (g-), we obtain

G(t
6t < Sz - cys @
0

for all t > ty > 0. Using conditions (V') and (h;)—(h3), we can get

Coy y2/z | 1 A ,
Inw) < Gl + g} = fuls: = Mol

forall w € F'. Since all norms in a finite-dimensional space are equivalent and 2/X < 2%,
2 < 2%. This completes the proof of Lemma 6. O

Since Jy(u) does not satisfy condition (PS.) for all ¢ > 0, in the following, we
will find a special finite-dimensional subspaces by which we construct sufficiently small
minimax levels.

Recall that assumption (V') implies that there exists xy € RY such that Vi(xg) =
min, gy V(2) = 0. Without loss of generality, we assume from now on that zo = 0.

Observe that, by (h3),

A
5 [ K@
RN
Define the function I, € C*(E, R) by
1 s/2, 12 1 2 r
I\(u) := iG |(=A)*?u|” da +§ AV (z)|u|*de — oA [ |ul" dz.
RN RN RN

Then Jy(u) < In(u) for all w € E, and it suffices to construct small minimax levels
for 1.

2 dxA/H(a:,u) dm>zoA/|u|f‘da:.
RN RN

Nonlinear Anal. Model. Control, 22(5):614-635
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Note that

inf{ / |(—A)S/2¢|2dx: ¢ € C(RY), |9, = 1} =0.
RN

Forany 1 > ¢ > 0, one can choose ¢¢ € C°(RY) with |¢¢|, = 1 and supp ¢¢ C By (0)
so that |(—A)%/2¢¢|2 < (. Set

fr =AYz, (23)
then
supp fx C By-1/¢o) (0).

Observe that
1/x 2
Li(tfy) < C;)t2/2</\(—A)S/2f,\]2dx> + & /)\V Y fal? dz
RN
—trloA/lfAde
RN
Co 1/X-1 2 Y
— A\-NV/(29) |:2t2/2()\1—N/(23)) (/\(—A)s/%c\ dx)
t2 1/(2s r r
+§/V(/\ V@) | ps|P dw — t lo/\¢5| dx}
RN RN

/%
< \L-NV/(29) @ 2/% BYNY: 2d /
< 5t [(=A)"2¢¢|” da

*/ A |¢5\2d$—trlo/|¢5\ dx]

— )\1 N/(Qs)y'/)\(t(bc),

where ¥, € C1(E,R) is defined by

e N /%
B (/’(_ o dm)
RN

1
+§/V(/\_l/(2s)x)|u|2dx—lo/|u|de.

RN RN
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Solutions of stationary Kirchhoff equations involving nonlocal operators 631
Since s > 2/, there exists finite number ¢y € [0, +00) such that
b5 2 VE g2
2 _
max![o\(tgbg 2/ (/ |(=A)*/2¢¢| dm) + 50 / V(AT g dw
RN
— / lbe|" da

2/2 s/2 2 Ve t(% —1/(2s) 2
/| (;54‘ dz +§/V()\ x)|¢><| dz.
RN

On the one hand, since V' (0) = 0 and note that supp ¢¢ C B, (0), there is A; > 0 such
that

V()\*l/(zs)x) < < 5 forall [z] <r¢and A > Ag.
513
This implies that
Co o/5 15 | *
< — —( <
thlggiq/,\(t%) S5 G 24\ 1°¢, 24

where T™* : (Cotz/E + t2)/2. Therefore, for all A > A¢,

max Jj (tés) < TN B, (25)

Thus, we have the following lemma.

Lemma 7. Under the assumption of Lemma 5, for any r > 0, there exists A, > 0 such
that for each \ > A, there is fx € E with ||f>\|| > P JA(fA) <0, and

max Jy(tfx) < kAN (28, (26)
t€[0,1]

Proof. Choose ( > 0 so small that T*( < k. Let f\ € E be the function defined by (23).
Taking A, = As. Let ) > 0 be such that t>\|\f>\||A > pxand Jy(tfy) < Oforallt > ty.
Let f) = N />, the conclusion of Lemma 7 holds by (25). O

For any m* € N, one can choose m* functions ¢2 € C§°(RY) such that supp ¢<
suppgbc = 0,0 # k, |¢Lls = 1, and [(=A)*/2¢}|3 < (. Let 7" > 0 be such that
suppgf)c C B’((O) fori =1,2,...,m*. Set

file) = (A 3)z) fori=1,2,...,m" (27)
and
HYE =span{f}, f3,..., /0 }.

Nonlinear Anal. Model. Control, 22(5):614-635
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Observe that for each u = Z;’:l c; f/{ cH /’\72 , we have
—A S/Quzdng ¢il? —A)P2F1 da
(=4) 5
RN =1 RN

for some constant C' > 0,

m*

[v@htaz=31el [vElsif a.
BN =1 RN

and
1 .
> () /|u|2 (s) dx—|—/H(x,u)dx
RN RN
> 1 i 12" (s ;
:Z<2*(s)/lclﬁ‘| ()dx—l—/H(Jc,cif}\)dx).
=1 RN RN
Therefore,

Jxa(u) < CZ Ia(eify)

i=1
for some constant C' > 0. By a similar argument as the one before, we know that
TIn(eify) < AN (16| £7).
Set
P12 . *
B¢ = max{’¢<|2: i=12,....m }
and choose A,,,«5 > 0 so that

¢

V()\—l/(Qs)x) < = forall|z| < TZ”* and A > Ap-c.

As before, we can obtain the following:

max_Jy(u) < Cm*T*C)\l—N/(zs)
ueHLy

forall A > A,,+¢ and some constant C' > 0.
Using this estimate we have the following.

(28)

Lemma 8. Under the assumptions of Lemma 5, for any m* € N and k > 0, there exists
A= > 0 such that for each X\ > Ay« i, there exists an m*-dimensional subspace F«

satisfying

Ta(u) < kAL-N/@29),
ugll‘%i(n* Mu) < K
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Proof. Choose ¢ > 0 so small that Cm*T*( < k. Taking Fy,,» = H;”C’* = span{ [},
f3,.., f77), where fi(z) = ¢5(A\V/3)x) for i = 1,2,...,m* are given by (27).
From (28) we know that the conclusion of Lemma 8 holds. O]

We now establish the existence and multiplicity results.

Proof of Theorem 3. (i) For any 0 < x < Y, by Lemma 4, we choose Ay > 0 and, for
A > Ay, define the minimax value
= inf Ja(t
ex = inf max JA(LD)
where

= {y€C([0,1],E): 7(0) = 0and 7(1) = fr}.

By Lemma 5, we have ay < ¢y < kA'~V/(29)_ In virtue of Lemma 4, we get that (PS.., )
condition holds for Jy at cy. Thus, there is uy such that J§ (uy) = 0 and Jy(uy) = ca.
Then u) is a nontrivial solution of (7). Moreover, it is well known that a mountain pass
solution is a state solution of (7).

Because u), is a critical point of Jy, for p € [2,2%],

1
KMV S Ty (un) = Ta(ua) — ;Jg(uk)“k

Al frearere)
- ;g( J 12l as) [ |87 as
+(3- DAR[ Vil (1= ;)ARZ un
H/ [;h@ u)ua H(m,uA)} da
> (% - )ao / a2+ (5 - ;)A / V(@) da
(o s [ o

Taking p = 2/X, we obtain estimate (9), and taking p = p, we obtain estimate (10). This
completes the proof of Theorem 3(i).

2 dz

(ii) Denote the set of all symmetric (in the sense that —Z = Z) and closed subsets
of E by X foreach Z € X. Let gen(Z) be the Krasnoselkski genus and

j(Z) = énpin gen(u(Z)NOB,,),

Nonlinear Anal. Model. Control, 22(5):614-635
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where I~ is the set of all odd homeomorphisms ¢ € C(E, E), and p) is the number
from Lemma 5. Then j is a version of Benci’s pseudoindex [5]. Let

cxi = inf sup Jy(u), 1<i<<m®
I(2)2iuez

Since Jx(u) > ay forall u € 9B} and since j(Fip,-) = dim Fip,- = m*,

It follows from Lemma 4 that J) satisfies (PS., ) condition at all levels ¢ < X

ax<en << eame < sup Jy(u) < ATV 29,
ueH%wt*

AL-N/2s.

By the usual critical point theory, all c,; are critical levels, and .Jy has at least m™* pairs of
nontrivial critical points satisfying

ay < J)\(u,\) < KA/ (25)

Hence, problem (7) has at least m™* pairs of solutions. In the end, as in the proof of

Theorem 3(i), we see that these solutions satisfy estimates (9) and (10). O
References
1. D. Applebaum, Lévy processes-from probalility to finance and quantum groups, Notices Am.

Math. Soc., 51:1336—1347, 2004.

. G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional operator
and a critical nonlinearity, Nonlinear Anal., Theory Methods Appl., Ser. A, 125:699-714,2015.

. B. Barrios, E. Colorado, A. de Pablo, U. Sdanchez, On some critical problems for the fractional
laplacian operator, J. Differ. Equations, 252:6133-6162, 2012.

. B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-
convex power nonlinearities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 32(4):875-900,
2015.

. V. Benci, On critical point theory of indefinite functionals in the presence of symmetries, Trans.
Am. Math. Soc., 274:533-572, 1982.

. G. Molica Bisci, Sequences of weak solutions for fractional equations, Math. Res. Lett.,
21(2):241-253, 2014.

. G. Molica Bisci, B.A. Pansera, Three weak solutions for nonlocal fractional equations, Adv.
Nonlinear Stud., 14(3):619-629, 2014.

. G. Molica Bisci, D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal.
Appl., 420(1):167-176, 2014.

. G. Molica Bisci, V. Ridulescu, R. Servadei, Variational Methods for Nonlocal Fractional
Problems, Cambridge Univ. Press, Cambridge, 2016.

. H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical
exponents, Commun. Pure Appl. Math., 34:437-477, 1983.

. J. Davila, M. del Pino, S. Dipierro, E. Valdinoci, Concentration phenomena for the nonlocal
Schrodinger equation with Dirichlet datum, Anal. PDE, 8(5):1165-1235, 2015.

https://www.mii.vu.lt/NA



Solutions of stationary Kirchhoff equations involving nonlocal operators 635

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Y.H. Ding, EH. Lin, Solutions of perturbed Schrodinger equations with critical nonlinearity,
Calc. Var. Partial Differ. Equ., 30:231-249, 2007.

M.M. Fall, F. Mahmoudi, E. Valdinoci, Ground states and concentration phenomena for the
fractional Schrodinger equation, Nonlinearity, 28(6):1937-1961, 2015.

P. Felmer, A. Quaas, J.G. Tan, Positive solutions of nonlinear Schrodinger equation with the
fractional Laplacian, Proc. R. Soc. Edinb., Sect. A, Math., 142:1237-1262, 2012.

A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator,
Nonlinear Anal., Theory Methods Appl., 94:156-170, 2014.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268:298-305,
2000.

N. Laskin, Fractional Schrodinger equation, Phys. Rev. E, 66:056108, 2002.

S. Liang, J. Zhang, Multiplicity of solutions for the noncooperative Schrodinger—Krchhoff
system involving the fractional p-Laplacian in R, Z. Angew. Math. Phys, 68:63, 2017.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally
compact case, part 1, Ann. Inst. Henri Poincaré, Anal. Non. Linéaire, 1(2):109-145, 1984.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally
compact case, part 2, Ann. Inst. Henri Poincaré, Anal. Non. Linéaire, 1(4):223-283, 1984.

E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math., 136:521-573, 2012.

P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in R involving nonlocal operators,
Rev. Mat. Iberoam., 32:1-22, 2016.

P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, CBMS Reg. Conf. Ser. Math., Vol. 65, AMS, Providence, RI, 1986.

B. Ricceri, A multiplicity result for nonlocal problems involving nonlinearities with bounded
primitive, Studia Univ. Babes-Bolyai, Math., 55:107-114, 2010.

S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in RY,
J. Math. Phys., 54:031501, 2013.

X. Shang, J. Zhang, Ground states for fractional Schrodinger equations with critical growth,
Nonlinearity, 27:187-207, 2014.

X. Shang, J. Zhang, Y. Yang, On fractional Schrodinger equation in RY with critical growth,
J. Math. Phys., 54:121502, 2013.

Z. Shen, F. Gao, On the existence of solutions for the critical fractional Laplacian equation
in RN, Abstr. Appl. Anal., 2014(4):143741, 2014.

D. Wei, J. Xu, Z. Wei, Infinitely many weak solutions for a fractional Schrodinger equation,
Bound. Value Probl., 2014:159, 2014.

M. Willem, Minimax Theorems, Birkhiuser, Boston, MA, 1996.

X. Zhang, B. Zhang, D. Repovs, Existence and symmetry of solutions for critical fractional
Schrodinger equations with bounded potentials, Nonlinear Anal., Theory Methods Appl.,
Ser: A,, 142:48-68, 2016.

X. Zhang, B.L. Zhang, M.Q. Xiang, Ground states for fractional Schrodinger equations
involving a critical nonlinearity, Adv. Nonlinear Anal., 5(3):293-314, 2016.

Nonlinear Anal. Model. Control, 22(5):614-635



	Introduction
	Preliminaries
	An equivalent variational problem
	Behaviors of (PS) sequences
	Proof of Theorem 3

