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1 Introduction

Neural networks are important nonlinear systems, which have been studied in scientific
research and have been applied to the signal processing, parallel computation, optimiza-
tion, artificial intelligence, and so on. It is known that fractional calculus mainly deals
with a generalization of differentiation and integration of arbitrary orders. Compared
with classical integer-order models, the fractional-order calculus owns the description of
memory and hereditary properties of a variety of processes. Fractional-order models are
far better regard the dynamical behaviors of systems [2,6,13,15,16,23,24]. Taking these
factors into account, many researchers have incorporated fractional calculus to neural
networks and formed fractional-order neural networks [3, 7–9, 14, 25, 27].

Time-delayed models unavoidable exist in biological, engineering systems, and neural
networks, see [19–21, 28, 29]. Generally, time delays will affect oscillation and instabil-
ity behavior of a network. Nowadays, the synchronization of fractional-order delayed
neural networks has attracted more and more attention. Some synchronization results
have been obtained, for instance, in [26], authors studied the finite-time synchroniza-
tion of fractional-order memristor-based neural networks with time delay. Paper [10]
investigated the stability and synchronization of memristor-based fractional-order delayed
neural networks. In [4], the synchronization of fractional-order complex-valued neural
networks with time delay was studied. Paper [5] discussed the adaptive synchronization
of fractional-order memristor-based neural networks with time delay.

However, most existing results related to synchronization of delayed neural networks
have been considered with single time delay [17, 18]. In fact, the differential models
with multiple time delays unavoidable exist in neural networks. It is worthy to point
out that study about the stability of nonlinear fractional order with multiple time delays
seems quite difficulty. There are only few results on the stability and synchronization of
fractional-order neural networks with multiple time delays in existing literatures [12,22].
Motivated by the above discussions, the aim here is to study the synchronization of
fractional-order neural networks with multiple time delays. By constructing a Lyapunov
function, applying an inequality of fractional-order and comparison principles of linear
fractional equation with multiple time delays, we obtain some sufficient conditions, which
can achieve synchronization. The obtained results are novel.

The remainder of this article is organized as follows. In Section 2, some definitions
and lemmas are introduced. The model description is also given. In Section 3, the suffi-
cient conditions for synchronization are obtained. Numerical simulations are presented in
Section 4. Some conclusions are drawn in Section 5.

2 Preliminaries and model description

There are some definitions of the fractional-order integrals and derivatives, such as
Riemann–Liouville definition and the Caputo definition. From the Laplace transform
of fractional derivative, the advantage of the Caputo fractional derivative is that it only
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requires initial conditions given in terms of integer-order derivatives. Here, the definition
of Caputo derivative is adopted.

Definition 1. (See [24].) The fractional integral with noninteger order α > 0 for a func-
tion x(t) is defined as

Iαx(t) =
1

Γ(α)

t∫
t0

(t− τ)α−1x(τ) dτ,

where t > t0, t0 is the initial time, Γ(·) is the gamma function, given by Γ(s) =∫∞
0
ts−1e−t dt.

Definition 2. (See [24].) The Caputo fractional derivative of order α for a function x(t)
is defined as

Dαx(t) =
1

Γ(n− α)

t∫
t0

(t− τ)n−α−1x(n)(τ) dτ,

in which t > t0, t0 is the initial time, n− 1 < α < n ∈ Z+.

We now consider the following fractional-order neural networks with time delays as
master system:

Dαxi(t) = −cixi(t) +

n∑
j=1

aijfj
(
xj(t)

)
+

n∑
j=1

bijgj
(
xj(t− τj)

)
+ Ii, (1)

i, j = 1, 2, . . . , n, where 0 < α < 1, n is the number of units in a neural network,
xi(t) denotes the pseudostate variable of the ith unit of master system, ci > 0 is the self-
regulating parameters of the ith unit. Ii represents the external input of the ith unit, aij
and bij denote the strength of the jth unit on the ith unit at time t and t− τj , respectively,
τj > 0 is the transmission delay, fj(xj(t)) and gj(xj(t)) denote the output of the jth unit
at time t and t− τj , respectively.

The slave system is given by

Dαyi(t) = −ciyi(t) +

n∑
j=1

aijfj
(
yj(t)

)
+

n∑
j=1

bijgj
(
yj(t− τj)

)
− ui(t) + Ii, (2)

i, j = 1, 2, . . . , n. Note that yi(t) is the pseudostate vector of slave system and ui(t) is
a suitable controller.

To ensure the main results, we present the following assumption and lemmas.

Assumption 1. The neuron activation functions fj(x), gj(x) satisfy the following Lips-
chitz conditions with Lipschitz constants lj > 0, hj > 0:∣∣fj(u)− fj(v)

∣∣ 6 lj |u− v|,
∣∣gj(u)− gj(v)

∣∣ 6 hj |u− v|

for all u, v ∈ R.
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Lemma 1. (See [1, 11].) Suppose that x(t) ∈ Rn is a continuous and differentiable
vector-value function. Then for any time instant t > t0, we have

1

2
Dαx2(t) 6 x(t)Dαx(t) (3)

when 0 < α < 1.

Lemma 2. (See [22].) Suppose that V (t) ∈ R is a continuous, differentiable, and non-
negative function satisfying

DαV (t) 6 −aV (t) +

n∑
j=1

bjV (t− τj), 0 < α < 1, 1 6 j 6 n,

V (t) = ϕ(t) > 0, t ∈ [−τ, 0].

(4)

If a >
√

2
∑n
j=1 bj and bj > 0, j = 1, 2, . . . , n, then for all ϕ(t) > 0, τj > 0,

limt→+∞ V (t) = 0.

3 Synchronization of fractional-order neural networks with multiple
time delays

We will discuss the master-slave synchronization of fractional-order neural networks. The
purpose is to choose an effective controller to achieve the synchronization of the master-
slave systems.

Let ei(t) = yi(t)− xi(t), i = 1, 2, . . . , n, be the synchronization errors.
Select the control input function as follows:

ui(t) = ki
(
yi(t)− xi(t)

)
, i = 1, 2, . . . , n, (5)

where ki denotes the controller feedback gain.
Then the error systems are obtained in the form

Dαei(t) = −ciei(t) +

n∑
j=1

aij
[
fj
(
yj(t)

)
− fj

(
xj(t)

)]
+

n∑
j=1

bij
[
gj
(
yj
(
t− τj

))
− gj

(
xj(t− τj)

)]
− kiei(t). (6)

Theorem 1. Under Assumption 1 and since the control function satisfies (5), if the con-
troller feedback gain ki satisfies the inequality

λ >

√
2

2

n∑
j=1

bj , (7)

then the fractional-order delayed neural networks system (1) synchronizes system (2),
where λ = min16i6n{2(ci + ki)−

∑n
j=1 lj |aij | −

∑n
j=1 li|aji| −

∑n
j=1 hj |bij |}, bj =∑n

i=1 hj |bij |.
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Proof. We define the following Lyapunov function:

V (t) =
1

2
eT(t)e(t), e(t) = (e1(t), . . . , en(t))T. (8)

From Lemma 1,

DαV (t) = Dα

[
1

2
eT(t)e(t)

]
= Dα

[
1

2

n∑
i=1

e2i (t)

]
6

n∑
i=1

ei(t)D
αei(t)

=

n∑
i=1

{
−cie2i (t) + ei(t)

n∑
j=1

aij
[
fj
(
yj(t)

)
− fj

(
xj(t)

)]
+ ei(t)

n∑
j=1

bij
[
gj
(
yj(t− τj)

)
− gj

(
xj(t− τj)

)]
− kie2i (t)

}

6
n∑
i=1

{
−cie2i (t) +

n∑
j=1

∣∣ei(t)∣∣|aij |∣∣fj(yj(t))− fj(xj(t))∣∣
+

n∑
j=1

∣∣ei(t)∣∣|bij |∣∣gj(yj(t− τj))− gj(xj(t− τj))∣∣− kie2i (t)
}

6
n∑
i=1

{
−(ci + ki)e

2
i (t) +

n∑
j=1

∣∣ei(t)∣∣|aij |lj∣∣ej(t)∣∣
+

n∑
j=1

∣∣ei(t)∣∣|bij |hj∣∣ej(t− τj)∣∣}. (9)

Note that ∣∣ei(t)∣∣|aij |lj∣∣ej(t)∣∣ 6 1

2
lj |aij |

(
e2i (t) + e2j (t)

)
,∣∣ei(t)∣∣|bij |hj∣∣ej(t− τj)∣∣ 6 1

2
hj |bij |

(
e2i (t) + e2j (t− τj)

)
,

e2j (t− τj) 6 eTj (t− τj)e(t− τj) = 2V (t− τj).

Substitute these into (9), one has

DαV (t) 6
n∑
i=1

{
−(ci + ki)e

2
i (t) +

1

2

n∑
j=1

lj |aij |
(
e2i (t) + e2j (t)

)
+

1

2

n∑
j=1

hj |bij |
(
e2i (t) + e2j (t− τj)

)}

= −
n∑
i=1

{
(ci + ki)−

1

2

n∑
j=1

lj |aij | −
1

2

n∑
j=1

li|aji| −
1

2

n∑
j=1

hj |bij |

}
e2i (t)
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+
1

2

n∑
i=1

n∑
j=1

hj |bij |e2j (t− τj)

6 − min
16i6n

{
2(ci + ki)−

n∑
j=1

lj |aij | −
n∑
j=1

li|aji| −
n∑
j=1

hj |bij |

}
V (t)

+

n∑
j=1

n∑
i=1

hj |bij |V (t− τj). (10)

Let

λ = min
16i6n

{
2(ci + ki)−

n∑
j=1

lj |aij | −
n∑
j=1

li|aji| −
n∑
j=1

hj |bij |

}
,

bj =

n∑
i=1

hj |bij |,

According to Lemma 2, when λ > (
√

2/2)
∑n
j=1 bj , system (1) synchronizes

system (2).

For convenience, we rewrite (10) as

DαV (t) 6 λV (t) +

n∑
j=1

LV (t− τj), (11)

where L = max{bj}.
According to Theorem 1, the following corollary holds.

Corollary 1. Under Assumption 1 and since the control function satisfies (5), if the
controller feedback gain ki satisfies the inequality

λ >

√
2

2

n∑
j=1

L, (12)

then the fractional-order delayed neural networks system (1) synchronizes system (2).

Remark 1. If τ1 = τ2 = · · · = τj = τ , the model will reduce to system with single time
delay.

Remark 2. Here, we have used comparison principles of fractional-order couple sys-
tem with multiple time delays. Some synchronization results of fractional-order neural
networks with multiple time delays are derived. The method is novel.

Remark 3. Generally, the differential models with multiple time delays unavoidable exist
in neural networks. However, the research of synchronization of fractional-order neural
networks with multiple time delays has seldom seen. A comparative study reveals that our
results are with multiple time delays. Hence, the results obtained in this paper are more
general than the existing results dealing with the single time delay [3–5, 10, 12].

Nonlinear Anal. Model. Control, 22(5):636–645
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4 Numerical simulation

We now consider the following two-dimensional fractional-order neural networks with
two time delays as drive system:

Dαx1(t) = −c1x1 + a11f1
(
x1(t)

)
+ a12f2

(
x2(t)

)
+ b11g1

(
x1(t− τ1)

)
+ b12g2

(
x1(t− τ2)

)
+ I1,

Dαx2(t) = −c2x2 + a21f1
(
x1(t)

)
+ a22f2

(
x2(t)

)
+ b21g1

(
x1(t− τ1)

)
+ b22g2

(
x1(t− τ2)

)
+ I2

(13)

with α = 0.92, c1 = c2 = 1, a11 = 2.0, a12 = −0.1, a21 = −5.0, a22 = 2.0,
b11 = −1.5, b12 = −0.1, b21 = −0.2, b11 = −1.5, I1 = I2 = 0, τ1 = 1, τ2 = 2,
fi(s) = gi(s) = tanh(s) for s ∈ R. Obviously, fi(xi) and gi(xi) satisfy Assumption 1
with li = hi = 1.

The response system is given as follows:

Dαy1(t) = −c1y1 + a11f1
(
y1(t)

)
+ a12f2

(
y2(t)

)
+ b11g1

(
y1(t− τ1)

)
+ b12g2

(
y1(t− τ2)

)
+ I1 − k1(y1 − x1),

Dαy2(t) = −c2y2 + a21f1
(
y1(t)

)
+ a22f2

(
y2(t)

)
+ b21g1

(
y1(t− τ1)

)
+ b22g2

(
y1(t− τ2)

)
+ I2 − k2(y2 − x2).

(14)

If we select the control gain k1 = k2 = 11, by simple computing, the condition of
Theorem 1 is satisfied. We denote the initial values of state vector x1(t), x2(t), y1(t),
y2(t) of the master-slave systems as follows: x̃1(t), x̃2(t), ỹ1(t), ỹ2(t), select the initial
values in such a way that when t ∈ [−2, 0], x̃1(t) = 10 tanh(π(t + 2)/2), x̃2(t) =
10 cos(π(t + 2)/2), ỹ1(t) = 10(π(t + 2)/2), ỹ2(t) = 10(π(t + 2)/2). Under these
parameters, the state trajectories of system without controller and with the control gain
are shown in Fig. 1. The synchronization errors are shown in Fig. 2. The state synchro-
nization trajectories of master-slave systems are shown in Fig. 3.

Figure 1. Trajectories of the system without controller (13) and with the control gain (14).
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Figure 2. Synchronization error trajectories of ei, i = 1, 2.

Figure 3. State synchronization trajectories of xi, yi, i = 1, 2.

5 Conclusions

Here, we investigated the synchronization of fractional-order neural networks with mul-
tiple time delays. By using Lyapunov function and the comparison principles of linear
fractional equation with multiple time delays, some sufficient conditions are derived to
ensure the synchronization of the master-slave systems. A numerical example is presented
to verify the effectiveness of the theoretical results.

Acknowledgment. We would like to thank the referees and the editor for their valuable
comments.
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