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Abstract. In this paper, stochastic fuzzy Cohen–Grossberg neural networks with discrete and
distributed delays are investigated. By using Lyapunov function and the Itô differential formula,
some sufficient conditions for the pth moment exponential stability of such stochastic fuzzy Cohen–
Grossberg neural networks with discrete and distributed delays are established. An example is given
to illustrate the feasibility of our main theoretical findings. Finally, the paper ends with a brief
conclusion. Methodology and achieved results is to be presented.
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1 Introduction

It is well known that Cohen–Grossberg neural networks have been widely applied in var-
ious fields such as signal processing, associative memory and optimization problems [6].
Many scholars argue that in these applications for neural networks, it is of prime impor-
tance to ensure that the designed neural networks are stable [26]. In hardware implemen-
tation, time delays inevitably occur due to the finite switching speed of the amplifiers and
communication time. The qualitative research and analysis of Cohen–Grossberg neural
networks with delays has been investigated by numerous authors. Much richer dynamics
has been reported [20,21,23,55,58]. Considering that the synaptic transmission is a noisy
process brought about by random fluctuations from the release of neurotransmitters and
other probabilistic causes, we think that it is of great significance to consider stochastic
effects on the stability of neural networks described by stochastic functional differential
equations [6]. In recent years, numerous authors deal with the dynamical behavior of
stochastic neural networks, see, e.g. [10, 11, 40, 60]. Since Yang and Yang [50] first
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introduced fuzzy cellular neural networks, a lot of scholars have found that fuzzy neural
networks have important applications in image processing, and many results have been
reported on stability and periodicity of fuzzy neural networks [1–5, 12, 14, 15, 18, 19,
22, 24, 25, 27, 28, 31, 33–37, 41, 42, 44, 45, 48, 50–52, 54, 56]. In addition, we shall point
out that neural networks usually have a spatial nature due to the presence of an amount
of parallel pathways of variety of axon sizes and length. A distribution of conduction
velocities along these pathways will lead to a distribution of propagation delays. Thus,
the time-varying delays and continuous distributed delays are more appropriate to fuzzy
cellular networks [18, 19, 31, 44, 48]. To the best of our knowledge, there are very few
papers that deal with the stability of stochastic fuzzy Cohen–Grossberg neural networks
with discrete and distributed delays [9, 13, 17, 29, 30, 39, 49].

Inspired by the analysis above, in this paper, we consider the following stochastic
fuzzy Cohen–Grossberg neural networks with discrete and distributed delays:

dxi(t) = −ai
(
xi(t)

)[
bi
(
xi(t)

)
−

n∑
j=1

cij(t)fj
(
xj
(
t− τij(t)

))
−

n∧
j=1

αij(t)

t∫
−∞

Kij(t− s)gj
(
xj(s)

)
ds

−
n∨
j=1

βij(t)

t∫
−∞

Kij(t− s)gj
(
xj(s)

)
ds+ Ii(t)

]
dt

+

n∑
j=1

σij
(
xj(t)

)
dωj(t), (1)

where n corresponds to the number of units in the neural networks, respectively, xi(t)
corresponds to the state of the ith neuron, fj and gj are signal transmission functions,
τij(t) denotes the transmission delay along the axon of the jth unit from the ith unit
and satisfies 0 6 τij(t) 6 τij(τij is a positive constant). ai(xi(t)) denotes an amplifi-
cation function at time t, bi(xi(t)) is an appropriately behaved function at time t such
that the solutions of model (1) remain bounded, Ii(t) = Ĩ(t) +

∧n
j=1 Tij(t)uj(t) +∨n

j=1Hij(t)uj(t). αij(t), βij(t), Tij and Hij(t) are elements of fuzzy feedback MIN
template and fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy
feed-forward MAX template, respectively,

∧
and

∨
stands for the fuzzy AND and fuzzy

OR operation, respectively, uj(t) denotes the external input of the ith neurons. Ĩ(t) is the
external bias of ith unit. Kij(·) is the delay kernel function, σij(·) is the diffusion coef-
ficient, σi = (σi1, σi2, . . . , σin), ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T is an n-dimensional
Brownian motion defined on a complete probability space (Ω,F, {Ft}t>0,P) with a fil-
tration {Ft}t>0 satisfying the usual conditions (i.e., it is right continuous and F0 contains
all P-null sets).

Here we would like to emphasize that pth moment exponential stability of stochastic
delayed fuzzy neural networks plays an important role in biological and artificial neural
networks. It can effectively portray the dynamics of neural networks [8,16,38,38,53,59].
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Thus, the research on pth moment exponential stability of stochastic delayed fuzzy neural
networks has important practical meanings. In addition, we point out that the exponential
stability in general sense and the pth moment exponential stability are different. The
former is aimed at all differential equations, and the latter is aimed at stochastic differen-
tial equations. General speaking, a stochastic differential equation is exponentially stable
traditionally implies a stochastic differential equation is pth moment exponentially stable.
In particular, if p = 2, then we say that a stochastic differential equation is exponentially
stable in mean square.

The key task of this article is to discuss the pth moment exponential stability of
system (1). In recent years, there are many papers that deal with pth moment exponential
stability of stochastic neural networks [32,43,46]. It is worth pointing out that most neural
networks involve negative feedback terms or fuzzy terms and do not possess amplification
functions, behaved functions and fuzzy terms. Model (1) of this paper has amplifications
function and behaved functions, which differ from most neural networks with negative
feedback term. Up to now, there are rare papers that consider pth moment exponential
stability this kind of stochastic fuzzy neural networks.

The main advantages of this article consist of four aspects: (i) the study of pth moment
exponential stability for stochastic delayed fuzzy Cohen–Grossberg neural networks with
amplification functions and behaved functions is proposed; (ii) a set of new sufficient
criteria that ensure the pth moment exponential stability of system (1) by using Lyapunov
function and the Itô differential formula are established; (iii) the key ideas of this article
are also suitable for handling some other similar stochastic fuzzy Cohen–Grossberg neural
networks; (iv) to the best of our knowledge, it is the first time to deal with the pth moment
exponential stability for stochastic delayed fuzzy Cohen–Grossberg neural networks with
amplification functions, behaved functions and fuzzy terms.

The remainder of the paper is organized as follows: in Section 2, the basic definitions
and lemmas are introduced. In Section 3, the sufficient condition for the pth moment
(p > 2) exponential stability for system (1) is established by using the Lyapunov function
method and Itô differential inequality. In Section 4, an illustrative example is given.
A brief conclusion is drawn in Section 5.

2 Preliminaries

For convenience, we introduce some notations. Let C = C([−∞, 0],Rn) be the Banach
space of continuous function, which map into Rn with the topology of uniform conver-
gence. For any x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn, we define ‖x‖ = ‖x‖p =
(
∑n
i=1 |xi(t)|p)1/p (1 < p <∞).
The initial conditions of system (1) are x(s) = ϕ(s), −τ 6 s 6 0, ϕ ∈ LpF ((−τ, 0],

Rn), where LpF ((−τ, 0],Rn) is Rn-value stochastic process ϕ(s), −τ 6 s 6 0, ϕ(s) is
F0 measurable,

∫ 0

−τ E[|ϕ(s)|p] ds <∞.
Throughout this paper, we always make the following assumptions:

(H1) There exist positive constants ai and āi such that 0 < ai 6 ai(x) 6 āi for
x ∈ R, i = 1, 2, . . . , n.
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(H2) fj(·) and gj(·) are Lipschitz continuous on R with Lipschitz constants Lfj , Lgj ,
j = 1, 2, . . . , n, i.e., for all x, y ∈ R, one has∣∣fj(x)− fj(y)

∣∣ 6 Lfj |x− y|,
∣∣gj(x)− gj(y)

∣∣ 6 Lgj |x− y|.

(H3) bi(·) ∈ C(R,R) and there exist positive constants µi such that

bi(u)− bi(v)

u− v
> µi

for u 6= v, i = 1, 2, . . . , n.
(H4) σ(x(t)) = (σij(xj(t)))n×n (i, j = 1, 2, . . . , n), there exist nonnegative num-

bers %i (i = 1, 2, . . . , n) such that tr[σT(x)σ(x)] 6
∑n
i=1 %ix

2
i .

(H5) The delay kernel Kij : [0,+∞) → [0,+∞) is a real-valued nonnegative con-
tinuous function and satisfies

∫ t
−∞Kij(t− s) ds 6 ρij , where ρij is a positive

constant and i, j = 1, 2, . . . , n.

LetC1,2([−τ,∞)×Rn;R+) denote the family of all nonnegative functions V (t, x) on
[−τ,∞)×Rn, which are continuous once and differentiable in t and twice differentiable
in x. If V (t, x) ∈ C1,2([−τ,∞) × Rn;R+), in view of the Itô formula, we define an
operator LV associated with (1) as

LV (t, x) = Vt(t, x) +

n∑
i=1

Vx(t, x)

{
−ai(t)

[
bi(t)−

n∑
j=1

cij(t)fj
(
xj
(
t− τij(t)

))

−
n∧
j=1

αij(t)

t∫
−∞

Kij(t− s)gj
(
xj(s)

)
ds

−
n∨
j=1

βij(t)

t∫
−∞

Kij(t− s)gj
(
xj(s)

)
ds+ Ii(t)

]
dt

}

+
1

2
tr
[
σTVxx(t, x)σ

]
,

where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

∂V (t, x)

∂xi
, Vxx(t, x) =

(
∂V (t, x)

∂xi∂xj

)
n×n

.

Definition 1. The equilibrium x∗ of system (1) is said to be global pth moment exponen-
tially stable if there exist positive constants M > 1, λ > 0 such that

E
(∥∥x(t)− x∗

∥∥p) 6M‖ϕ− x∗‖pLe−λ(t−t0), t > t0, ∀x0 ∈ Rn,

where x(t) = (x1(t), x2(t), . . . , xn(t))T is any solution of system (1), p > 2 is a constant
when p = 2, it is said to be exponential stability in mean square.
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Lemma 1. (See [50].) Let x and y be two states of system (1). Then∣∣∣∣∣
n∧
j=1

αij(t)gj(x)−
n∧
j=1

αij(t)gj(y)

∣∣∣∣∣ 6
n∑
j=1

∣∣αij(t)∣∣∣∣gj(x)− gj(y)
∣∣,∣∣∣∣∣

n∨
j=1

βij(t)gj(x)−
n∨
j=1

βij(t)gj(y)

∣∣∣∣∣ 6
n∑
j=1

∣∣βij(t)∣∣∣∣gj(x)− gj(y)
∣∣.

Lemma 2. (See [7].) If ai > 0 (i = 1, 2, . . . , n), denote p∗ nonnegative real numbers,
then

a1a2 · · · am 6
ap

∗

1 + ap
∗

2 + · · ·+ ap
∗

m

p∗
,

where p∗ > 1 denotes an integer. A particular form of the above inequality is

ap
∗−1

1 a2 6
(p− 1)ap

∗

1

p∗
+
ap

∗

2

p∗
.

Lemma 3 [Hölder inequality]. (See [38].) Let f(x) and g(x) be two continuous func-
tions and Ω a set, a and b satisfy 1/b + 1/a = 1 for any a > 0, b > 0 if a > 1, then the
following inequality holds:∫

Ω

∣∣f(x)g(x)
∣∣ ds 6 (∫

Ω

∣∣f(x)
∣∣a ds

)1/a(∫
Ω

∣∣g(x)
∣∣b ds

)1/b

.

3 pth moment exponential stability

In this section, we shall present sufficient conditions for the global pth moment exponen-
tial stability of system (1).

Theorem 1. Suppose that (H1)–(H5) and the following assumption hold true:

(H6) there exist a positive diagonal matrix M = diag(θ1, θ2, . . . , θn) and two con-
stants 0 < Π2, 0 < u < 1 such that 0 < Π2 6 Π2(t) 6 uΠ1(t), t > t0,
where

Π1(t) = min
16i6n

{
paiµi −

n∑
j=1

θi(p− 1)āi
∣∣cij(t)∣∣Lfj

+

n∑
j=1

θiāi
∣∣cij(t)∣∣Lfj ((p− 1)

)
−

n∑
j=1

θi(p− 1)āi
(∣∣αij(t)∣∣+

∣∣βij(t)∣∣)ρijLgj
−

n∑
j=1

(p− 1)(p− 2)

2
%j −

n∑
j=1

θj
θi

(p− 1)%i

}
,
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Π2(t) = max
16i6n

{
n∑
j=1

θj
θi
āi
∣∣cij(t)∣∣Lfj ((p− 1)

)}
,

then x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T is a unique equilibrium, which is globally pth moment expo-

nentially stable, where p > 2 denotes a positive constant. When p = 2, the equilibrium x∗

of system (1) has exponential stability in mean square.

Proof. Similar to [47, 57], we can easily prove the existence and uniqueness of the equi-
librium for system (1). Here we omit it.

Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T be the unique equilibrium of system (1). Set yi(t) =

xi(t)− x∗i , σ̄ij = σij(yi(t) + x∗j )− σij(x∗j ). Then it follows from (1) that

dyi(t) = −ai
(
yi(t) + x∗i

)[
bi
(
yi(t) + x∗i

)
− bi(x∗i )

−
n∑
j=1

cij(t)
(
fj(xj

(
t− τij(t)

))
− fj(x∗j )

)

−
n∧
j=1

αij(t)

t∫
−∞

Kij(t− s)
(
gj(xj(s)

)
− gj(x∗j )

)
ds

−
n∨
j=1

βij(t)

t∫
−∞

Kij(t− s)
(
gj
(
xj(s)

)
− gj(x∗j )

)
ds

]
dt

+

n∑
j=1

σ̄ij
(
yj(t)

)
dωj(t), t > t0, i = 1, 2, . . . , n. (2)

Define a Lyapunov function V by

V
(
t, y(t)

)
=

n∑
i=1

θi
∣∣yi(t)∣∣p =

n∑
i=1

θi
∣∣xi(t)− x∗i ∣∣p, p > 2. (3)

Calculating the operator LV (t, y(t)) and using Lemma 2 associated with system (2),
we have

LV
(
t, y(t)

)
= p

n∑
i=1

θi
∣∣yi(t)∣∣p−1 sgn

{
yi(t)

}{
−ai

(
yi(t) + x∗i

)
×

[
bi
(
yi(t) + x∗i

)
− bi(x∗i )−

n∑
j=1

cij(t)
(
fj
(
xj
(
t− τij(t)

))
− fj(x∗j )

)

−
n∧
j=1

αij(t)

t∫
−∞

Kij(t− s)
(
gj(xj(s)

)
− gj(x∗j )

)
ds
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−
n∨
j=1

βij(t)

t∫
−∞

Kij(t− s)
(
gj
(
xj(s)

)
− gj(x∗j )

)
ds

]}

+
p(p− 1)

2

n∑
i=1

∣∣yi(t)∣∣p−2 n∑
j=1

σ̄ij
(
yi(t)

)
6 −p

n∑
i=1

θi
∣∣yi(t)∣∣p−1ai(yi(t) + x∗i

)
µiyi(t) sgn

{
yi(t)

}
+ p

n∑
i=1

θi
∣∣yi(t)∣∣p−1ai(yi(t) + x∗i

)[ n∑
j=1

cij(t)fj
(
yj
(
t− τij(t)

))
× sgn

{
yi(t)

}
+

n∑
j=1

∣∣αij(t)∣∣ρij∣∣gj(xj(s))− gj(x∗j )∣∣ sgn
{
yi(t)

}
+

n∑
j=1

∣∣βij(t)∣∣ρij∣∣gj(xj(s))− gj(x∗j )∣∣ sgn
{
yi(t)

}]

+
p(p− 1)

2

n∑
i=1

θi
∣∣yi(t)∣∣p−2 n∑

j=1

σ2
ij sgn

{
yi(t)

}
6 −p

n∑
i=1

θi
∣∣yi(t)∣∣p−1aiµi∣∣yi(t)∣∣

+ p

n∑
i=1

θi
∣∣yi(t)∣∣p−1āi n∑

j=1

∣∣cij(t)∣∣Lfj ∣∣yi(t− τij(t))∣∣
+ p

n∑
i=1

θi
∣∣yi(t)∣∣p−1āi n∑

j=1

(∣∣αij(t)∣∣+
∣∣βij(t)∣∣)ρijLgj ∣∣yi(t)∣∣

+
p(p− 1)

2

n∑
i=1

θi
∣∣yi(t)∣∣p−2 n∑

j=1

%jy
2
i (t)

6 −p
n∑
i=1

θi
∣∣yi(t)∣∣p−1aiµi∣∣yi(t)∣∣

+

n∑
i=1

n∑
j=1

θiāi
∣∣cij(t)∣∣Lfj (p− 1)

∣∣yi(t)∣∣p +
∣∣yi(t− τij(t))∣∣p

+ p

n∑
i=1

θi
∣∣yi(t)∣∣p−1āi n∑

j=1

(∣∣αij(t)∣∣+
∣∣βij(t)∣∣)ρijLgj ∣∣yi(t)∣∣

+
p(p− 1)

2

n∑
i=1

θi
∣∣yi(t)∣∣p−2 n∑

j=1

%jy
2
i (t)
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6 −
n∑
i=1

θi

{
paiµi −

n∑
j=1

θi(p− 1)āi
∣∣cij(t)∣∣Lfj

+

n∑
j=1

θiāi
∣∣cij(t)∣∣Lfj (p−1)−

n∑
j=1

θi(p−1)āi
(∣∣αij(t)∣∣+∣∣βij(t)∣∣)ρijLgj

−
n∑
j=1

(p− 1)(p− 2)

2
%j −

n∑
j=1

θj
θi

(p− 1)%i

}∣∣yi(t)∣∣p
+

n∑
i=1

θi

n∑
j=1

θj
θi
āi
∣∣cij(t)∣∣Lfj (p− 1)

∣∣yi(t− τij(t))∣∣p
6 −Π1(t)V

(
t, y(t)

)
+Π2(t) sup

t−τ6s6t
V
(
s, y(s)

)
, (4)

where

Π1(t) = min
16i6n

{
paiµi −

n∑
j=1

θi(p− 1)āi
∣∣cij(t)∣∣Lfj

+

n∑
j=1

θiāi
∣∣cij(t)∣∣Lfj ((p− 1)

)
−

n∑
j=1

θi(p− 1)āi
(∣∣αij(t)∣∣+

∣∣βij(t)∣∣)ρijLgj
−

n∑
j=1

(p− 1)(p− 2)

2
%j −

n∑
j=1

θj
θi

(p− 1)%i

}
,

Π2(t) = max
16i6n

{
n∑
j=1

θj
θi
āi
∣∣cij(t)∣∣Lfj ((p− 1)

)}
.

Applying the Itô formula, for t > t0, we have

V
(
t+ ξ, y(t+ ξ)

)
− V

(
t, y(t)

)
=

t+ξ∫
0

LV
(
s, y(s)

)
ds+

t+ξ∫
0

Vy
(
s, y(s)

)
σ
(
s, y(s)

)
dω(s). (5)

Since E[Vx(s, y(s))σ(s, y(s)) dω(s)] = 0, taking expectations on both sides of (5) and
applying (4), we get

V
(
t+ ξ, y(t+ ξ)

)
− V

(
t, y(t)

)
6

t+ξ∫
t

[
−Π1(t)E

(
V
(
s, y(s)

))
+Π2(t)E

(
sup

s−τ6ς6s
V
(
ς, y(ς)

))]
ds. (6)

The Dini derivative D+ is

D+E
(
V
(
t, y(t)

))
= lim
ξ→0

sup
E(V (t+ ξ, y(t+ ξ))− V (t, y(t)))

ξ
.
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Denote z(t) = E(V (t, y(t))). It follows from (6) that

D+z(t) 6 −Π1(t)z(t) +Π2(t)‖zt‖p.

In view of Lemma of [17], we obtain

z(t) 6
∥∥z(t0)

∥∥pe−λ(t−t0).
That is

E
[∥∥x(t)− x∗

∥∥p] 6M‖ϕ− x∗‖pe−λ(t−t0), t > t0,

where
M =

max16i6n θi
min16i6n θi

> 1,

and λ is the unique positive solution of the following equation:

λ = Π1(t)−Π2(t)eλτ .

Thus, the equilibrium x∗ of system (1) is pth moment exponentially stable. The proof of
Theorem 1 is completed.

4 An illustrate example

In this section, we present numerical examples to illustrate the effectiveness of the ob-
tained results. Consider the following stochastic fuzzy Cohen–Grossberg neural networks
with discrete and distributed delays:

dx1(t) = −a1
(
x1(t)

)[
b1
(
x1(t)

)
−

2∑
j=1

c1j(t)fj
(
xj
(
t− τ1j(t)

))

−
2∧
j=1

α1j(t)

t∫
−∞

Kij(t− s)gj
(
xj(s)

)
ds

−
2∨
j=1

β1j(t)

t∫
−∞

K1j(t− s)gj
(
xj(s)

)
ds+ I1(t)

]
dt

+

2∑
j=1

σ1j
(
xj(t)

)
dωj(t), (7a)

dx2(t) = −a2
(
x2(t)

)[
b2
(
x2(t)

)
−

2∑
j=1

c2j(t)fj
(
xj
(
t− τ2j(t)

))

−
2∧
j=1

α2j(t)

t∫
−∞

K2j(t− s)gj
(
xj(s)

)
ds
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−
2∨
j=1

β2j(t)

t∫
−∞

K2j(t− s)gj
(
xj(s)

)
ds+ I2(t)

]
dt

+

2∑
j=1

σ2j
(
xj(t)

)
dωj(t), (7b)

where fj(x) = gj(x) = (|x+ 1| − |x− 1|)/2, Kij(t) = te−t and[
a1(x1(t)) a2(x2(t))
b1(x1(t)) b2(x2(t))

]
=

[
4 + 2 cosx1(t) 3 + 2 sinx2(t)

12x1(t) 14x2(t)

]
,

[
c11(t) c12(t)
c21(t) c22(t)

]
=

[
0.1 0.5
0.4 0.6

]
,

[
α11(t) α12(t)
α21(t) α22(t)

]
=

[
1.1 1.3
1.5 1.1

]
,

[
β11(t) β12(t)
β21(t) β22(t)

]
=

[
1.5 1.1
2.1 1.8

]
,

[
σ11(t) σ12(t)
σ21(t) σ22(t)

]
=

[
0.3x 0.2x
0.1x 0.4x

]
,

[
τ11(t) τ12(t)
τ21(t) τ22(t)

]
=

[
1.1 1.3
1.5 1.1

]
,

[
I1(t)
I1(t)

]
=

[
3 + 4t
1 + 2t

]
.

Let %1 = 0.04, %2 = 0.8, then it is easy to see that that (H1)–(H5) are satisfied. Let
p = 2, then we can obtain Π1 = 16.77, Π2 = 8.43. There exists a positive constant
0 < u = 0.8 < 1 such that 0 < Π2 = 8.43 < uΠ1 = 0.8 × 16.77 = 13.416. Thus,
all the assumptions in Theorem 1 are fulfilled. Thus, we can conclude that system (7) has
a unique equilibrium point x∗, which is pth moment exponentially stable. The results are
illustrated in Fig. 1

(a) (b)

Figure 1. Transient response of state variables: (a) x1(t), (b) x2(t).
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5 Conclusions

In this paper, applying Lyapunov function and the Itô differential formula, we investigate
the pth moment exponential stability for a class of stochastic fuzzy Cohen–Grossberg
neural networks with discrete and distributed delays. Some simple sufficient conditions
checking the pth moment exponential stability of the stochastic fuzzy Cohen–Grossberg
neural networks with discrete and distributed delays have been obtained. The obtained
criteria play an important role in designing pth moment exponential stability of stochastic
fuzzy Cohen–Grossberg neural networks.
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