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Abstract. In this paper, we obtain an equivalent nonlinear integral equation to the stochastic neutral
fractional system with bounded operator. Using the integral equation, the sufficient conditions for
ensuring the complete controllability of the stochastic fractional neutral systems with Wiener and
Lévy noise are obtained. Banach’s fixed point theorem is used to obtain the results. Examples are
provided to illustrate the theory.
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1 Introduction

Controllability is a qualitative property of dynamical systems and is of particular im-
portance in control theory. Theory of controllability originates from the famous work of
Kalman in 1960, where the concept of controllability was defined for finite dimensional
deterministic linear systems. The natural extension of the concept of controllability to
infinite dimensional systems is studied by many authors. A discussion on the concepts of
controllability of infinite dimensional systems can be found in [2, 6, 8].

In recent years, fractional differential equations (FDEs) have attracted considerable
interest due to its ability to model complex phenomena by capturing nonlocal relations
in space and time. At the same time, the fluctuations in nature can be captured only
by adding random elements into the differential equations, which are called stochastic
differential equations (SDEs). Also, in many applications, one assumes that the system
under consideration is governed by a principle of causality; that is, the future state of
the system is independent of the past states and is determined solely by the present.
However, under closer scrutiny, it becomes apparent that the principle of causality is
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often only a first approximation to the true situation and that a more realistic model would
include some of the past states of the system. There are also a number of applications
in which the delayed argument occurs in the derivative of the state variable as well
as in the independent variable, the so-called neutral differential difference equations.
Such problems are more difficult to motivate but often arise in the study of two or more
simple oscillatory systems with some interconnections between them. In some cases,
the connection can be replaced by differential equations involving delays in the highest
order derivatives. Neutral differential equations are encountered in the description of
various physical scenarios like the lossless transmission connection, stunted transmission
connection [7], vibrating masses attached to an elastic bar [11], and collision problem
in electrodynamics [10]. The controllability of such systems are studied in [12] and the
references therein. Therefore, the investigation of fractional neutral differential equations
with stochastic nature attracts great attention, especially as regards to controllability.

The controllability of fractional and stochastic dynamical systems have been studied
by many authors separately. The controllability of linear and nonlinear fractional dynam-
ical systems is studied in [4] and the references therein. The natural extension of the
controllability concepts from deterministic to stochastic control systems has no meaning.
Therefore, there is a need in further weakening of these concepts in order to extend them
to stochastic control systems. For the controllability of SDEs, one can refer to [3,5,18,19,
23]. It is worth pointing out that most of the works on controllability of stochastic systems
only focused on the case of SDEs driven by a Brownian motion [9]. Unfortunately, the
fluctuations in financial markets, sudden changes in the environment, and many other real
systems cannot be described by Brownian motion, and this leads to the use of Lévy noise
to model such discontinuous systems. Lévy processes have stationary and independent
increments, their sample paths are right continuous having number of discontinuities at
random times, and they are special classes of semi martingales and Markov processes.
Along with these advantages, Lévy processes have applications in diverse fields like
mathematical finance, financial economics, stochastic control, and quantum field theory.
These form the reason for making the study of SDEs with Lévy noise important inspite
of its increased mathematical complexities. A detailed study of Lévy process in finite and
infinite dimensions can be found in [1, 20] and the references therein.

In [4], controllability of linear system of the form

CDαx(t) = Ax(t) +Bu(t), t ∈ [0, T ],

x(0) = x0,
(1)

where 1/2 < α 6 1 and A and B are bounded linear operators, is investigated. The con-
trollability of stochastic counterpart of the above fractional dynamical integro-differential
systems is studied in [15]. In this paper, our aim is to extend the results to stochastic
neutral fractional dynamical system driven by Wiener and Lévy noise. The Lévy–Itô
decomposition of an arbitrary Lévy process into Brownian and Poisson parts is used to
study the stochastic fractional system with Lévy noise. Examples are provided to support
the developed theory.
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2 Preliminaries

Let X , U , and K be separable Hilbert spaces, and for convenience, we will use the same
notation ‖·‖ to represent their norms. L(X,U) is the space of all bounded linear operators
from X to U , Lp(X) is the Lebesgue space of p-integrable functions on X , B(X) is the
Borel σ-algebra of subsets of X , and J denotes the interval [0, T ].

We assume that a filtered probability space (Ω,F , {Ft}t>0,P) with the probability
measure P on Ω satisfies the usual hypothesis:

(i) F0 contains all A ∈ F such that P(A) = 0,
(ii) Ft = Ft+ for all t ∈ J , where Ft+ is the intersection of all Fs, s > t, i.e., the

filtration is right continuous.

Let us consider the following space settings:

• Y := L2(Ω,FT , X) is a closed subspace of L2(Ω,X) consisting of all FT -mea-
surable square integrable random variables with values in X .

• H2 is a closed subspace of C(J,L2(Ω,X)) consisting of all Ft-measurable pro-
cesses with values inX , identifying processes, which are modification of each other
and endowed with the norm,

‖φ‖2H2
= sup

t∈J
E
∥∥φ(t)

∥∥2,
where E denotes expectation with respect to P.

• Uad := LF2 (J, U) is a Hilbert space of all square integrable and Ft-measurable
processes with values in U .

• H0
2 := L2(Ω,F0, X) is the Hilbert space of all F0-measurable square integrable

random variables with values in X .

Let us recall some basic definitions from fractional calculus. Let α, β > 0 with n−1 <
α, β < n and n ∈ N. Suppose f ∈ L1(R+), R+ = [0,∞).

Definition 1. (See [13].) The Riemann–Liouville fractional integral of a function f is
defined as

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s) ds,

and the Caputo derivative of f is CDαf = In−αDnf , that is,

CDαf(t) =
1

Γ(n− α)

t∫
0

(t− s)n−α−1f (n)(s) ds,

where the function f(t) has absolutely continuous derivative up to order n− 1.

https://www.mii.vu.lt/NA
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Definition 2. (See [13].) Let A be a bounded linear operator, the Mittag–Leffler operator
function is given by

Eα,β(A) =

∞∑
k=0

Ak

Γ(kα+ β)
.

In particular, for β = 1,

Eα,1(A) = Eα(z) =

∞∑
k=0

Ak

Γ(kα+ 1)
.

3 Controllability results for systems with Wiener noise

In this section, we obtain sufficient conditions for the controllability of nonlinear stochas-
tic fractional neutral differential system

CDα
(
x(t)− g

(
t, x(t)

))
= Ax(t) +Bu(t) + f

(
t, x(t)

)
+ σ

(
t, x(t)

)dW (t)

dt
, t ∈ J,

x(0) = x0,

(2)

where 0 < α 6 1, α 6= 1/2, A : X → X is a bounded linear operator, W (t) is
a K-valued Wiener process with positive symmetric trace class covariance operator, σ :
J×X → L0

2(K,X) (where L0
2 is the space of Hilbert–Schmidt operators [22]), functions

f, g : J×X → X are continuous, and g is continuously differentiable, u ∈ Uad, a Hilbert
space of admissible control functions, and B : U → X is a bounded linear operator.

Lemma 1. (See [14].) Suppose that A is a linear bounded operator defined on a Banach
space, and assume that ‖A‖ < 1. Then (I −A)−1 is linear, bounded, and

(I −A)−1 =
∞∑
k=0

Ak.

The convergence of the above series is in the operator norm, and ‖(I − A)−1‖ 6 (1 −
‖A‖)−1.

Let us assume the following hypothesis:

(H1) The operator A ∈ L(X) and ‖A‖2 < (2α− 1)Γ2(α)/T 2α.

Let x ∈ H2, then by (H1) we have

∥∥(IαA)x
∥∥
H2

6
T

Γ2(α)
sup
t∈J

t∫
0

(t− s)2α−2E
∥∥Ax(s)

∥∥2
X

ds

6
T 2α

(2α− 1)Γ2(α)
sup
t∈J

E‖Ax‖2X < ‖x‖H2
,
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which implies that ‖IαA‖ < 1. Hence, by Lemma 1 we conclude that (I − IαA)−1 is
a bounded linear operator satisfying (I−IαA)−1 =

∑∞
k=0(IαA)k and ‖(I−IαA)−1‖ 6

1/(1− ‖IαA‖). On the other hand, taking Iα on both sides of (2), we have

x(t) = x0 − g(0, x0) + g
(
t, x(t)

)
+ IαAx(t) + IαBu(t) + Iαf

(
t, x(t)

)
+ Iασ

(
t, x(t)

)dW (t)

dt

=
(
I − IαA

)−1(
x0 − g(0, x0) + g(t, x(t)) + IαBu(t) + Iαf

(
t, x(t)

)
+ Iασ

(
t, x(t)

)dW (t)

dt

)
.

Therefore, using Lemma 1 and the fact that Iα commutes with A, we obtain

x(t) =

∞∑
k=0

(
IαA

)k(
x0 − g(0, x0) + g

(
t, x(t)

)
+ IαBu(t) + Iαf

(
t, x(t)

)
+ Iασ

(
t, x(t)

)dW (t)

dt

)
=

∞∑
k=0

IkαAk
[
x0 − g(0, x0)

]
+ g
(
t, x(t)

)
+

∞∑
k=1

IkαAkg
(
t, x(t)

)
+

∞∑
k=0

Ikα+αAk
[
Bu(t) + f

(
t, x(t)

)
+ σ

(
t, x(t)

)dW (t)

dt

]

=

∞∑
k=0

Aktαk

Γ(kα+ 1)

[
x0 − g(0, x0)

]
+

t∫
0

A(t− s)α−1
∞∑
k=0

Ak(t− s)αk

Γ(kα+ α)
g
(
s, x(s)

)
ds

+ g
(
t, x(t)

)
+

t∫
0

(t− s)α−1
∞∑
k=0

Ak(t− s)αk

Γ(kα+ α)

(
f
(
s, x(s)

)
+Bu(s)

)
ds

+

t∫
0

(t− s)α−1
∞∑
k=0

Ak(t− s)αk

Γ(kα+ α)
σ
(
s, x(s)

)
dW (s)

= Eα
(
Atα

)[
x0 − g(0, x0)

]
+ g
(
t, x(t)

)
+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α

)
g
(
s, x(s)

)
ds

https://www.mii.vu.lt/NA
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+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
f
(
s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
Bu(s) ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
σ
(
s, x(s)

)
dW (s). (3)

Thus, the solution of (2) is the solution of the above nonlinear integral equation (3).
Similarly to the conventional controllability concept, the controllability of the stochas-

tic fractional dynamical system is defined as follows: the set of all states attainable from
x0 in time t > 0 is given by the set

Rt(x0) =
{
x(t): u ∈ Uad

}
,

where x(t) is given in (3).

Definition 3. (See [18].) The stochastic fractional system (2) is said to be completely
controllable on the interval J if for every x1 ∈ Y , there exists a control u ∈ Uad such that
the solution x(t) given in (3) satisfies x(T ) = x1.

In other words,
RT (x0) = Y.

Define the operator LT : Uad → X as (see [18])

LTu =

T∫
0

Eα,α
(
A(T − s)α

)
Bu(s) ds.

Clearly, the adjoint operator L∗T of LT satisfying L∗T ∈ L(X,Uad) is obtained as

(L∗Tx)(t) = B∗Eα,α
(
A∗(T − t)α

)
E{x | Ft}.

Definition 4. (See [21].) The controllability Grammian operatorWT : X → X is defined
as

WT z =

T∫
0

Eα,α
(
A(T − s)α

)
BB∗Eα,α

(
A∗(T − s)α

)
E{z | Fs} ds,

where ∗ denotes adjoint operator.

The corresponding deterministic operator ΓT : X → X is given by

ΓTs x =

T∫
s

Eα,α
(
A(T − s)α

)
BB∗Eα,α

(
A∗(T − s)α

)
xds.

Nonlinear Anal. Model. Control, 22(5):702–718
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The linear system corresponding to (2) is

CDα
(
x(t)− g(t)

)
= Ax(t) +Bu(t) + f(t) + σ(t)

dW (t)

dt
, t ∈ J,

x(0) = x0,
(4)

where the functions f, g : J → X are continuous and g is continuously differentiable.

Theorem 1. The fractional system (4) is controllable on J if and only if for some γ > 0,

〈WTx, x〉X > γ‖x‖2X ∀x ∈ X.

The proof is similar to that of the integer order case given in [17], provided that the
relation between WT and ΓTs [17, Lemma 5] remains the same for the fractional order
case. The following lemma asserts that the relation between WT and ΓTs remains the
same even for the fractional order systems.

Lemma 2. For every z ∈ Y , there exists a process φ(·) ∈ LF2 (J, L(K,X)) such that:

(i) z = Ez +
∫ T
0
φ(s) dW (s);

(ii) WT z = ΓTEz +
∫ T
0
ΓT−sφ(s) dW (s).

Proof. (i) can be obtained as in [17].
Now, we prove (ii). Let z ∈ L2(Ω,FT , X), then from the first equality we have

E{z | Ft} = Ez +

t∫
0

φ(s) dW (s).

Now, the definition of the operator and stochastic Fubini’s theorem lead to the desired
representation:

WT z =

T∫
0

Eα,α
(
A(T − t)α

)
BB∗Eα,α

(
A∗(T − t)α

)
E{z | Ft}dt

=

T∫
0

Eα,α
(
A(T − t)α

)
BB∗Eα,α

(
A∗(T − t)α

)[
Ez +

t∫
0

φ(s) dW (s)

]
dt

= ΓT0 Ez +

T∫
0

T∫
s

Eα,α
(
A(T − t)α

)
BB∗Eα,α

(
A∗(T − t)α

)
φ(s) dtdW (s)

= ΓTEz +

T∫
0

ΓTs φ(s) dW (s).

This completes the proof of the lemma.

https://www.mii.vu.lt/NA
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For simplicity, take

M1 = max
06s6t6T

∥∥Eα(Atα)∥∥2, M2 = max
06s6t6T

∥∥Eα,α(Atα)∥∥2,
N2 = max

t∈J

∥∥g(t, 0)
∥∥2, N4 = max

t∈J

∥∥f(t, 0)
∥∥2, N6 = max

t∈J

∥∥σ(t, 0)
∥∥2.

Let us further assume the following conditions:

(H2) g : J ×X → X is continuous, and there exists a constant N1 > 0 such that∥∥g(t, x1)− g(t, x2)
∥∥2
X

6 N1‖x1 − x2‖2X ∀x1, x2 ∈ X.

(H3) f : J ×X → X is continuous, and there exists a constant N3 > 0 such that∥∥f(t, x1)− f(t, x2)
∥∥2
X

6 N3‖x1 − x2‖2X ∀x1, x2 ∈ X.

(H4) σ : J ×X → L0
2 is continuous, and there exists a constant N5 > 0 such that∥∥σ(t, x1)− σ(t, x2)

∥∥2
L0
2
6 N5‖x1 − x2‖2X ∀x1, x2 ∈ X.

(H5) Let ρ1 = 16(N1 + (2α−1)Γ2(α)N1M2 +T 2αN3M2 +T 2α−1N5M2) be such
that 0 6 ρ1 < 1.

Theorem 2. If hypothesis (H1)–(H5) are satisfied and if the linear stochastic fractional
neutral system corresponding to (2) is completely controllable, then the nonlinear stochas-
tic fractional neutral system (2) is completely controllable.

Proof. Let x1 be an arbitrary random variable in Y . Define the operator Φ onH2 by

Φx(t) = Eα
(
Atα

)[
x0 − g(0, x0)

]
+ g
(
t, x(t)

)
+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
Bu(s) ds

+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α

)
g
(
s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
f
(
s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
σ
(
s, x(s)

)
dW (s).

Nonlinear Anal. Model. Control, 22(5):702–718
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Since the linear system corresponding to the nonlinear system (2) is controllable, we have
thatWT is invertible (see [15]). Define the control variable u as

u(t) = (T − t)1−αB∗Eα,α
(
A∗(T − t)α

)
×E

{
W−1T

(
x1 − Eα

(
ATα

)(
x0 − g(0, x0)

)
− g
(
T, x(T )

)
−

T∫
0

A(T − s)α−1Eα,α
(
A(T − s)α

)
g
(
s, x(s)

)
ds

−
T∫

0

(T − s)α−1Eα,α
(
A(T − s)α

)
f
(
s, x(s)

)
ds

−
T∫

0

(T − s)α−1Eα,α
(
A(T − s)α

)
σ
(
s, x(s)

)
dW (s)

) ∣∣∣ Ft}.
We now show that Φ has a fixed point. This fixed point is then a solution of the control
problem. Clearly, Φ(x(T )) = x1, which means that the control u steers the nonlinear
system from the initial state x0 to x1 in the time T , provided we can obtain a fixed point of
the nonlinear operator Φ. First, we show that ΦmapsH2 into itself. From the assumptions
we have

sup
t∈J

E
∥∥Φx(t)

∥∥2 6 7M1E
(
‖x0‖2 +

∥∥g(0, x0)
∥∥2)

+ 7
(
N1 sup

t∈J
E
∥∥x(t)

∥∥2 +N2

)(
1 +M2Γ2(α)

)
+ 49M2‖B‖2‖L∗T ‖2

∥∥W−1T ∥∥2[E‖x1‖2 + E
∥∥g(T, x(T )

)∥∥2
+M1E

(
‖x0‖2 +

∥∥g(0, x0)
∥∥2)

+M2
T 2α−1

2α− 1

(
(TN3 +N5) sup

t∈J
E
∥∥x(t)

∥∥2 + TN4 +N6

)
+M2Γ2(α)

(
N1 sup

t∈J
E
∥∥x(t)

∥∥2 +N2

)]
+ 7M2

T 2α−1

2α− 1

(
(N3T +N5) sup

t∈J
E
∥∥x(t)

∥∥2 +N4T +N6

)
. (5)

From (5) it follows that there exists a constant C1 > 0 such that

sup
t∈J

E
∥∥Φx(t)

∥∥2 6 C1

(
1 + sup

t∈J
E
∥∥x(t)

∥∥2).
https://www.mii.vu.lt/NA
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Thus, Φ mapsH2 into itself. Now, for x1, x2 ∈ H2, we have

sup
t∈J

E
∥∥Φx1(t)− Φx2(t)

∥∥2
X

= sup
t∈J

E

∥∥∥∥∥g(t, x1(t)
)
− g
(
t, x2(t)

)
+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α

)(
g
(
s, x1(s)

)
− g
(
s, x2(s)

))
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
BL∗TW−1T

×

[
g
(
T, x1(T )

)
− g
(
T, x2(T )

)
+

T∫
0

A(T − θ)α−1Eα,α
(
A(T − θ)α

)(
g
(
θ, x1(θ)

)
− g
(
θ, x2(θ)

))
dθ

+

T∫
0

(T − θ)α−1Eα,α
(
A(T − θ)α

)(
σ
(
θ, x1(θ)

)
− σ

(
θ, x2(θ)

))
dW (θ)

+

T∫
0

(T − θ)α−1Eα,α
(
A(T − θ)α

)(
f
(
θ, x1(θ)

)
− f

(
θ, x2(θ)

))
dθ

]
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)(
f
(
s, x1(s)

)
− f

(
s, x2(s)

))
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(T − s)α

)[
σ
(
s, x1(s)

)
− σ

(
s, x2(s)

)]
dW (s)

∥∥∥∥∥
2

6 16 sup
t∈J

E
∥∥x1(t)− x2(t)

∥∥2
X

×
(
N1 + (2α− 1)Γ2(α)2N1M2 + T 2αN3M2 + T 2α−1N5M2

)
6 ρ1 sup

t∈J
E
∥∥x1(t)− x2(t)

∥∥2
X
.

Using (H5), we conclude that Φ is a contraction mapping, and hence, there exists a unique
fixed point x ∈ H2 for Φ. This fixed point of Φ satisfies x(T ) = x1 for any arbitrary
x1 ∈ Y . Therefore, system (2) is completely controllable on J .

Nonlinear Anal. Model. Control, 22(5):702–718
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4 Controllability results for systems with Lévy noise

Consider the nonlinear stochastic neutral fractional differential system driven by Lévy
noise of the form
CDα

(
x(t)− g

(
t, x(t)

))
= Ax(t) +Bu(t) + f

(
t, x(t)

)
+ σ

(
t, x(t)

)dW (t)

dt
+

∫
Z

h
(
t, x(t), z

)dÑ(t, z)

dt
,

x(0) = x0.

(6)

Here dÑ(t, z) = Ñ(dt,dz) = N(dt, dz) − ν(dz)dt is a compensated Poisson random
measure, where N(dt, dz) denotes the Poisson random measure associated to Poisson
point process on Z ∈ B(X), and ν(dz) is a σ-finite Lévy measure on (Z,B(Z)), h : J ×
Z×X → X is a continuous function satisfying

∫ T
0

∫
Z
E‖h(s, x(s), z)‖2 ν(dz) dt <∞.

If hypothesis (H1) is satisfied, then by the Lemma 1 the solution of system (2) is the same
as the solution of the following nonlinear integral equation:

x(t) = Eα
(
Atα

)[
x0 − g(0, x0)

]
+ g
(
t, x(t)

)
+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
Bu(s) ds

+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α)g(s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α)f(s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α)σ(s, x(s)

)
dW (s)

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

) ∫
Z

h
(
s, x(s), z

)
Ñ(ds,dz), (7)

which can be obtained similar to (3). We assume the following conditions:

(H6) h : J × X × Z → X is continuous, and there exists a constant N7 > 0 such
that∫
Z

∥∥h(t, x1, z)− h(t, x2, z)
∥∥2
X
ν(dz) 6 N7‖x1 − x2‖2X ∀x1, x2 ∈ X.

(H7) Let ρ2 = 16(N1 + (2α− 1)Γ2(α)N1M2 +T 2αN3M2 +T 2α−1(N5 +N7)M2)
be such that 0 6 ρ2 < 1.

Also, we denote N8 = maxt∈J
∫
Z
‖h(t, 0, z)‖2X ν(dz).
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Theorem 3. If hypothesis (H1)–(H4), (H6), and (H7) are satisfied and if the linear neutral
fractional system corresponding to (6) is completely controllable, then the nonlinear
neutral fractional system driven by Lévy noise (6) is completely controllable.

Proof. Let x1 be an arbitrary random variable in Y . Define the operator Φ onH2 by

Φx(t) = Eα
(
Atα

)[
x0 − g(0, x0)

]
+ g
(
t, x(t)

)
+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
Bu(s) ds

+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α

)
g
(
s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
f
(
s, x(s)

)
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
σ
(
s, x(s)

)
dW (s)

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

) ∫
Z

h
(
s, x(s), z

)
Ñ(ds,dz).

Since the linear system corresponding to the nonlinear system (6) is completely control-
lable, we have thatWT is invertible [16]. Define the control variable u as

u(t) = (T − t)1−αB∗Eα,α
(
A∗(T − t)α

)
×E

{
W−1T

(
x1 − Eα

(
ATα

)(
x0 − g

(
0, x0)

)
− g
(
T, x(T )

)
−

T∫
0

A(T − s)α−1Eα,α
(
A(T − s)α

)
g
(
s, x(s)

)
ds

−
T∫

0

(T − s)α−1Eα,α
(
A(T − s)α

)
f
(
s, x(s)

)
ds

−
T∫

0

(T − s)α−1Eα,α
(
A(T − s)α

)
σ
(
s, x(s)

)
dW (s)

−
T∫

0

(T − s)α−1Eα,α
(
A(T − s)α

) ∫
Z

h
(
s, x(s), z

)
Ñ(ds,dz)

) ∣∣∣ Ft}.
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We now show that Φ has a fixed point. This fixed point is then a solution of the control
problem. Clearly, Φ(x(T )) = x1, which means that the control u steers the nonlinear
system from the initial state x0 to x1 in the time T , provided we can obtain a fixed point of
the nonlinear operator Φ. First, we show that ΦmapsH2 into itself. From the assumptions
we have

sup
t∈J

E
∥∥Φx(t)

∥∥2
6 8M1E

(
‖x0‖2 +

∥∥g(0, x0)
∥∥2)+ 8

(
N1 sup

t∈J
E
∥∥x(t)

∥∥2+N2

)(
1 +M2Γ2(α)

)
+ 64M2‖B‖2‖L∗T ‖2

∥∥W−1T ∥∥2[E‖x1‖2 + E
∥∥g(T, x(T )

)∥∥2
+M1E

(
‖x0‖2 +

∥∥g(0, x0)
∥∥2)

+M2
T 2α−1

2α− 1

(
(TN3 +N5 +N7) sup

t∈J
E
∥∥x(t)

∥∥2 + TN4 +N6 +N8

)
+M2Γ2(α)2

(
N1 sup

t∈J
E
∥∥x(t)

∥∥2 +N2

)]
+ 8M2

T 2α−1

2α− 1

(
(N3T +N5 +N7) sup

t∈J
E
∥∥x(t)

∥∥2 +N4T +N6 +N8

)
. (8)

From (8) it follows that there exists a constant C2 > 0 such that

sup
t∈J

E
∥∥Φx(t)

∥∥2 6 C2

(
1 + sup

t∈J
E
∥∥x(t)

∥∥2).
Thus, Φ mapsH2 into itself. Now, for x1, x2 ∈ H2, we have

sup
t∈J

E
∥∥Φx1(t)− Φx2(t)

∥∥2
X

= sup
t∈J

E

∥∥∥∥∥g(t, x1(t)
)
− g
(
t, x2(t)

)
+

t∫
0

A(t− s)α−1Eα,α
(
A(t− s)α

)(
g
(
s, x1(s)

)
− g
(
s, x2(s)

))
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)
BL∗TW−1T

[
g
(
T, x1(T )

)
− g
(
T, x2(T )

)

+

T∫
0

A(T − θ)α−1Eα,α
(
A(T − θ)α

)(
g
(
θ, x1(θ)

)
− g
(
θ, x2(θ)

))
dθ
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+

T∫
0

(T − θ)α−1Eα,α
(
A(T − θ)α

)(
f
(
θ, x1(θ)

)
− f

(
θ, x2(θ)

))
dθ

+

T∫
0

(T − θ)α−1Eα,α
(
A(T − θ)α

)(
σ
(
θ, x1(θ)

)
− σ

(
θ, x2(θ)

))
dW (θ)

+

T∫
0

(T − θ)α−1Eα,α
(
A(T − θ)α

)∫
Z

[
h
(
θ, x1(θ), z

)
−h
(
θ, x2(θ), z

)]
Ñ(dθ,dz)

]
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

)(
f
(
s, x1(s)

)
− f

(
s, x2(s)

))
ds

+

t∫
0

(t− s)α−1Eα,α
(
A(T − s)α

)(
σ
(
s, x1(s)

)
− σ

(
s, x2(s)

))
dW (s)

+

t∫
0

(t− s)α−1Eα,α
(
A(t− s)α

) ∫
Z

[
h
(
s, x1(s), z

)
− h
(
s, x2(s), z

)]
Ñ(ds, dz)

∥∥∥∥∥
2

6 20 sup
t∈J

E
∥∥x1(t) − x2(t)

∥∥2
X

×
(
N1 + (2α− 1)Γ2(α)2N1M2 + T 2αN3M2 + T 2α−1(N5 +N7)M2

)
6 ρ2 sup

t∈J
E
∥∥x1(t) − x2(t)

∥∥2
X
.

Using (H7), we conclude that Φ is a contraction mapping, and hence, there exists a unique
fixed point x ∈ H2 for Φ. This fixed point of Φ satisfies x(T ) = x1 for any arbitrary
x1 ∈ Y . Therefore, system (6) is completely controllable on J .

5 Example

In this section, we provide examples to support the theory developed in the previous
sections.

Example 1. Consider the nonlinear stochastic fractional neutral system

CD3/4

(
x(t)− 1

10
√

2

(√
x21 + 5

cosx2

))
=

(
0.2 0.3
0.4 0.3

)
x(t) +

(
0
1

)
u(t)

+
1

10
√

2

(
sinx1√
x22 + 1

)
+

1

10
√

2

(
ln(coshx1)
tan−1 x2

)
dW (t)

dt
, t ∈ [0, 1],

x(0) =

(
6
90

)
,

(9)
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where x(t) = (x1(t), x2(t))T and W (t) is a Wiener process on R. Comparing with (2),
we have

A =

(
0.2 0.3
0.4 0.3

)
, B =

(
0
1

)
,

g
(
t, x(t)

)
=

1

10
√

2

(√
x21 + 5

cosx2

)
, f

(
t, x(t)

)
=

1

10
√

2

(
sinx1√
x22 + 1

)
,

σ
(
t, x(t)

)
=

1

10
√

2

(
ln(coshx1)
tan−1 x2

)
, and α =

3

4
.

We wish to steer the system from the initial point x(0) to x(1) = (100, 1)T. We see
that, g(t, x(t)), f(t, x(t)), and σ(t, x(t)) are Lipschitz continuous with Lipschitz constant
1/200. By the calculation we obtain ρ = 0.9270 < 1. To prove that the linear system
corresponding to the above system is controllable in [0, 1], it is enough to show Γ1 is
invertible. Since Γ1 is self adjoint, it is enough to prove it is coercive.

Γ1x =

1∫
0

E3/4,3/4

(
A(1− s)3/4

)
BB∗E3/4,3/4

(
A∗(1− s)3/4

)
xds,

〈Γ1x, x〉 = 0.0918x21 + 0.6358x1x2 + 1.2553x22 > γ
(
x21 + x22

)
,

where 0 < γ 6 0.0018. All the hypothesis of Theorem 2 are thus verified, and hence,
system (9) is controllable.

Example 2. Consider the nonlinear stochastic fractional system driven by Lévy noise

CD0.8

(
x(t)− 1

15

(
e− sin(x1)

e− cos(x2)

))
=

(
0 −0.5

0.5 0

)
x(t) +

(
0
1

)
u(t) +

1

15

(
(1 + t)−1

e−sin(x2)/(1+t)

)
dW (t)

dt

+

∫
R2\(0,0)

1

15

(
tz1

cos(x2)z2

)
dÑ(t, z)

dt
, t ∈ [0, 2], (10)

x(0) =

(
1000

0

)
,

where x(t) = (x1(t), x2(t))T, dÑ(t, z) = dN(t) is a Poisson process with jump
intensity λ = 3, ν(dz) = λf(z)dz, f(z) is log-normal density function, and Ez =
eµ+σ

2/2, where µ is the mean and σ is the standard deviation of z. We wish to steer
the solution from the initial point x(0) to the final point x(2) = (500, 10)T. Comparing
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with (6), we have

A =

(
0 −0.5

0.5 0

)
, B =

(
0
1

)
,

g
(
t, x(t)

)
=

1

15

(
e− sin x1

e− cos x2

)
, σ

(
t, x(t)

)
=

1

15

(
(1 + t)−1

e− sin x2/(1+t)

)
,

h
(
t, x(t), z

)
=

1

15

(
tz1

cosx2 · z2

)
, f

(
t, x(t)

)
= 0, and α = 0.8.

To show that the nonlinear system (10) is controllable, it is enough to check if the hy-
potheses of Theorem 3 are satisfied. We first check if the linear system corresponding
to (10) is controllable by showing the operator is invertible.

Γ2 =

(
0.4754 −0.5709
−0.5709 1.3249

)
.

Now, we consider

〈Γ2x, x〉 = 0.5181x21 − 1.0872x1x2 + 0.8871x22 > γ
(
x21 + x22

)
,

where 0 < γ 6 0.7869. We see that σ(t, x(t)), g(t, x(t), z), and h(t, x(t)) are Lipschitz
continuous with 1/225 as Lipschitz constant. We also obtain the value of ρ in hypothesis
(H7) to be ρ = 0.6295 < 1. All the hypothesis of Theorem 3 are thus verified, and hence,
system (10) is controllable.
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