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Abstract. A class of boundary value problem for impulsive fractional differential equation on a half
line is proposed. Some results on existence of solutions of this kind of boundary value problem for
impulsive multi-term fractional differential equation on a half line are established by constructing
a weighted Banach space, a completely continuous operator and using a fixed point theorem in the
Banach space. Some unsuitable lemmas in recent published papers are pointed out. An example is
given to illustrate the efficiency of the main theorems.
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1 Introduction

Fractional differential equation is a generalization of ordinary differential equation to
arbitrary noninteger orders. Recent investigations have shown that many physical systems
can be represented more accurately through fractional derivative formulation [10, 13].
There have been many excellent books and monographs available on this field [7,11, 12].

Many authors have studied the existence and uniqueness of solutions of the impulsive
fractional differential equations involving the Caputo fractional derivatives. Impulsive
fractional differential equations is an important area of study [1]. There have been many
questions needed be studied. For example, authors in papers [2,3, 6] studied the existence
of solutions of the different initial value problems for the impulsive fractional differential
equations.

In the literature, DS, u(t) + f(t,u(t)) = 0 is known as a single term equation. In
certain cases, we find equations containing more than one differential terms. A classical
example is the so-called Bagley—Torvik equation

ADZ,y(x) + BDYy(x) + Cy(z) = f(x),
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where A, B, C are constants, and f is a given function. This equation arises from
example for the modelling of motion of a rigid plate immersed in a Newtonian fluid.
It was originally proposed in [14]. Another example for an application of equations with
more than one fractional derivatives is the Basset equation

ADgy(z) + bDgey(@) + cy(z) = f(z),  y(0) = yo,

where 0 < m < 1. This equation is most frequently, but not exclusively, used with
n = 1/2. Tt describes the forces that occur when a spherical object sinks in a (relatively
dense) incompressible viscous fluid; see [5, 10].

In recent paper [8], Liu studied existence of positive solutions for the following bound-
ary value problems (BVP) for fractional impulsive differential equations:

Diu(t) = —f(tu(t), te(0,1), t#ty, k=1,2,...,m,

ulty) =1 —cpu(ty), k=12,...,m, u(0) = u(l) =0, M
where D, is the Riemann-Liouville fractional derivative of order o € (1,2) with the
base point 0, m is a positive integer, ¢, € (0,1/2), f : [0,1] x [0, +00) — [0, +00) is
a given continuous function, u(t;") and u(t; ) denote the right limit and left limit of u
at t, and u(t;) = u(ty), i.e., u is right continuous at ¢.

In [15], Zhao and Ge studied the following fractional impulsive boundary value prob-
lem on infinite intervals:

Dgu(t) + f(t,u(t)) =0, te(0,400), t#ty, k=1,2,...,m,
u(tZ) fu(t,:) :fIk(u(tk)), k=1,2,...,m, )
u(0) =0, Dy tu(+o0) =0,

where o € (1,2], Dy, is the Riemann-Liouville fractional derivatives of orders * > 0,
to=0,1<t; < <ty <+4oo,u(t]) =lim, .+ u(t),and u(t;) = lim, - u(t).
DS u(+00) = limyo o0 DS M ult), (tu) — f(tf(l + t%)u is nonnegative, Contin-
uous on [0, +00) x [0,+00), and u — I (u) is nonnegative, continuous, and bounded.
Existence, uniqueness, and computational method of unbounded positive solutions were
established.

‘We note that Lemma 3.1 in [8] and Lemma 3.1 in [15] are unsuitable; see Remarks 2
and 3 in Section 3. This motivates us to establish results on solutions of impulsive frac-
tional differential equations with order o € (1, 2). In this paper, we discuss the following
boundary value problems for nonlinear impulsive fractional differential equations:

D§vu(t) =ma(t) f1(t u(t), Diyu(t), ae.t € (ts,top1], s € No,
I,7%u(0) = ky Jim Ioy“ul(t), 3)
Aféjo‘u(ts) = cﬂéja (u(ts))7 s €N,
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where

@0 <a<lpuce(0,a), DZ+ is the Riemann-Liouville fractional derivative

with order b > 0 and starting point a, k; € R, ¢s € R (s € Ny) with ¢y = 0,
¢; satisfies that D>~ |¢;| is convergent, and there exist constants Mo, M, > 0

such that HZT_:lw |1+ ¢, | < Mpand|c;| < M, forallw, i € N, set
i1 i1
A, = (—1)Z+1Ci Z(—l)wcw,1 H (]. + Cq—) +cici1 ¢, 1 EN,
w=2 T=w

b) 0=ty < t1 <+ <ty < -+ withlimgyoots = 00, N = {1,2,...}, and
No = {0,1,2,...};

(©) malt,t000) € L'(t;,t;11] satisfies that there exist constants k& > —1 such that
|m1(t)| < t*e* for almost all ¢ € (0, 00);

(d) f1 is a Carathéodory function.

A functions x with = : (0,00) — R is said to be a solution of (3) if z|y_ ¢ ..}
Di xli, t,) € COlts,tsy1] (s € Np), the limits lim, (¢t — ¢;)'"*z(t) and
lim, ,,+(t — t;)"*#~“x(t) (i € Ny) are finite, and z satisfies all equations in (3). We
obtain the results on existence of solutions for BVP (3). An example is given to illustrate
the efficiency of the main theorem.

The remainder of this paper is as follows: in Section 2, we present preliminary results.
In Section 3, the main theorem on the existence of solutions of (3) are presented. In
Section 4, an example is given to illustrate the main results.

2 Preliminary results

For the convenience of the readers, we present the necessary definitions from the frac-
tional calculus theory. These definitions and results can be found in the monograph [11].
For ¢ € L'(0, 00), denote [|¢]|1 = [~ |¢(s)| ds. In this paper, we define Zl;:a As =0,
Hl;:a Bs; =1, a > b. Let the gamma and beta functions I'(«), B(p, q) be defined by

+oo 1
INa) = / e " dx, B(p,q) = /xp_l(l — ) da.
0 0

Definition 1. Let a,b € R with b > a. The left Riemann-Liouville fractional integral
of order > 0 of a function g : (a,b) — R is given by I® g(t) = (1/I'(cr)) X
f;(t — 5)®"1g(s) ds, provided that the right-hand side exists [11].

Definition 2. Let a,b € R with b > a. The left Riemann—Liouville fractional derivative
of order o > 0 of a function g : (a,b) — R is given by D%, g(t) = (1/T'(n — a)) x
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(d™/de™) fat g(s)/(t — s)*~"*1)ds, where n — 1 < a < n, provided that the right-hand
side exists [11].

For ease of expression, denote

S1(t) = (t—t)' ™%, Go(t) = (t —ts)' T, t € (ts,te41], s € Ny,
fo(t) = f1(t,x(t), Db, a(t)), t€ (ts,toq1], s € No.

Definition 3. Let ¢ > 1 4+ k. We call K is called a Carathéodory function if it satisfies
the followings:

() t = K(t, (1+t7)x/01(t), (1 +t7)y/d2(t)) is measurable on (¢, ts11] (s € Np);
(i) (z,y) = K(t,(1+t7)x/61(t), (1 +t)y/d(t)) is continuous on R? for almost
all t € (0, 00);
(iii) for each r > 0, there exists a constant A, > 0 such that

(I+t9)x 1+¢t%)y
%( OO

>’ <A’ra te(tsats+1]a SENO? |33|,|y| gr

Set

s s+1]aDg+x|(ts’ts+1} € Co(tsats-i-l]a s € No,

x={o

lim (t — ) ™ *x(t), lim (¢ — ts)' DL, (1), s € No,

t—td t—t]
91 (¢ da(t
im Am(t), lim 2() Df, x(t) are finite ¢.
t—oo 1 +t° t—oo 1 +t°

For x € X, define the norm by

ol = el = max{ s PO pao), sup 20 g s},

te(0,00) 1 + 17 te(0,00) 1 T 17
By standard method, we can show that X is a real Banach space.
Lemma 1. Suppose that x € X, (a)—(d) hold, and

I =(1-k)(a)

— F(Oé)kl Z [(—1)”1@ z_:(—l)wcw_l 1:[ (1 + CT) “+cici—1 + ¢ 75 0.

i=1

w=2 T=W

Then u € X is a solution of

D0+u( ) ml(t)fx( ) te (t57ts+1]u s € NO7 4
I u(0) = by Jim T4 u( ) ATt = eIl (u(ty), seN @
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if and only if
(t—s)ot
u(t) = mi(s)fa(s)ds + | = [ ma(s)fa(s)ds
/ [(@) 0/
k 00 i—1 i—1 tw—1
T D DI | (RS / ma(s)fu(s) ds
=1 w=2 T=w
[e%¢) tica o
+ ];Zczcz_l m1(s)fz(s)ds ﬁlz / s)fz(s ds] o1
i=1 0 =l 9
k i—1 3 to
(*1)#101
2w 2! C“HHCT O/ -
ti—1 t; 0o
Tt [ s s+ g fm o as+ 52 [0
0 0 0
00 i—1 i—1 b1
—1)*! Z(_Uwcw,l H(1+CT) / my(s)fz(s)ds
i=1 w=2 T=w 0
kl chcz 1 / ml fz d5+ kl cz/ml fr ]
x (t—t)"",  t e (ty,tera], k € No. (5)

Proof. From x € X, there exists r > 0 such that

ol =maf sop 2 aof, s 2O g aoff - <o

te(0,00) L + 17 te(0,00) L + 17

Since f; is a Carathéodory function, by Definition 3, there exists A,. > 0 such that
|f1(t,z(t), Dy, x(t)| < Ar, € (ts,tsqa], s € No.
We divide the whole proof into two steps.

Step 1. We will prove that v satisfies (5) if u € X is a solution of (4).

Suppose that u is a solution of (4). By Theorem 3.2 (n = 1, a € (0, 1), and g(¢) is
replaced by mq (t) f(t)) in [9], we know that there exist constants Cs € R (s € N) such
that, for t € (ti, t7;+1], i € Ny,

iy ds 4 Y Crle ©

I
o\“
®
-
Q
-
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Then, by Definitions 1 and 2, we know for ¢t € (¢, tx1] that

Fh—1 tit+1 t /

D, u(t) = F(ll—u);o /(ts)“u(s)ds+ /(ts)“u(s)ds]
- 1 Mk—1 tj+1 B . S (s _u)a—lm . , .,
TT1-p) > /(t s) <0/F(a) 1(u) fo(u)d

_j:0 tj

L t —s)H S7(s_u)a_lm U u) du
*m—m““ ) (/ ) d

k i
+ Z Cr(s— tT)o‘1> ds]

7=0
k—1k—1 (t1+1 t")/tt) /
[Z Z C-(t @z (1 —w) Fw*! dw]
T=09=T tj—tr)/(t—t.)

k !
+ZCT(t—tT)°‘7” / (1 —w) Hw*t dw] .

(tkt1—tr)/(t—tr)

It follows that

Dt = [ )15
+ TZ:% I}m(t — )Mt e (i, tina], i € No. %

Similarly, we have
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t

I(l1—a) [z_: ]/Ht_s ~Yu(s)ds + /(t—S)_au(s)ds],

J=0 t; te41

¢ i
= /ml(s)fz(s) ds + Z F(Q)CT7 te (ti7ti+1], i € Np. ®)
0 =0

From I “u(0) = ky limy—,00 15} “u(t), we have

Co—kll/ml ) fuls ds+ZF ©)
7=0
From AI&j“u(ts) = ciléjo‘u(ts)), s € N, we have
t i—1
Ci[/ml(s)ff(s) ds+ Y T(a)C,|, i€N. (10)
0 7=0
By (10), we get
dS+F( )Co]
Ch
1 0 --- 0 0 e s)ds + T'(«)Cy]
—cg 1 -~ 0 0 .
ce c._
—c; —¢; - —c; 1 Cil dS—l—F( )Co}
i s)ds + T'(a)Cy)
We get
' i—1 i—1
C; = (—1)’+1ci Z(—l)“cw,l H (I+c¢r)+cicio1+¢ | Co
w=2 T=w
1 i—1 i—1 b1
—ci [ (=1)"! —1)¥c,_ 1
+F(Q)Cl[( ) 22( )¥cw IU( +cr) / fa(s)ds
w= T=w 0
ti—1 t;
+ iy / fw(s)ds—k/fw(s)ds}, ieN. (11)
0 0
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Substituting (11) into (9), we have

(1 —Fk)(e)Co

=k /ml(s)fm(s) ds + k1 ch- [(1)i+1 i(*l)wcw—l 1:[ (14¢;)

-1 t;

ma(s)fz(s)ds+ciz1 [ ma(s)fz(s)ds+ 1(8) fz(s) dS]
S Ty (.
o) 1—1 1—1
+ F(Oé)k‘l Z l(—l)i+1ci Z(—l)wa—l H (1 + CT) 4+ cici1 4 ¢ | Co.
i=1 w=2 T=w
It follows that
i—1
<k1/m1 ) fe(s d8+klzcz[2 itttec, H(1+CT)
w=2 T=Ww
—1 t;
ma(s)fz(s)ds+ci1 [ ma(s)fz(s)ds+ 1(8) fz(s) dSD
Sy Ty [
o i—1
( — k‘1 F(O&)kj Z l(—l)i+1ci Z(_l)wcw—l
i=1 w=2
_ -1
H1+CT +eiciog + ¢ ) . (12)
So, for 7 € N, we have
1)itle -1 i—1 b1
Z Y1 H(l +er) / mq(s)fz(s)ds
= T=w 0
ti—1 t; o'
+ ot / ma(5)fo(5)ds + 5 / () () s+ 1% / mi(s) fa(s) ds

tw—1

i—1
I I H L4e) /ml(s)fz(s)ds

I
e
Mg -
D

ti—1 [e%¢] i
+ k#i Zlcicz‘q / ma(s)fz(s)ds + k#’ Zlci/ml(s)fa:(s) ds. (13)
i= 0 = 0

Substituting (12) and (13) into (6), we get (5).
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Step 2. We prove that v € X and w is a solution of (4) if u is defined by (5).
Remember C; (i € Ny) defined by (12) and (13), then (5) is (6). Hence, we have (7)
and (8). From (5) and (7), it is easy to see that u|q, ¢, .1, Dp (. ,0.1) € Cts, teq1] (s €
Np). Furthermore, the limits lim, _,,+ (t —t5)'~“u(t) and lim t—tg) " THTODE u(t)
exist for all s € Ny. Now we will prove that both
i ()
t—oo 1 +t°
exist, and D, u(t) = fo(t).
In fact, for ¢ € (¢;,t;41], we have by a similar method used in the proof of Theo-
rem 3.2 in [9] that

i—1 bit s s — )]
Dg. u(t) = ml_a)[z / <t—s>-a< / <F(Of)m1<u>fx<u>du
; 0

t—td (

u(t) and lim %2(t)
t—oo 1 + t9

D{ u(t)

1 i-1 . J - ’
:F(l_a)[;)t- (t—s) ;C’T(s—tT) ds]
+ I‘(llf ) l/(t S)—a/ (s F(Uof)a_ my(u) fr(u) duds
0 0

+ /(t —s)7 ¢ Z Cr(s—t,)* ! ds}

t;
= ml(t)fr(t), t e (ti,ti+1], xS No.

Since >_:<; |¢;| < oo, there exists M, > 0 such that |¢;] < M,. By (12) and (13), we
know

i—1 1—1
|Ail < el Y lewa] [T 11+ erl + leilleizal + el
w=2

T=w
1—1

<leil [Mo ) lewa| + Me+1], i€N,
w=2
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688 Y Liu

|OO ‘H| ‘k1|+‘k1|2|61|2|cw 1|H|1+CT‘+|]€1‘Z|61||CZ 1‘
+|k:1|Zci|] /]ml(s)fgg(s)]ds
=1 0
1 oo 2 o0 o0
<ﬁ| k1|+M0k1|<ZCi|> + Mk | Y leil + [k Y e
1=1 =1 =1
x / Iy (3) £ (s)] ds,
0
lei] leilleia] | leil | lkallAdl
Ci < 7 Co1 |1+C7— + 7 7—1 + 7 + 1 7
Gl r<a>Z‘ el tw *
k %] 1—1 k AZ 0o
4 [l Z |Z|cw 1|H|1+ T|+‘ il |Z|ci|\ci,1|
‘H| |7 i=1
|k1||A|
‘7| ml f’I‘ dS
11| Z | |

lei| lcillei—al | leil | [kal]Ad]
|Cw—1] 1+ ¢ |+ + +
['(a) ; TIJW ['(a) I'(a) [ 1]

2
Mok ||Ai| [ &~ . M M|k || 4] [ ]| 4]
T\ &) T el T 2l

[ee]

x / [ ()2 (s)] ds.

0
It follows for ¢t € (ti, ti+1] that

() |y < Gt l / (t—s)* |m1(8)fz(8)’ds+Z|CT|(f—tT)a_1]

1+t ()

0
2
1R B(a, k + 1) IL(k+1)A, >
< ! -+ k1| + Mk i
1+t° TI(a) |IT|(1 + t°) k] + Molk,| ;' |

+Mc|k1|Z|Ci\ + |k1\z |cil
My 1
| @)
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<0§:%1+M+Q<E|Aﬂ?<XNO

w=2
L Mk LIRS N
E ARE g E c|ID(k+1

Hence, 01 (t)|u(t)|/(1 +¢°) — 0 as t — oo. Similarly, from (7), for t € (¢;,t;11], we
have

d2(t)
e | Db u(®)]

t'ro Bla — p, k+1) Ia) T(k+1)
S 14+t T(a—p) D(a—p) [H|(14+t7)""

o0 2 oo oo
k1| + Molki| (Z |Cz‘|> + M|k | Y el + k] > |Cz‘|1
=1 i=1

=1
(@) T(+1), | My <=
+F(oz—u) 1+t r[ Z|C‘*’ 1|+ ]Z“

I'a) T(k+1)
AT‘ M w— MC 1
MNoo—p) 14t° OZ|C i+ M.+

w=2
2
Lz Mo|/€1 Mc|k?1| = [k1] < -
=1 i=1

We have d2(t)| Dy u(t)| /(1 +t7) — 0 ast — oc. It follows that u € X satisfies (4).
The proof is completed. O

Ay

+1+t

Now, we define for t € (¢, tx+1], k € No, the operator T on X by

/m1 ) fa(s

t

/ t_F(Z) ma(s)fz(s)ds +

0
k 00 i—1 tw—1
+ ﬁlZc 1)i+1 Z “ew_1 H(l +cr) / mi(s)fz(s)ds
i=1 T=w 0
o0 ti—1
%Zcici_l / ml(S)fx dS—I—chz/ml fgg d3‘|t0‘ 1
i=1 0
k ; i—1 fo 1
+Zﬁiﬁﬁz wg HL“ /m V(s
vt F(a) o w—1 T 1 T
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+ / ma($)fe(s)ds + g [ i) fe(s) ds
kA [ by Ay & it
+ = ma(s)fe(s)ds + - (=) (—1)¥e
7} O/ ! 7] ; wz::z !
i—1 to—1 k 0o ti-1
< [L+en [ mfsds+ e [ m©as
T=W 0 1= 0
ti
klAi = -1
+— ¢ [ mi(s)fz(s) ds} (t—1t;)* . (14)
7] ; O/ !

Remark 1. By Lemma 1, x € X is a solution of (3) if and only if x € X is a fixed point
of the operator 7T'.

Lemma 2. Suppose that (a)—(d) hold, and I # 0 defined in Lemma 1. ThenT : X — X
is well defined and completely continuous.

Proof. The proof is standard and is omitted. O
3 Existence of solutions of BVP (3)

In this section, we shall establish existence result of at least one solution of (3). For easy
referencing, we list the necessary conditions as follows:

(A,) There exist positive numbers o1 > g9 > --- > g, > 0, bounded functions
1 : (0,00) — R, and nonnegative numbers a;, b; (j = 1,2,...,n) such that

(Lt+iT)a (1+17)y Sl S byl
(e e O )—w<t>]<;aj|x| +3 o

holds for all ¢ € (¢;,t;41],% € No,x,y € R.

Set
v = [l s+ |5 [mn(suts)as
0 0
+ 28 ic (1)1 Zii(—l) ¢ ﬁ(l +¢r) tw/lm (s)(s)ds
1 =1 l w=2 o T=w . 0 '
+ﬁ1 iCi 1 / my(s)Y(s) ds+%Zci/m1(s)w(s) ds] a1
=1 0 =1 0
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B[ (_qyitle it w1

+3 %;2 v 1H 1 4e) / L (s)0(s) ds
CiCi—1 o ki1 A; T

+ o O/m1(> ) ds + / L(8)0(s) s

1)i+1 i(_l)wcw,l 1:[ (I4+¢;) / my(s)(s)ds

ti_1 t;
]{31141‘ > k‘lAi >
— E i Ci— ds + —— E i d
+ T i:1cc 1O/m1(s)w(s) s+ fii i:1c O/ml(s)z/)(s) s]

X (t =), t € (th,tesa], k € No.
Denote

I'(k+1)
o

|er| + Mok | (Z |ci|> + M, |k1|Z|cz| + wZ 4]

i=1

+Z|ci|<rj\(§)2|cw1|+r(o‘:+F(1a)>1“(k+1)
+<MoZ|cw1|+Mc+1> ||11€71| M|(1)|7k|:1 <Z| )

w=2

(14 M)k
+|m ) 1'ZZ|]Z|CZ|F (k+1).

Theorem 1. Suppose that (a)—(d) and (A,) hold, IT # 0 defined in Lemma 1. Then
system (3) has at least one solution if one of the following items is satisfied:

(i) o1 > 1 with

[B(a—,u,k-i—l) B(a, k+1) n I'(«)
a—p) M) ' Ta—p
O itV

3

M + M] > laj+bi)@ )7
J=1

o7t
(i) o1 € (0,1);
(iii) oy = 1 with

B(a—u, k+1) B(cu,kJrl)+ I'(«)
a—p) [(a) Ia—p)

M+M] > laj+bi)l @] < 1.
j=1
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Proof. Let the Banach space X and its norm be defined as in Section 2. Define the non-
linear operator 7" by (14). Then
(i) T : X — X is well defined;

(ii) z is a bounded positive solution of BVP (3) if and only if x is a solution of the
operator equation x = Tz in X;

(iii)) T : X — X is completely continuous.

It is easy to show that ¥ € X. Let r > 0, and define M, = {z € X: |jz — ¥| < r}. For
x € M, wefind ||z|| < || — ¥ + |¥| and

147 81 (H)a(t) 147 (1) Dy, x(t)
0= 0] = | (1, o A0, LEL RO )
- o1(t)] - Dy x(t)[\”
gj;%( 1+t” > Zb( 1+0t<7 )
< Z[a] +b; ]”.T”UJ te (ti,tiJrl], i€ No. (15)

By definition of 7" and ¥ and (15), we have for t € (¢;,t;+1] that

2| 2a)) - wir)

2
Blak+1) , T(h+1) S 3
T o\l Mol | e +Mc|k1|;|al

i=1
[e%¢) oo Mo o MC 1
+|k1§|61|>+;|cz<r(a)zcw—l+1_‘a)+1_‘(a)>F(k+l)
ki) Mok
<MOZ|Cw 1|+M +1><||171 (}|]|1 <Z| 1|>
w=2
1+|J\é| |k1\2| A)ZICZF (k+1) Z%H, 2]
B(a,k+1) } = .
= | —==—+M a; + b;]||z)77.
T ] Y bl

Similarly, we get

da(t
1 +tO'}D )( ) _D6L+y7|
< + a; + b;]|lx]|%7.
B 5] 3 o+l
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It follows that

Bla—u,k+1) B(a,k+1) I'«a)
Ila—p) I'(a) Ila—p)

|72 — | < [ M+M} S lag +b;]ll2]
j=1

< [P 2
Xl P
Then
L T e I e e et

n

xS Jag + by @]

j=1

(i) o1 > 1. Letr =19 = ||¥||/(01 — 1). By assumption

Bla—p,k+1)  B(a,k+1) INE) n i -
[ (o — p) I(a) +r(oé_ LE; i + bl

< (0'1 — 1)0171

o7t

for x € M,,, we have

72 - 01 < [+ )" [P+ B et o

x 3l + bl
j=1
< 7o.

Hence, we have a bounded subset M,, C X such that T'(M,,) C M,,. Then T has
a fixed point z € M, . Hence, z is a solution of BVP (3).

(ii) o1 € (0,1). Choose r > 0 sufficiently large such that

M+M

o [Bla—pu,k+1) B(o,k+1) Ia)
I M) Ta—

n
x D lay + byl <
Jj=1
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Then, for x € M,., we have
B(a — 1 B 1 T —
(a—p,k+1) (o, k + )+ () N T
o) M) Ta-pw

x Y laj +billle| =

j=1

ITe— vl < [r + IIW]“[

<

So, T(M,) € M,. Then T has a fixed point « € M,.. This z is a solution of BVP (3).

(iii) 01 = 1. We choose

B(a—p,k+1 B(a,k+1 r v vihek P
[Blocphtl) | Blaktl) | Bl 37 4 M) Y0 [ag + by 2|75~ |2

Tla—p) (a—p
rz Bla— k1) |, B(aktl T(a) =7 | 77—~ P
1— [BQokel) oy BOAED o (Fel A + M) 307 [a; + by @]

Then, for x € M,., we have

Bla—p,k+1) B(a,k+1)+ INa) — —
a1 M@ Ta-p

X Y laj + byl||@]|
j=1
<.

1Tz — ol < [r + 121])" [

Hence, as in earlier cases, we conclude that 7" has a fixed point x € M,, which is
a solution of BVP (3).
From above discussion, the proof is completed. O

Theorem 2. Suppose that (a)—(d), and there exists a constant My > 0 such that

1+t 1+1t°
t e Ty )| < My, t€ (titis1], i €N, z,y € R.
f1<, 51 () z, 5a(0) y>' f € ( +1], 1 € No, m,y €

Then system (3) has at least one solution.

Proof. In Theorem 1, choose () = 0,n =1, 01 = 0, a; = M, and by = 0. The result
follows. =

Remark 2. (See [15, Lemma 3.1].) Let y € C°[0,00), [, y(t) dt be convergent, and
a € (1,2). In order to consider the solvability of BVP (2), it was proved that if u is
a solution of

u(t) = /G(t, S)y(s)ds + S Wit u(ts), (16)
0

i=1
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where
Gl {(tal ~ (t=5)*"1)/T(a),

0
t*=1/T(a), 0

NN

s <t <oo,
<s <

t<s

i

Lu(t)te= /(57 —4777), 0<t <t
Liulta))t* 2 /(677 —4077), t; <t, <o,

3

Wi(t,u(t;)) = {

then w is a solution of

Dfiu(t)+y(t) =0, te(0,400), t#ty, k=1,2,...,m,
u(th) —u(ty) = —Ie(uty), k=1,2,....m, u(0) =0,
Dy u(+o00) = 0.

We find that this result is wrong. In fact, (16) can be rewritten by
t
1

tisafl o= 1 ta
”“)/(rw{) Vo) ds + )/ s)ds + Z .
0

=k+1

k ( to/ 2
Z o~ ta Toa—1 _ ja—2 te(tkvtk+1],k:0,1,2,....
i=1 7,

Hence, we have for ¢ € (tg,tx+1] (K =1,2,...,m) that

D u(t) = — - /(t — o) u(s) ds]

r'2-—ow) I
| [ e <>ds+/<ts>1au<s>ds}

_ 1 B O U el DO
eI (/ T +p(a)0/y<>d

i=v+1 v i=1 7 2
t s ( ) 1 1 oo
1 1—a s—u)*" s*~
+P(2_a){/(t—s) ( / (o) y(u)du—&-r(a)/y(u)du
t 0 0
m Iz tz a—1 k I’L t’L a—2 "
T I oy L)) e PP
i=k+1 t; -t = b t
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m

F(2—0‘)|:Z Z ta 1 ia_ /(t—s)l—asa—1ds

v=0i=v+1 Vi d
k-1 v tyy1 ”
+ZZ a- 1 jo2 /(t8)1“3“2ds}
v=0 i=1 l l s
L[ K
AR 1o a1
+F(2—Oé)|:l;+1t;11ta?/(t_5) s lds

ty

! Sopw) f ’
ener

04*1 Zozf (t )1 ¥g™ ldS

F(2_a)[;§)ti bt 2/
1 m k-1 I( (t )) tyy1
iUt l—-a a—1

+1—‘(2—04) Z ZW /(t*S) s ds

i=k+1v=0 "7 3 i

ty
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Use (s —u)/(t —u) =w, s/t = w.

Do ut) = F(21_ a) [Z t?ﬁfu_(t;l)fz /(t —s)tmse! dS]

ti/t ”
Deult) = y(t) + ]_“(21_ o) lz tql_zgu(tzi)_2t /(1 —w) Tt dw]
=1 "1 7 0

=L
0+ gt [ /< vt
SR [Z ) tf(l e dw] ”
=1 ‘ 0
e Por Y IR e T

7& y(t)v te (tkatk-‘rlL k= 1727' -, M.
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Hence, Lemma 3.1 of [15] is wrong.

Remark 3. (See [8, Lemma 3.1].) Let « is a fixed point of the operator A defined for all
x € PC(]0,1] by

1
a—1 Ck l—a
/G a(s)) ds+ e 3 ()
0

t<tp<l1

It was proved that w is a solution of BVP (1) (x is continuous at each point ¢ # ¢;, right
continuous at ;, the left limit lim,_,,~ () is finite and satisfies (1)). Here

1 t(l—s)]*t—(t—s)>"1 0
Gleg - L [lL=o =)

L) | [t(1 = s)]* L, 0
We find that Lemma of [8] is wrong. In fact, if u is a fixed point of A, then we get

1
/G a(s))ds+ 271 Y T pl=og(ty).
0

1—c
t<tp<l k

t<1
s < 1.

N

S

)

t

NN
NN

It is rewritten by

z(t) = — / (tl_‘(i);f(s,x(s)) ds
0

1

e [T o £

0

ety %t}—%(ti), te [thontn), k=1,...,m+1.
— i

One can easily verifies that Dy, x(t) # f(t,x(t)),t € (ti,tix1], @ = 1,...,m, similarly
to above discussion in Remark 2.

4 An example

To illustrate the usefulness of our main results, we present an example that Theorem 1
can be easily applied.

Example 1. Consider the following impulsive fractional differential equation:

_ _ t—s 3/5 P t—s 4/5 P
DYPa(t) = t~/% t[co+bo<(1+)tzx(t)) +ao((1+)t2Déf’x(t)> },

t e (s,s+1], s €Ny, a7

134533(0) = Igisx(oo) Algfm(s) =0, seN,
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where ¢y > 0, bg = 0, ag = 0, p > 0 are constants. Then system (17) has at least one
solution if one of the following items holds:

®H p>1;
o L,[BEY BEYH r3rd)  rdHN!
a0 +bo < (p=1) 1(” { NSRS +F(}))2F(2§)+2F(2§>D ’
(i) p € (0,1);
(iii) p=1,
Z e (B(;,é) LBG Y TR TG |, T() )
o r(l) " @) Trid)er@) o)

Proof. According to (3), we have

(@ a=2/5p=1/5€(0,a), ki = —1,¢s = 0 (s € Ng) with ¢g = 0, ¢; satisfies
that 3°°° |e;| = 0, and there exist constants Mo, M, > 0 such that [['_ |1 + ¢,| <
My=1and |¢;| < M. =1forallw,i € N, set

i—1 i—1
A; = (—I)H_lci Z(_l)wcw—l H (1 +er)teicio1+e =0, ieN;
w=2 T=w

D O0=tg<t;=1<--- <ty =5<--- withlimgz_, ts = 00;

(¢) my(t) = e /2et € LY(0,00) satisfies |m1(t)| < tFe~* for almost all ¢ €
(0,00) with k = —1/2;

(d) Choose 0 = 2 and
61(t) = (t—s)%°, Sa(t) = (t—s)*°, te(s,s+1], se Ny,

then f1(¢,z,y) = co + boz” + apy” is a Carathéodory function.
One sees that

00 i—1 i—1
II=-T(a)ky Y [(—1)”1@ > (-D)%con [T +er) +cicia +e

w=2 T=w

One sees that

(Ag) n=1,01=p20,9(t) = cog, a1 = ag, by = by, and fort € (s,s+1],s €N,
z,y € R,

1+t 1+1t°
[ _ < g1 01.
(e ) s <l ol

Nonlinear Anal. Model. Control, 22(5):679-701
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We have from ¢; = A; = 0 that

t 0o

t— )3/5

U(t) = co/%s*me_s ds — 002 /s_l/2e_s dst*™, t € (0,00),
ey (3 J

and M = T'(k + 1)|k1|/|II| = T(1/2)/(20'(2/5)). Then from Theorem 1, BVP (17) has
at least one solution if (i) or (ii) or (iii) holds. O

Remark 4. It is easy to see that for sufficiently large ¢y > 0 and sufficiently small
ag,bp = 0, (17) has at least one solution if p > 1, (17) has at least one solution if
p € (0,1), and (17) has at least one solution for sufficiently small ag, by > 0.

Remark 5. It is well known that the differential equation z'(t) = 7, fi(®)[z ()]
is called Abel differential equation [4]. Hence, the equation in (17) is a fractional-order
Abel differential equation. So, (3) contains the following impulsive ecological models as
special cases.

Model 1. Fractional order logistic differential equation

N _ B t1/3
D0+I(t) =t 4/5e t(bo + bll_i_tz/gl'(t)>7 t e (0,00), (S (071),

R (0) =k Jim 135 (0),
Aféjau(ts) = ciféjo‘ (u(ts)), seN.
Model 2. Forced fractional-order powered logistic equation or fractional-order Riccati
equation
4—4/5

2/3 t1/3 t4/3 1/3 2
D0+ I’(t) = et bo + bl Wx(t) + bgm [D0+ I’(t)] 5 t e (0, OO),

LPe(0) =k Jlim L),

Aféjo‘u(ts) = ciléja (u(ts)), seN.

Model 3. Forced fractional-order Bernoulli equation

t74/5 ( t1/3 t2n/3

D2Pa(t) = () + b [ Déﬁsx(t)]n) t € (0,00),

LP2(0) = ku Jlim L),
Aféjo‘u(ts) = cﬂéjo‘ (u(ts)), seN.

By applying Theorem 1, we can establish the global existence results for solutions of
these kinds of models. We omit the details.
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