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Abstract. Suppose that f is the characteristic function of a probability measure on the real line R.
We deal with the following open problem posed by N.G. Ushakov: Is it true that f is never
determined by its imaginary part =f? In other words, is it true that for any characteristic function f ,
there exists a characteristic function g such that =f = =g, but f 6= g? The answer to this question
is no. We give a characterization of those characteristic functions, which are uniquely determined
by their imaginary parts. Also, several examples of characteristic functions, which are uniquely
determined by their imaginary parts, are given.

Keywords: Bochner’s theorem, characteristic function, Fourier algebra, positive definite function,
imaginary part of the characteristic function.

1 Introduction

LetM(R) be the Banach algebra of bounded regular complex-valued Borel measures µ on
the real line R equipped with the total variation norm ‖µ‖. Throughout this paper, B(R)
will denote the usual σ-algebra of all Borel subsets of R. The Fourier–Stieltjes transform
of µ ∈M(R) is defined by

µ̂(ξ) =

∫
R

e−iξx dµ(x), ξ ∈ R.

We identify L1(R) with the closed ideal in M(R) of all measures, which are absolutely
continuous with respect to the Lebesgue measure dx on R, i.e., if ϕ ∈ L1(R), then ϕ is
associated with the following measure:

µϕ(E) =

∫
E

ϕ(x) dx, E ∈ B(R).
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Therefore, the Fourier transform of ϕ ∈ L1(R) is defined by ϕ̂(t) =
∫∞
−∞ e−itxϕ(x) dx,

t ∈ R. We normalize the inverse Fourier transform

ϕ̌(ξ) =
1

2π

∞∫
−∞

eiξtϕ(t) dt

so that the inversion formula ˆ̌ϕ = ϕ holds for suitable ϕ ∈ L1(R).
The family of Fourier–Stieltjes transforms µ̂ of µ ∈M(R) forms the so-called Fourier–

Stieltjes algebra B(R). The norm in B(R) is defined by

‖µ̂‖B(R) := ‖µ‖M(R).

The closed idealL1(R) ofM(R) generates the Fourier algebraA(R) = {ϕ̂: ϕ ∈ L1(R)}.
Of course, A(R) is a closed ideal of B(R), and the norm in A(R) is defined by

‖ϕ̂‖A(R) := ‖ϕ‖L1(R).

A function f : R→ C is said to be positive definite if an inequality

n∑
j,k=1

f(xj − xk)cjck > 0

holds for all finite sets of complex numbers c1, . . . , cn and points x1, . . . , xn ∈ R. The
Bochner theorem (see, e.g., [2, p. 121] or [7, p. 71]) states that a continuous function
f : R → C is positive definite if and only if there exists a nonnegative µ ∈ M(R) such
that f = µ̂. If, in addition, ‖µ‖ = 1, then in the language of probability theory, these µ
and f are called the probability measure and its characteristic function, respectively. Any
characteristic function f is continuous on R and satisfies

f(−x) = f(x) and
∣∣f(x)

∣∣ 6 f(0) = 1 (1)

for all x ∈ R. In particular, such an f is real-valued if and only if it is the Fourier–Stieltjes
transform of a symmetric distribution µ [7, p. 30], i.e., if µ satisfies µ(−A) = µ(A) for
any A ∈ B(R).

Some properties of characteristic functions are not only of theoretical interest in prob-
ability theory, but also helpful in solving applied problems as well. Here we deal with
certain examples and assertions demonstrating the relationship between a characteristic
function, its real part, and its imaginary part. It is known that f is not determined by
|f |. More precisely (see [4, p. 506] and [8, p. 256]), there exist two different real-valued
characteristic functions f and g such that |f | = |g| everywhere. The same holds true for
characteristic functions f and their real parts <f . Indeed, in [8, p. 259] it is shown that
for any characteristic functions f 6= 1, there exists a characteristic function g such that
<f = <g, but f 6= g.

In this context, it is natural to ask whether the same is true for f and its imaginary part
=f? The following question as an open problem was given by Ushakov (see [8, p. 260]
and the open problem No. 16 in [8, p. 334]):
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(∗) Is it true that the characteristic function is never determined
by its imaginary part?

For a characteristic function f , we say that =f determines uniquely f if for each charac-
teristic function g such that =f = =g, we have that f = g. It is not difficult to check that
the answer to the question (∗) is no: For example, if

=f(x) = =g(x) = sinx

for x ∈ R, then necessarily f(x) = g(x) = eix, x ∈ R. This can be verified directly by
simple arguments. Even more, we give a characterization of those characteristic functions,
which are uniquely determined by their imaginary parts. To simplify the proofs, we will
study here the characteristic functions of absolutely continuous probability measures.

If f = ϕ̂, where ϕ ∈ L1(R) is non-negative on R and ‖ϕ‖L1(R) = 1, then

f(x) =

∫
R

e−ixtϕ(t) dt =

∫
R

cos(xt)ϕ(t) dt+ i

∫
R

sin(−xt)ϕ(t) dt

= <f(x) + i=f(x),

x ∈ R. Hence,

<f(x) = <ϕ̂(x) =
1

2

[ ∫
R

(
eixt + e−ixt

)
ϕ(t) dt

]
and

=f(x) = =ϕ̂(x) =
1

2i

[ ∫
R

(
e−ixt − eixt

)
ϕ(t) dt

]
.

Therefore, these <f and =f also are elements of A(R). Moreover, ‖<f‖A(R) = 1 and
<f is an even characteristic function. On the other hand, the function =f is odd and

‖=f‖A(R) 6 1. (2)

By (1), this function is positive definite only in the trivial case if =f ≡ 0.
Now we state the main result of this paper.

Theorem 1. Suppose that ψ ∈ A(R) is real-valued and odd. Then the following three
statements are equivalent:

(A) There is an unique characteristic function f such that =f ≡ ψ.
(B) ‖ψ‖A(R) = 1.
(C) (i) For any c1, . . . , cm ∈ C and γ1, . . . , γm ∈ R, the inequality

sup
x∈R

∣∣∣∣∣
m∑
k=1

ckψ(γk)

∣∣∣∣∣ 6 sup
x∈R

∣∣∣∣∣
m∑
k=1

ckeiγkx

∣∣∣∣∣ (3)

holds and (ii) this inequality is sharp in the sense that there exist c1, . . . , cm ∈ C
and γ1, . . . , γm ∈ R such that inequality in (3) becomes an equality.
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Example 1. Several frequently used characteristic functions are uniquely determined by
their imaginary parts. For example, that is true for the following characteristic functions:

(a) The characteristic functions of Beta and Gamma distributions.
(b) The characteristic function

f(x) = eix/2J0

(
x

2

)
= eix/2

∞∑
k=0

(−1)k

(k!)2

(
x

2

)2k

of the arcsine distribution with density

p(t) =

{
1

π
√
t(1−t)

, 0 < t < 1,

0 otherwise.

(c) The characteristic function

f(x) =
(
1− ix+

√
(1− ix)2 − 1

)%
of the Bessel distribution with density

p(t) =

{
%e−t

t I%(t) = %e−t

t

∑∞
k=0

1
k!Γ(k+%+1)

(
t
2

)2k+%
, t > 0,

0 otherwise,

where % is positive number.
(d) The characteristic function

f(x) =
1

(1− 2ix)n/2

of the χ2-distribution with density (with n degrees of freedom)

p(t) =

{
1

2n/2Γ(n/2)
t(n/2)−1e−t/2, t > 0,

0 otherwise,

where n is positive integer.
(e) The characteristic function

f(x) =

m∑
k=1

αkλk
λk − xt

of the hyperexponential distributions with density

p(t) =

{∑m
k=1 αkλke−λkt, t > 0,

0 otherwise,

where αk, λk > 0, and
∑m
k=1 αk = 1.
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We end this section with a discussion of the Fourier algebraA(R). If ϕ ∈ L1(R), then
ϕ̂ is uniformly continuous and vanishing at infinity, that is, it belongs to the space C0(R).
Hence, A(R) is a subset of C0(R). On the other hand, it is known that A(R) 6≡ C0(R).
In the context of Theorem 1, it is important to know whether a given C0(R) function is
an element of A(R). Here we present two statements devoted to the sufficient conditions.
The following basic result is due to Beurling [1, pp. 39-60]: If f : R → C is locally
absolutely continuous and f, f ′ ∈ L2(R), then f ∈ A(R).

Proposition 1. (See [6, p. 20].) If f ∈ C0(R) satisfies the following Hölder type condition
of order λ > 1/2, i.e.,

∣∣f(x)− f(y)
∣∣ 6 C

|x− y|λ

(|1 + x|)λ(|1 + y|)λ
, x, y ∈ R,

then f ∈ A(R).

These facts allow us to construct several classes of functions fromA(R). For example,
if S(R) denotes the Schwartz class of test functions, then S(R) ⊂ A(R). The class S(R)
is invariant with respect to the Fourier transform. Therefore, by using Theorem 1, it is
very convenient to construct such characteristic functions f ∈ S(R), which are uniquely
determined by their imaginary parts.

2 Proofs

To begin, we recall some terminology and notation that will be used throughout this
section. For A ∈ B(R), by definition, put

−A = {x ∈ R: −x ∈ A}.

Given f ∈ Lp(R), we associate with f two other functions, defined by

fE(x) =
1

2

(
f(x) + f(−x)

)
and fO(x) =

1

2

(
f(x)− f(−x)

)
for x ∈ R. Because we regard the space Lp(R) as a normed space, i.e., the space of
equivalence classes of functions, it is required to explain how to understand the value
f(x) of f ∈ Lp(R) at the point x ∈ R. We choose any function f̃ : R → C in the class
f and define f(x) := f̃(x). Now it is easy to see that fE and fO defined in this manner
give us well-defined elements of Lp(R). For simplicity of language, we will call elements
of Lp(R) also functions. The functions fE and fO are called the even and the odd parts
of f , respectively. Of course, we get f = fE + fO.

If f ∈ Lp(R) is real-valued, then we set

f+(x) = max
{
f(x); 0

}
and f−(x) = max

{
−f(x); 0

}
.

The functions f+ and f− are called the positive and the negative parts of f , respectively.
It is evident that both f+ and f− are non-negative on R and f = f+ − f−.

https://www.mii.vu.lt/NA



On a uniqueness theorem for characteristic functions 417

Proof of Theorem 1. By the definition of A(R), there exists v ∈ L1(R) such that ψ = v̂.
Since ψ is odd, we have

v̂(x) = ψ(x) = ψO(x) =
1

2

(∫
R

v(t)e−ixt dt−
∫
R

v(t)eixt dt

)

=
1

2

∫
R

(
v(t)− v(−t)

)
e−ixt dt = v̂O(x)

for x ∈ R. Therefore, v is also odd. In addition, ψ is real-valued. Therefore,∫
R

v(t)e−ixt dt = ψ(x) = ψ(x) =

∫
R

v(t)eixt dt =

∫
R

v(−s)e−ixs ds.

Here, using the fact that v is odd, we get that v = −v. Thus, there exists a real-valued
and odd function v1 ∈ L1(R) such that

v = iv1. (4)

Let v1 = v+
1 −v

−
1 . We claim that there exists E ∈ B(R) such that E∩ (−E) = ∅ and

‖v+
1 ‖L1(R) =

∫
E

v+
1 (x) dx =

∫
−E

v−1 (x) dx = ‖v−1 ‖L1(R) =
1

2
‖v1‖L1(R). (5)

Indeed, we choose any odd function ṽ1 : R→ R in the class v1 ∈ L1(R) and take

E =
{
x ∈ R: ṽ1(x) > 0

}
. (6)

If x ∈ E, then
ṽ1(−x) = −ṽ1(x) < 0

since ṽ1 is odd. Therefore,

−E =
{
x ∈ R: ṽ1(x) < 0

}
and E ∩ (−E) = ∅.

Let x ∈ E. Then ṽ1(x) = ṽ+
1 (x) and ṽ1(−x) = −ṽ−1 (−x). Hence, again using the fact

that ṽ1 is odd, we get
ṽ+

1 (x) = ṽ−1 (−x). (7)

It is clear that is also true for each x ∈ −E and x ∈ R \ (E ∪ −E). Thus,

‖v1‖L1(R) = ‖ṽ1‖L1(R) =

∫
E

ṽ1(x) dx−
∫
−E

ṽ1(x) dx

=

∫
E

ṽ+
1 (x) dx+

∫
−E

ṽ−1 (x) dx =

∫
R

ṽ+
1 (x) dx+

∫
R

ṽ−1 (x) dx

=
∥∥ṽ+

1

∥∥
L1(R)

+
∥∥ṽ−1 ∥∥L1(R)

=
∥∥v+

1

∥∥
L1(R)

+
∥∥v−1 ∥∥L1(R)

.

By combining this with (7), we obtain (5). This proves our claim.
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Let us show that (A)⇒ (B). To this end, we prove the contraposition: If ψ ∈ A(R) is
a real-valued odd function and ‖ψ‖A(R) < 1, then there are infinitely many characteristic
functions f such that =f ≡ ψ. Let ϕ denote the Fourier transform of |v1| = v+

1 +v−1 . By
Bochner’s theorem, ϕ is continuous positive definite function and ϕ ∈ A(R). Moreover,
ϕ is real-valued and even since |v1| is even. Now (4) implies

ϕ+ iψ = |̂v1| − v̂1 = 2v̂−1 . (8)

Therefore, ϕ + iψ is continuous positive definite function with the imaginary part ψ.
Combining (4), (5), and (8), we get

(ϕ+ iψ)(0) = 2v̂−1 (0) = 2

∫
R

v−1 (t) dt = 2
∥∥v−1 ∥∥R

= ‖v1‖R = ‖v‖R = ‖ψ‖A(R) < 1.

Finally, let us denote by Ω the set of all continuous real-valued positive definite func-
tions ζ such that

‖ζ‖A(R) = ζ(0) = 1− (ϕ+ iψ)(0) > 0.

Then for each ζ ∈ Ω, the function ζ + ϕ + iψ is characteristic and has the prescribed
imaginary part ψ.

(B) ⇒ (A) By arguing as in the proof of (A) ⇒ (B), we see that there exists at
least one characteristic function f such that f ∈ A(R) and =f = ψ. Let ϕ denote the
real part of this function f . Then there exists a non-negative even function u ∈ L1(R),
‖u‖L1(R) = 1, such that ϕ = û since ϕ = <f is also characteristic function. Set

w = u− v1 = u− v+
1 + v−1 , (9)

where v1 is defined in (4) with v̂ = ψ. If E is the same as in (6), then, by the definition
of the function v−1 , we get ∫

E

v−1 (t) dt = 0.

Recall that now ‖ψ‖A(R) = ‖v‖L1(R) = 1. Therefore, by (5), we have∫
E

w(t) dt =

∫
E

u(t) dt−
∫
E

v+
1 (t) dt+

∫
E

v−1 (t) dt

=

∫
E

u(t) dt−
∫
E

v+
1 (t) dt =

∫
E

u(t) dt− 1

2
. (10)

Since f = ŵ, we see that w is non-negative on R. Therefore, from (10), and the fact that
u is even, it is immediate that ∫

−E

u(t) dt =

∫
E

u(t) dt >
1

2
.
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On the other hand, we have ‖u‖L1(R) = 1 and E ∩ (−E) = ∅. Therefore, we see in fact
that ∫

−E

u(t) dt =

∫
E

u(t) dt =
1

2
. (11)

This implies that u(x) = 0 for x ∈ R\ (E∪ (−E)). On the other hand, w is non-negative
on R and w = u− v+

1 on E. Now using (5), we get∫
E

v+
1 (t) dt =

1

2
.

Combining this with (11), we have that u ≡ v+
1 on E. Next, since w and v1 are even and

odd, respectively, it follows that u = v−1 on −E. Thus, u = v+
1 + v−1 , i.e., the real part

of f is uniquely determined by =f .
(B) ⇔ (C) Recall a characterization of elements ϕ ∈ B(R) (see [5, p. 304]).

A continuous function ϕ : R → C is the Fourier transform of some µ ∈ M(R) if
and only if there exists a constant K > 0 such that

sup
x∈R

∣∣∣∣∣
m∑
k=1

ckϕ(γk)

∣∣∣∣∣ 6 K sup
x∈R

∣∣∣∣∣
m∑
k=1

ckeiγkx

∣∣∣∣∣ (12)

for all finite sets of complex numbers c1, . . . , cm and points γ1, . . . , γm ∈ in R. Moreover,
if ϕ ∈ B(R), then the smallest value of K satisfying (12) is equal to ‖ϕ‖B(R), (see
e.g., [3, p. 465]). Now it is easy to check that (B) and (C) are equivalent. This finishes the
proof of Theorem 1.

Proof of Example 1. Let p : R→ R be a probability density. Assume that p is continuous
and p(x) = 0 for x ∈ (−∞, 0]. Then the function p̃(x) := p(−x) is also probability
density supported on [0,∞). Therefore,

‖pO‖L1(R) =
1

2
‖p− p̃‖L1(R) =

1

2

(
‖p‖L1(R) + ‖p̃‖L1(R)

)
= 1.

Combining this with the fact that

=p̂ =
1

2i
(p̂− p̃) =

1

i
p̂O

and statement (B) of Theorem 1, we see that =p̂ uniquely determines the characteristic
function f = p̂. Since all probability densities p given in our Examples 1(a)–1(e) are
continuous and p(x) = 0 for x ∈ (−∞, 0], this complete the proof of Example 1.
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