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Nonlinear fractional equations with supercritical growth
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Abstract. We obtain existence of infinitely many solutions for a fractional differential equation with
indefinite concave nonlinearities and supercritical growth.
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1 Introduction and main result

Recently, as observed in [16], a great attention has been focused on the study of fractional
and nonlocal operators of elliptic type, both for the pure mathematical research and in
view of concrete real-world applications. This type of operators arises in a quite natural
way in many different contexts such as, among the others, the thin obstacle problem,
optimization, finance, phase transitions, stratified materials, anomalous diffusion, crystal
dislocation, soft thin films, semipermeable membranes, flame propagation, conservation
laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, multiple
scattering, minimal surfaces, materials science, and water waves.
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We consider the non-local fractional Laplacian equation (N > 1){
−LKu = b(x)|u|q−2u+ f(x, u) in Ω,

u = 0 in RN \Ω,
(P)

where Ω be a bounded domain in RN with smooth boundary ∂Ω and 1 < q < 2. Here
LKu is the non-local fractional Laplacian operator. The nonlocal operator LK is defined
as follows:

LKu(x) := 2 lim
ε↘0

∫
RN\Bε(x)

(
u(x)− u(y)

)
K(x− y) dy, x ∈ RN ,

where K : RN \ {0} → (0,+∞) is a measurable function with the following property:
γK ∈ L1(RN ), where γ(x) = min{|x|2, 1};
there exists k0 > 0 such that K(x) > k0|x|−(N+2s) for any x ∈ RN \ {0};
K(x) = K(−x) for any x ∈ RN \ {0}.

(1)
A typical example for K is given by singular kernel K(x) = |x|−(N+2s). In this case,
problem (P) becomes {

(−∆)su = λf(x, u) in Ω,

u = 0 in RN \Ω,
(2)

where (−∆)su is the fractional Laplacian operator with (up to normalization factors) may
be defined as

(−∆)su(x) := 2 lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy

for x ∈ RN , see [1, 2, 5–8, 12–30, 32–34] and the references therein for further details on
the factional Laplacian operator.

The weight function b will be possibly sign-changing and the assumption for b is as
follows:

(A1) b(x) ∈ C(Ω̄), and there is a nonempty open subset Ω′ of Ω such that b(x) > 0
in Ω′.

A special case of our main result is the following theorem.

Theorem 1. Assume (A1), r ∈ (q, p) ∪ (p,∞), and d(x) ∈ C(Ω̄). Then{
−LpKu = b(x)|u|q−2u+ d(x)|u|r−2u in Ω,

u = 0 in RN \Ω
(3)

has a sequence of weak solutions (un) such that ‖un‖L∞(Ω) → 0 as n → ∞, where
Ω ⊂ RN is a bounded domain, 1 < p <∞, and 1 < q < p.
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Remark 1. This type of equations have been studied extensively [1, 2, 6–8, 12–34] in
the subcritical and critical case. But these equations have not been well studied in the
supercritical case, that is r > 2N/(N − 2s). Applying Theorem 3 to (3), our theorem
includes results in the supercritical one. The exponent r in Theorem 1 can be critical or
supercritical in the sense of Sobolev embedding because the solutions (un) we obtained
are small solutions with ‖un‖L∞(Ω) → 0 and we only give the assumptions for f near
zero. We use a suitable cut-off technique to overcome the exponent r is supercritical. This
idea is from [30].

Now, we give the assumptions on f :

(A2) f(x, u) = o(|u|) as |u| → 0 uniformly for x ∈ Ω;
(A3) f(x, u) ∈ C(Ω × (−δ, δ),R) is odd in u for δ > 0 small.

The main result is as follows.

Theorem 2. Let 1 < q < 2 and assume (A1)–(A3) are satisfied. Then (P) has a sequence
of solutions (un) such that ‖un‖L∞(Ω) → 0 as n→∞.

Following the same idea, we can also consider the so-called fractional p-Laplacian
equation {

−LpKu = b(x)|u|q−2u+ f(x, u) in Ω,

u = 0 in RN \Ω,
(P ′)

where Ω ⊂ RN is a bounded domain, LpKu is the fractional p-Laplacian operator

LpKu(x) := 2 lim
ε↘0

∫
RN\Bε(x)

∣∣u(x)− u(y)
∣∣p−2(u(x)− u(y)

)
K(x− y) dy, x ∈ RN ,

where K : RN \ {0} → (0,+∞) is a measurable function with the following property:
γK ∈ L1(RN ), where γ(x) = min{|x|p, 1};
there exists k0 > 0 such that K(x) > k0|x|−(N+ps) for any x ∈ RN \ {0};
K(x) = K(−x) for any x ∈ RN \ {0}.

Moreover, 1 < p <∞ and 1 < q < p. We need the following assumption for nonlinear-
ity f :

(A4) f(x, u) = o(|u|p−1) as |u| → 0 uniformly for x ∈ Ω.

Theorem 3. Let 1 < q < p and assume (A1), (A3) and (A4) are satisfied. Then (P ′) has
a sequence of solutions (un) such that ‖un‖L∞(Ω) → 0 as n→∞.

Remark 2. For results on existence of multiple solutions for fractional Laplacian or
p-Laplacian equations by using Nehari manifold, see, for example, [2, 9, 10].
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2 Preliminarily

In this section, we first give some basic results and the functional space that will be used
in the next section, which was introduced in [23].

Let 0 < s < 1 be a real number and the fractional critical exponent 2∗s be defined as

2∗s :=

{
2N
N−2s if 2s < N,

∞ if 2s > N.

In the following, we denote Q = RN \ O, where

O = C × C ⊂ R2N

and C = RN \ Ω. W is a linear space of Lebesgue measurable function from RN to R
such that the restriction to Ω of any function u in W belongs to L2(Ω) and∫

Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy <∞.

The space W is equipped with the norm

‖u‖W := ‖u‖L2(Ω) +

(∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy

)1/2
. (4)

We shall work in the closed linear subspace

W0 :=
{
u ∈W : u(x) = 0 a.e. in RN \Ω

}
. (5)

According to the conditions of K, we have that C∞0 (Ω) ⊂ W0, and so W and W0 are
nonempty. The space W0 is endowed with the norm defined by

‖u‖W0
:=

(∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy

)1/2
. (6)

Since u ∈ W0, then the integral in (6) can be extended to all R2N . Moreover, the norm
on W0 given in (6) is equivalent to the usual one defined in (4), by Lemma 6 in [23]. For
the framework of fractional Sobolev space, we refer the reader to the survey of Di Nezza,
Palatucci and Valdinoci [4].

In the following, we denote by W s,2(Ω) the usual fractional Sobolev space endowed
with the norm (the so-called Gagliardo norm)

‖u‖W s,2(Ω) := ‖u‖L2(Ω) +

( ∫
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2
.

Taking into account Lemma 5 in [23], we have the following result.
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Lemma 1. The embedding W0 ↪→ Lq(Ω) is continuous for any q ∈ [1, 2∗s], while it is
compact whenever q ∈ [1, 2∗s[. Moreover, there exists a positive constant c(k0) depending
on k0 (which is given in (1)) such that

‖u‖W s,2(Ω) 6 ‖u‖W s,2(RN ) 6 c(k0)‖u‖W0 .

Furthermore, there is a constant cq > 0 such that for every u ∈W0,

‖u‖Lq(Ω) 6 cq‖u‖W0
.

We will use the following theorem, which is a variant of a result due to Clark [3], to
prove our main result.

Theorem 4. Let Φ ∈ C1(X,R), where X is a Banach space. Assume Φ satisfies the
Palais–Smale (PS) condition, is even and bounded from below, and Φ(0) = 0. If for any
k ∈ N, there exists a k-dimensional subspace Xk and ρk > 0 such that

sup
Xk∩Sρk

Φ < 0,

where Sρ := {u ∈ X: ‖u‖ = ρ}, then Φ has a sequence of critical values ck < 0
satisfying ck → 0 as k →∞.

Last, we show that the weak solutions of (P) are bounded in L∞(Ω). This result was
established in [31, Thm. 3.1] and proved by using the De Giorgi–Stampacchia iteration
method.

Proposition 1. Let u ∈ W0 be a weak solution of problem (P) and the nonlinearity is
subcritical growth. Then u ∈ L∞(Ω), and there exists C > 0 possibly depending on N ,
s, Ω such that

‖u‖L∞(Ω) 6 C
(
1 + ‖u‖q−1W0

)
hold for some q ∈ [1; 2∗s[.

3 Proof of Theorems 2 and 3

The proof is motivated by the arguments in [11, 30]. We shall only give the proof of
Theorem 2 since the proof of Theorem 3 is similar. Denote by λ1 the first eigenvalue of
−LK with Dirichlet boundary condition on Ω. As in [30], we first modify f so that the
nonlinearity is defined for all (x, u) ∈ Ω × R.

Lemma 2. Let f(x, u) be as in (A2) and (A3). Then for any λ ∈ R, 0 < λ < λ1, there
exist α ∈ (0, δ/2) and f̃ ∈ C(Ω × R,R) such that f̃(x, u) is odd in u and satisfies

f̃(x, u) = f(x, u) ∀|u| 6 α, (7)

f̃(x, u)u− qF̃ (x, u) 6
(2− q)λ

2
|u|2 ∀(x, u) ∈ Ω × R,

Nonlinear Anal. Model. Control, 22(4):521–530
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∣∣F̃ (x, u)
∣∣ 6 λ

2
|u|2 ∀(x, u) ∈ Ω × R, (8)

where F̃ (x, u) =
∫ u
0
f̃(x, s)ds.

Proof. Fix λ ∈ (0, λ1) and denote θ = (2− q)λ/2. Choose ε ∈ (0, θ/14). By (A2),
there exists α ∈ (0, δ/2) such that for |u| 6 2α,∣∣F (x, u)

∣∣ 6 ε|u|2,
∣∣f(x, u)u

∣∣ 6 ε|u|2.

Now we choose a cut-off function ρ ∈ C1(R,R) so that it is even and satisfies

ρ(t) = 1 for |t| 6 α, ρ(t) = 0 for |t| > 2α,

and ∣∣ρ′(t)∣∣ 6 2

α
, ρ′(t)t 6 0.

Choose β ∈ (0, θ/16) and F∞(u) = β|u|2. Using ρ and F∞, we define

F̃ (x, u) := ρ(u)F (x, u) +
(
1− ρ(u)

)
F∞(u)

and
f̃(x, u) := F̃ ′u(x, u).

Then, for |u| 6 2α, we have

f̃(x, u) = ρ′(u)F (x, u) + ρ(u)f(x, u) +
(
1− ρ(u)

)
F ′∞(u)− ρ′(u)F∞(u)

and

f̃(x, u)− qF̃ (x, u) = ρ′(u)uF (x, u) + ρ(u)f(x, u)u+ 2β
(
1− ρ(u)

)
|u|2

− βρ′(u)u|u|2 − qρ(u)F (x, u)− qβ
(
1− ρ(u)

)
|u|2.

It is easy to see that, for all (x, u) ∈ Ω × R,

∣∣F̃ (x, u)
∣∣ 6 (ε+ β)|u|2 6

λ

2
|u|2

and
f̃(x, u)u− qF̃ (x, u) 6 (7ε+ 8β)|u|2 6 θ|u|2.

Therefore, α and f̃ defined above satisfy all the properties stated in the lemma.

We now consider the modified problem{
−LKu = b(x)|u|q−2u+ f̃(x, u) in Ω,

u = 0 in RN \Ω,
(9)
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whose solutions correspond to critical points of the functional

Ĩ(u) =
1

2

∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy

− 1

q

∫
Ω

b(x)|u|q dx−
∫
Ω

F̃ (x, u) dx, u ∈W0.

The construction of Ĩ together with (8) shows that Ĩ is C1, even, bounded from below,
and coercive, and therefore satisfies the (PS) condition.

Lemma 3. Ĩ(u) = 0 = 〈Ĩ ′(u), u〉 if and only if u = 0.

Proof. Clearly, if u = 0, then Ĩ(u) = 0 = 〈Ĩ ′(u), u〉. Next, we assume Ĩ(u) = 0 =
〈Ĩ ′(u), u〉. Since

1

2

∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy − 1

q

∫
Ω

b(x)|u|q dx−
∫
Ω

F̃ (x, u) dx = 0

and ∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dx dy −

∫
Ω

b(x)|u|q dx−
∫
Ω

f̃(x, u)udx = 0,

we obtain (
1

q
− 1

2

)∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy

=

∫
Ω

(
1

q
f̃(x, u)− F̃ (x, u)

)
dx 6

(2− q)λ
2q

∫
Ω

|u|2 dx,

where we have used (8) in Lemma 2. Then the fact that 0 < λ < λ1 implies u = 0.

We are ready to prove Theorem 2.

Proof of Theorem 2. In order to apply Theorem 4 to Ĩ , we only need to find for any k ∈ N
a subspace Xk and ρk > 0 such that supXk∩Sρk

Ĩ < 0. For any k ∈ N, we find k lin-
early independent functions e1, . . . , ek in C∞0 (Ω′). We define Xk := span{e1, . . . , ek}.
By (A1), we may assume b(x) > b0 > 0 in

⋃k
i=1 supp ei for some constant b0. For

u ∈ Xk, using (8) in Lemma 2, we have

Ĩ(u) 6
1

2
‖u‖2W 0 −

b0
q
‖u‖qLq(Ω) +

λ

2
‖u‖2L2(Ω),

which implies the existence of ρk > 0 such that supXk∩Sρk
Ĩ < 0 since the dimension of

Xk is finite. According to Theorem 4, there exists a sequence of negative critical values ck

Nonlinear Anal. Model. Control, 22(4):521–530
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of Ĩ satisfying ck → 0 as k →∞. For any k, let uk be a critical point of Ĩ associated with
ck. Then uk are solutions of (9) and they form a (PS) sequence. Without loss of generality,
we may assume that uk → u in W0 as k → ∞. Then u satisfies Ĩ(u) = 0 = 〈Ĩ ′(u), u〉.
Therefore, u = 0 according to Theorem 4, and uk → 0 in W0 as k → ∞. Proposition 1
shows that uk → 0 in L∞(Ω) as k →∞.

In view of (7) and (9), we see that uk with k large are solutions of (P). The proof is
complete.

Proof of Theorem 1. If r ∈ (p,∞), then the result is a consequence of Theorem 3. If
r ∈ (q, p), then we just apply Theorem 4 to the functional

J(u) =
1

2

∫
Q

∣∣u(x)− u(y)
∣∣2K(x− y) dxdy

− 1

q

∫
Ω

b(x)|u|q dx−
∫
Ω

|u|r dx, u ∈W0.

to obtain the result.
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