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Abstract. The aim of this article is to investigate the blood flow in bifurcated artery with mild
stenosis taking blood as a micropolar fluid. The arteries forming bifurcation are taken to be sym-
metric and straight cylinders of finite length. The governing equations are non-dimensionalized,
and coordinate transformation is used to convert the irregular boundary to a regular boundary. The
resulting system of equations is solved numerically using the finite difference method. The variation
of velocity, microrotation, shear stress, flow rate and impedance near the flow divider with relevant
physical parameters are presented graphically. It is found that, due to backflow and secondary flow,
impedance and flow rate are perturbed largely at the apex. It is also seen that the microrotation
changes its sign from negative to positive for increase values of bifurcated angle and micropolar
coupling number.
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1 Introduction

Fluid dynamical aspects of many biological systems and the human cardiovascular system
have gained much attention in recent years. One of the most frequently occurring abnor-
malities in the cardiovascular system of human beings is atherosclerosis. Atherosclerotic
constriction in the arterial system is known as arterial stenosis. Local hemodynamics
particularly in and around stenoses are believed to play an important role in cardiovas-
cular disease. It is a fact that at different locations in the arterial system, may form and
grow stenosis due to abnormal intravascular development. If this disease takes a severe
form, it may lead to stroke, heart attack and various cardiovascular diseases. The effect
of abnormal growth in arteries (stenosis) on the cardiovascular system has been found
by studying the flow characteristics of blood in the stenosed artery. The initiation of
atherosclerotic plaque is more likely to be dependent on the geometry of the arteries. The

c© Vilnius University, 2017

mailto:dsc@nitw.ac.in
mailto:dsrinivasacharya@yahoo.com


148 D. Srinivasacharya, G.M. Rao

curvatures, junctions and bifurcations of large and medium arteries are severely affected
by atherosclerosis. Several researchers have reported the blood flow through arterial bi-
furcation in view of its importance in the genesis and diagnosis of atherosclerosis.

To investigate the correlation between atherosclerosis and blood flow dynamics in the
carotid artery, the blood was assumed as an incompressible Newtonian fluid and simulated
using computational fluid dynamics. It is well known that blood, being a suspension of
cells, behaves like a non-Newtonian fluid at low shear rates and during its flow through
narrow blood vessels. Chakravarty and Sen [4] studied to demonstrate the effects of con-
stricted flow characteristics and the wall motion on the wall shear stress, on the concentra-
tion profile and on the mass transfer. Chen and Lu [5] investigated the influence of the non-
Newtonian properties of blood in the rigid model of the carotid bifurcation under pulsatile
flow condition. Shaw et al. [20] presented effect of shear stress with bifurcated angle,
height of the stenosis and time both in femoral and coronary artery near the apex and
outer wall of the boundary. Fan et al. [13] considered the pulsatile non-Newtonian flow in
the carotid artery bifurcation and suggested that the flow behavior obtained by the Casson
model had no difference when compared with the flow characterizations obtained by the
Newtonian model. Gupta [14] investigated the flow field in the carotid artery considering
fluid-structure interaction. Lee et al. [17] discussed the determination of the blood viscos-
ity of non-Newtonian fluid using two constitutive models such as Casson and Herschel–
Bulkley models and suggested that the Casson model is better than the Herschel–Bulkley
model to represent the non-Newtonian characteristics of blood viscosity.

The micropolar fluids introduced by Eringen [12] exhibit some microscopic effects
arising from the local structure and micro motion of the fluid elements. Further, they can
sustain couple stresses. The model of micro polar fluid represents fluids consisting of
rigid randomly oriented (or spherical) particles suspended in a viscous medium, where
the deformation of the particles is ignored. The fluids containing certain additives, some
polymeric fluids and animal blood are examples of micro polar fluids. Parvathamma and
Devanathan [18] conisdered the pulsatile flow in tubes with and without longitudinal
vibration using microcontinuum approach. Devanathan and Parvathamma [6] discussed
the flow of micropolar fluid through a tube with stenosis and analyzed that the critical
range of Reynolds number and wall shear stress are modified due to the micropolar
fluids. Hogan and Henriksen [15] presented a micropolar model for blood flow through
an idealized stenosis. Hogan and Henriksen [16] used finite element method to obtain
numerical solution of differential equations of laminar flow of a fluid with microstructure.
Abdullah and Amin [1] presented an analysis of blood flow through a single stenosis by
considering a micropolar fluid model for blood flow. Shit and Roy [21] investigated the
effect of externally imposed body acceleration and magnetic field on the pulsatile flow
of blood through an arterial segment having stenosis. Srinivasacharya and Srikanth [22]
reported that the flow patterns strongly depend on the geometry of stenosis. Sarifuddin et
al. [19] developed a mathematical model of unsteady non-Newtonian blood flow together
with heat transfer through constricted arteries. Ellahi et al. [8–11] studied the blood flow
of micropolar fluid, Jeffrey fluid, Prandtl fluid and nanofluid through a tapered stenosed
arteries. Ellahi et al. [7] analyzed the non-Newtonian micropolar fluid in arterial blood
flow through composite stenosis. Akbar et al. [2] investigated the characteristics of blood
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flow at the throat of stenosis, where blood is assumed as Williamson fluid flowing through
stenosed arteries with permeable walls.

In the present study, the steady flow of an incompressible micropolar fluid through
a bifurcated artery with mild stenosis is investigated. The variation of impedance and
shearing stress is analyzed for various values of micropolar and geometric parameters.

2 Mathematical formulation

Consider a laminar and steady flow of incompressible blood through a bifurcated artery
with mild stenosis in its lumen of parent artery. Blood is assumed to be a micropolar fluid
of constant density. The stenosis over a length of the artery is assumed to have developed
in an axi-symmetric manner, and the parent aorta have a single mild stenosis in its lumen.
Let (r, θ, z) be the co-ordinates of the material point in a cylindrical polar co-ordinate
system, of which z is taken as central axis of the parent artery. The arteries forming bifur-
cations are symmetrical about z-axis and are finite straight circular cylinders. Curvature is
introduced at the lateral junction and the flow divider so that the possibility of the presence
of any discontinuity leading to non-existent flow separation zones can be removed.

The equations governing the flow of laminar, steady, incompressible and micropolar
fluid in the absence of body force and body couple are

∇ · q = 0, (1)

ρ(q · ∇)q = −∇p+ κ∇× ν − (µ+ κ)∇×∇× q, (2)

ρj(q · ∇)ν = −2kν + κ∇× q − γ∇×∇× ν + (α1 + β1 + γ)∇(∇ · ν), (3)

where q is the velocity vector, ν is the microrotation vector and p is the fluid pressure,
ρ and j are the density and microgyration parameter of the fluid. Also, the material
constants µ, κ, α1, β1 and γ satisfy the following inequalities:

κ > 0, 2µ+ κ > 0, 3α1 + β1 + γ > 0, γ > |β1|. (4)

The geometry of the bifurcated artery with stenosis in its parent artery with outer and
inner walls described by Chakravarty and Mandal [3] as follows:

R1(z) =



a, 0 6 z 6 d′,

a− 4τm
l20

(l0(z − d′)− (z − d′)2), d′ 6 z 6 d′ + l0,

a, d′ + l0 6 z 6 z1,

a+ r0 −
√
r20 − (z − z1)2, z1 6 z 6 z2,

2r1 secβ + (z − z2) tanβ, z2 6 z 6 zmax,

(5)

R2(z) =


0, 0 6 z 6 z3,√

(r′0)2 − (z − z3 − r′0)2, z3 6 z 6 z3 + r′0(1− sinβ),

r′0cosβ + z4, z3 + r′0(1− sinβ) 6 z 6 zmax,

(6)
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Figure 1. Schematic diagram of stenosed bifurcated artery.

where R1(z) is the radius of the outer wall, R2(z) is the radius of the inner wall, a is
the radius of the parent artery in non-stenosed portion, r1 is the radius of the daughter
artery, r0 is the radius of curvatures for the lateral junction, r′0 is the radius of curvatures
for the flow divider, l0 is the length of the stenosis at a distance d′ from the origin, z1
is the location of the onset of the lateral junction, z2 is the offset of the lateral junction,
z3 is the apex, β is the half the bifurcation angle, τm represents the maximum height of
the stenosis at z = d′+ l0/2 and zmax designates the finite length of the bifurcated artery
under consideration.

The radii of curvature at the lateral junction and the flow divider are r0 and r′0 given by

r0 =
a− 2r1 secβ

cosβ − 1
and r′0 =

(z3 − z2) sinβ

1− sinβ
, (7)

where z2 , z3 and z4 lie on the axis of the bifurcated artery, which are functions of the half
of bifurcated angle and are defined as

z2 = z1 + r0 sinβ, z3 = z2 + q1,

z4 =
(
z − z3 − r′0(1− sinβ)

)
tanβ,

where q1 is a small number lying in between 0.1 and 0.5, this is defined for compatibility
of the geometry.

Since the flow is axi-symmetric, all the variables are independent of θ. Hence, for
this flow, the velocity is given by q = (u(r, z), 0, w(r, z)) and the microrotation vector is
ν = (0, ν(r, z), 0). With the assumption that the radial velocity is negligibly small and
can be neglected for a low Reynolds number flow in a artery with mild stenosis (which
implies that the variation of all the flow characteristics except pressure along the axial
direction is negligible) [22], equations (1)–(3) can be written as

∂p

∂r
= 0, (8)
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−∂p
∂z

+
κ

r

∂

∂r
(rν) + (µ+ κ)

1

r

∂

∂r

(
r
∂w

∂r

)
= 0, (9)

−2kν − κ∂w
∂r

+ γ
∂

∂r

(
1

r

∂

∂r
(rν)

)
= 0. (10)

The non-dimensional variables are defined as

r = ar̃, r1 = ar̃1, z = Lz̃, z1 = az̃1,

j = a2, w = w0w̃, p =
Lw0µp̃

a2
, ν =

w0ν̃

a
,

d = Ld̃, R1(z) = aR̃1(z̃), R2(z) = aR̃2(z̃),

(11)

where w0 is characteristic velocity and L is characteristic length.
Introducing the non-dimensional variables (11) into equations (5)–(10) and dropping

tildes, we get

R1(z) =



1, 0 6 z 6 d′,

1− 4τm
al20

(l0(z − d′)− (z − d′)2), d′ 6 z 6 d′ + l0,

1, d′ + l0 6 z 6 z1,

1 + r0 −
√
r20 − (z − z1)2, z1 6 z 6 z2,

2r1 secβ + (z − z2) tanβ, z2 6 z 6 zmax,

(12)

R2(z) =


0, 0 6 z 6 z3,√

(r′0)2 − (z − z3 − r′0)2, z3 6 z 6 z3 + r′0(1− sinβ),

r′0 cosβ + z4, z3 + r′0(1− sinβ) 6 z 6 zmax,

(13)

−∂p
∂z

+
N

1−N
1

r

∂

∂r
(rν) +

1

1−N
1

r

∂

∂r

(
r
∂w

∂r

)
= 0, (14)

−2ν − ∂w

∂r
+

2−N
m2

∂

∂r

(
1

r

∂

∂r
(rν)

)
= 0, (15)

where N = κ/(µ + κ) is the coupling number (0 6 N 6 1) and m2 = a2κ ×
(2µ+κ)/(γ(µ+κ)) is the micropolar parameter. It is to be noted from (14) and (15) that,
when N → 0 and m→∞ (i.e. κ→ 0 and γ → 0), the system of equations represents to
a classical Newtonian fluid model.

The non-dimensional boundary conditions are

∂w

∂r
= 0, ν = 0 on r = 0 for 0 6 z 6 z3,

w = 0, ν = 0 on r = R1(z) for all z,

w = 0, ν = 0 on r = R2(z) for z3 6 z 6 zmax.

(16)
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The effect of R1(z) and R2(z) from the boundary conditions can be transferred into
the governing equations by the following radial coordinate transformation [21]:

ξ =
r −R2

R
, (17)

where R(z) = R1(z)−R2(z),
Using this transformation in equations (14) and (15), they take the form

−∂p
∂z

+
N

1−N

(
1

R

∂ν

∂ξ
+

ν

ξR+R2

)
+

1

(1−N)R2

∂2w

∂ξ2

+
1

(1−N)R(ξR+R2)

∂w

∂ξ
= 0, (18)

− 1

R

∂w

∂ξ
+

2−N
m2R2

∂2ν

∂ξ2
−
(

2 +
2−N

m2(ξR+R2)2

)
ν +

(2−N)

m2R(ξR+R2)

∂ν

∂ξ
= 0, (19)

and the boundary conditions (16) are transformed to the form

∂w

∂ξ
= 0, ν = 0 on ξ = 0 for 0 6 z 6 z3,

w = 0, ν = 0 on ξ = 1 for all z,
w = 0, ν = 0 on ξ = 0 for z3 6 z 6 zmax.

(20)

3 Method of solution

The reduced equations (18) and (19) along with the boundary conditions (20) are solved
numerically using finite-difference method. A two dimensional computational grid is
imposed in z, ξ-plane. The stepping process is defined by zi = i∆z, i = 0, 1, . . . , n,
and ξj = j∆ξ, j = 0, 1, . . . , J , where ∆z and ∆ξ are step lengths in the axial and radial
directions, respectively. If wi,j represents the value of the variable w at (zi, ξj), then the
derivatives are replaced by central difference approximations

∂w

∂ξ
=
wi,j+1 − wi,j−1

2∆ξ
,

∂2w

∂ξ2
=
wi,j+1 − 2wi,j + wi,j+1

(∆ξ)2
,

(21)
∂ν

∂ξ
=
νi,j+1 − νi,j−1

2∆ξ
,

∂2ν

∂ξ2
=
νi,j+1 − 2νi,j + νi,j−1

(∆ξ)2
.

Substituting (21) in (18) and (19), we get the following system of equations:[
ξjRi +R2i

(∆ξ)2
− Ri

2∆ξ

]
wi,j−1 −

2(ξjRi +R2i)

(∆ξ)2
wi,j +

[
ξjRi +R2

(∆ξ)2
+

Ri
2∆ξ

]
wi,j+1

− NRi(ξjRi +R2i)

2∆ξ
νi,j−1 +NR2

i νi,j +
NRi(ξjRi +R2i)

2∆ξ
νi,j+1

= R2
i (1−N)(ξjRi +R2i)

dp

dz
, (22)
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wi,j−1 − wi,j+1

2∆ξ
+

2−N
m2

[
1

Ri(∆ξ)2
− 1

2(∆ξ)(ξjRi +R2i)

]
νi,j−1

−
[
2Ri +

2−N
m2

(
2

Ri(∆ξ)2
+

Ri
(ξjRi +R2i)2

)]
νi,j

+
2−N
m2

[
1

Ri(∆ξ)2
+

1

2(∆ξ)(ξjRi +R2i)

]
νi,j+1 = 0. (23)

The boundary conditions (20) reduce to

wi,1 = wi,2 and νi,1 = 0 for z < z3,

wi,J+1 = 0 and νi,J+1 = 0 for all i,
wi,1 = 0, and νi,1 = 0 for z > z3.

Equations (22)–(23) results in a block-tridiagonal matrix and is solved by block elim-
ination method.

The physical quantities of interest are the flow rate, impedance and shear stress for
both parent and daughter arteries. The flow rate for both parent and daughter arteries is
determined using

Qp = 2πRi

[
Ri

1∫
0

ξiwi,j dξi +R2i

1∫
0

wi,j dξi

]
and

Qd = πRi

[
Ri

1∫
0

ξiwi,j dξi +R2i

1∫
0

wi,j dξi

]
.

The resistance to the flow (resistive impedance) in parent and daughter artery is calculated
using

(λp)i =

∣∣∣∣ z3Qp
∣∣∣∣ for z < z3, (λd)i =

∣∣∣∣ (zmax − z3)

Qd

dp

dz

∣∣∣∣ for z > z3.

The wall shear stress is given by

τ =
1

1−N
dw

dr
+

N

1−N
ν.

This wall shear stress is calculated at the parent outer wall (r = R1(z)) and the daughter
inner wall (r = R2(z)) of the bifurcated artery, respectively.

4 Results and discussion

In order to validate the accuracy of our method, we have compared the results of velocity
and microrotation with the analytical solution of Eringen [12] in the absence of τm,R2(z),
r0 and β as a special case by taking N = 0.75, m = 10, r1 = 0.5 and dp/dz = 2. The
comparison in the above case is found to be in good agreement as shown in Table 1.
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Table 1. Comparison analysis for the velocity and microrotation calculated
by the present method and that of analytical solution [12] for N = 0.75,
m = 10, dp/dz = 2, R(z) = 1 and R2(z) = 0.

Velocity Microrotation
ξ Analytical solution [12] Present Analytical solution [12] Present
0 0.1311 0.1312 0 0
0.1 0.1297 0.1298 0.0032 0.0032
0.2 0.1257 0.1258 0.0062 0.0062
0.3 0.1188 0.1188 0.0088 0.0088
0.4 0.1094 0.1094 0.0109 0.0109
0.5 0.0972 0.0973 0.0122 0.0122
0.6 0.0826 0.0826 0.0126 0.0126
0.7 0.0654 0.0654 0.0118 0.0118
0.8 0.0458 0.0458 0.0096 0.0096
0.9 0.0239 0.0239 0.0057 0.0057
1.0 0 0 0 0

To have a better understanding of the flow characteristics, numerical results for the
velocity, microrotation, flow rate, shear stress and impedance are calculated for different
values of parameters by taking a = 5 mm, d′ = 10 mm, l0 = 5 mm, β = π/10, m = 10,
r1 = 0.51a, τm = 2a.

Figure 2 depicts the variation of velocity and microrotation profiles with N at max-
imum height of the stenosis in the parent artery. It is seen from Fig. 2 that the velocity
decreases with increase of N . Since in the limit N → 0, equations (3) and (4) reduce to
the corresponding relations for a viscous fluid, the velocity in case of micropolar fluid is
less than that of viscous fluid. This implies that the streaming blood velocity increases
with decrease in values of blood viscosity. From Fig. 2, it is evident that the microrotation
decrease with the increase of coupling number N .

The effect of N on the velocity and the microrotation in the daughter artery at z =
22.5 is illustrated through Fig. 3. It is noticed from Fig. 3(a) that the velocity decreases
with the increase of N . It is observed from Fig. 3(b) that the microrotation changes its
sign as ξ varies from 0 to 1. As N increases, the microrotation increases near the inner
wall ξ = 0 of the artery, becomes zero at the center of the artery and then decreases near
the outer wall ξ = 1 of the artery.

The influence of β on the axial velocity and microrotation in the daughter artery
at z = 22.5 is presented in Fig. 4. The axial velocity increases with increasing values
of β. The maximum of the velocity shifts towards the inner wall of the artery. As β in-
creases, the microrotation decreases near the inner wall ξ = 0 of the artery, becomes
zero at the center of the artery and then increases near the outer wall ξ = 1 of the
artery.

The variations of shear stress along the inner and the outer walls of the daughter artery
with β is illustrated through Figs. 5(a) and 5(b), respectively. It is found from Fig. 5(a)
that the shear stress decreases with increase in the values of β along the inner wall of the
daughter artery. It is observed from Fig. 5(b) that the shear stress increases with increase
in the values of β along the outer wall of the daughter artery.
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(a) (b)

Figure 2. Profiles of (a) velocity and (b) microrotation in parent artery at z = 12.5 for different values of N
and fixed values of β = π/10, m = 10.

(a) (b)

Figure 3. Profiles of (a) velocity and (b) microrotation in daughter artery at z = 22.5 for different values of N
and fixed values of β = π/10, m = 10.

(a) (b)

Figure 4. Profiles of (a) velocity and (b) microrotation in daughter artery at z = 22.5 for different values of β
and fixed values of N = 0.75, m = 10.

Nonlinear Anal. Model. Control, 22(2):147–159
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(a) (b)

Figure 5. Effect of half of the bifurcated angle along (a) inner, (b) outer walls of the daughter with N = 0.75,
m = 10 on shear stress.

(a) (b)

Figure 6. Effect of coupling numberN along (a) inner, (b) outer walls of the daughter with β = π/10, m = 10
on shear stress.

(a) (b)

Figure 7. Effect of (a) coupling number N with β = π/10, m = 10; (b) β with N = 0.75, m = 10 on
volumetric flow rate.
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(a) (b)

Figure 8. Effect of (a) coupling number N with β = π/10, m = 10; (b) β with N = 0.75, m = 10 on
impedance.

The effect of N on shear stress along the inner and outer walls of the daughter artery
is shown in Figs. 6(a) and 6(b), respectively. As the value of N increases, the shear stress
decreases along the inner wall and increases along the outer wall of the daughter artery.

The variations of volumetric flow rate along the axial direction with N and β on both
sides of apex are depicted in Figs. 7(a) and 7(b). Flow rate decreases with an increase in
the values of N . But, due to the presence of backflow near the curvature of the diverging
outer wall, flow rate increases till inset of lateral junction, then a small decrease is iden-
tified and then increases up to the apex. Thereafter, flow rate is uniform till zmax. Flow
rate increases with increasing values of β.

The variation of impedance with N and β is presented in Figs. 8(a) and 8(b). Imped-
ance increases with decreasing values of N . In general, it is noticed that the impedance
decreases with an increase in the value of z up to lateral junction, then a slight increase
occurs suddenly, and after that gradually decreases till the apex, and then a sudden in-
crease is identified. This is because of diverging of blood flow at bifurcation of the artery.
Thereafter, it is found that the impedance is uniform till zmax. The same trend is observed
with β.

5 Conclusions

The present investigation helps us to understand numerically the influence of N and β
on velocity, microrotation, flow rate, shear stress and impedance of streaming blood flow
through a bifurcated artery with mild stenosis treating blood as micropolar fluid.

• In daughter artery, velocity decreases with increasing values of N whereas it in-
creases with increasing values of β. The microrotation changes its sign to increase
values of N and β.

• As N and β increases, the shear stress decreases at the inner wall and increases at
the outer wall of the daughter artery.

Nonlinear Anal. Model. Control, 22(2):147–159
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• On both sides of the apex, flow rate decreases with increasing values of N whereas
it increases with increase of β.

• Impedance increases with an increase in the values of N and decreases with in-
crease of β.
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