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Abstract. The purpose of this paper is to investigate the existence and uniqueness of positive
solutions for a class of fractional differential equation with integral boundary conditions. Our
analysis relies on two fixed point theorems of a sum operator in partial ordering Banach space.
The main results obtained can not only guarantee the existence of a unique positive solution, but
also be applied to construct an iterative scheme for approximating it.
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1 Introduction

It is well known that fractional differential equations arise in many fields, such as physics,
mechanics, chemistry, economics and biological sciences, etc.; see [1–4,6–17,19,20,22–
24] and the references therein. In recent years, the study of positive solutions for fractional
differential equation boundary value problems has attracted considerable attention; see
[1,3,8,14,20,23] and the references therein. On the other hand, the uniqueness of positive
solution for nonlinear fractional differential equation boundary value problems has been
studied by some authors; see [2,9,17,19,22] and the references therein. In [24], by using
Guo–Krasnosel’skii’s fixed point theorem for completely continuous operators, Zhao et
al. obtained the existence and nonexistence results of positive solutions for a class of
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fractional differential equation with integral boundary conditions, where the nonlinear
term satisfies super-linearity or sub-linearity conditions. But it is not able to construct
iterative schemes for approximating the positive solutions. In a recent paper [15], Sun
and Zhao constructed a completely continuous operator and utilized monotone iteration
method to study the following fractional differential equation with integral boundary
conditions

Dα
0+u(t) + g(t)f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

1∫
0

q(s)u(s) ds,

where 2 < α 6 3, Dα
0+ is the standard Riemann–Liouville fractional derivative of

order α. The authors established the existence of one positive solution for this problem,
and can construct an iterative sequence for approximating the positive solution for a given
initial value. But the uniqueness of positive solutions is not treated in [15, 24].

Motivated by [15], in present paper we consider the following form of fractional
differential equation with integral boundary conditions

Dα
0+u(t) + f

(
t, u(t)

)
+ g
(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

1∫
0

q(s)u(s) ds,
(1)

where 2 < α 6 3, Dα
0+ is also the Riemann–Lioville fractional derivative of order α. The

function q(t) satisfies the following conditions:

(Q) q : [0, 1] → [0,∞) with q ∈ L1[0, 1] and σ1 =
∫ 1

0
sα−1(1 − s)q(s) ds > 0,

σ2 =
∫ 1

0
sα−1q(s) ds < 1.

Our main interest in this paper is to give some alternative answers to the main results
of these papers [12, 15, 16, 24]. We will use two fixed point theorems for a sum operator
to show the existence and uniqueness of positive solutions for problem (1). Moreover,
we can construct some sequences for approximating the unique solution. Comparing our
main results in this paper with ones in [15,24], we can get the existence and uniqueness of
positive solutions for problem (1). For any initial value in a special set, we can construct
an iterative scheme for approximating the unique solution. In addition, we do not assume
different requirements of super-linearity, sub-linearity or boundness of nonlinear terms.

2 Preliminaries and previous results

For the convenience, here we list some definitions, lemmas and fixed point theorems that
will be used in the proofs of our main results.
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Definition 1. (See [13, Def. 2.1].) The integral

Iα0+f(x) =
1

Γ(α)

x∫
0

f(t)

(x− t)1−α
dt, x > 0,

is called the Riemann–Liouville fractional integral of order α, where α > 0 and Γ(α)
denotes the gamma function.

Definition 2. (See [13, pp. 36–37].) For a function f(x) given in the interval [0,∞), the
expression

Dα
0+f(x) =

1

Γ(n− α)

(
d

dx

)n x∫
0

f(t)

(x− t)α−n+1
dt,

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann–
Liouville fractional derivative of order α.

Lemma 1. (See [24].) Assume (Q) holds. Let y ∈ C[0, 1], 2 < α 6 3, then the following
integral boundary value problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

1∫
0

q(t)u(t) dt,

has the solution

u(t) =

1∫
0

G(t, s)y(s) ds,

where

G(t, s) = G1(t, s) +G2(t, s), (t, s) ∈ [0, 1]× [0, 1], (2)

G1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−1 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1− s)α−1, 0 6 t 6 s 6 1,
(3)

G2(t, s) =
tα−1

1− σ2

1∫
0

G1(τ, s)q(τ) dτ. (4)

Lemma 2. (See [20].) The function G1(t, s) defined by (3) has the following properties:

tα−1(1− t)s(1− s)α−1

Γ(α)
6 G1(t, s) 6

s(1− s)α−1

Γ(α− 1)
, t, s ∈ [0, 1].
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From [15] we have

G(t, s) 6
tα−1(1− s)α−1

(1− σ2)Γ(α)
, t, s ∈ [0, 1]. (5)

On the other hand, from (2)–(4) and Lemma 2,

G(t, s) = G1(t, s) +G2(t, s) > G2(t, s) =
tα−1

1− σ2

1∫
0

G1(τ, s)q(τ) dτ

>
tα−1

1− σ2

1∫
0

τα−1(1− τ)s(1− s)α−1

Γ(α)
q(τ) dτ

=
tα−1s(1− s)α−1

(1− σ2)Γ(α)

1∫
0

τα−1(1− τ)q(τ) dτ.

Therefore, we have

G(t, s) >
σ1s(1− s)α−1tα−1

(1− σ2)Γ(α)
. (6)

In the rest of this section, we introduce some notations and known results. For conve-
nience of readers, we suggest that one refer to [5, 18, 21] for details.

Let (E, ‖·‖) be a real Banach space and θ be the zero element of E. A non-empty
closed convex set P ⊂ E is a cone if it satisfies: (a) x ∈ P , λ > 0⇒ λx ∈ P ; (b) x ∈ P ,
−x ∈ P ⇒ x = θ. E is partially ordered by cone P , i.e., x 6 y if and only if y− x ∈ P .
A cone P is called normal if there exists a constant N > 0 such that, for all x, y ∈ E,
θ 6 x 6 y implies ‖x‖ 6 N‖y‖; in this case, N is called the normality constant of P .
We say that an operator A : E → E is increasing (decreasing) if x 6 y implies Ax 6 Ay
(Ax > Ay).

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such
that λx 6 y 6 µx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h > θ and
h 6= θ), we denote by Ph the set Ph = {x ∈ E: x ∼ h}. It is easy to see that Ph ⊂ P .

Definition 3. Let γ be a real number with 0 < γ < 1. An operator A : P → P is
said to be γ-concave if it satisfies A(tx) > tγAx for all t ∈ (0, 1), x ∈ P . An operator
A : E → E is said to be homogeneous if it satisfies A(tx) = tAx for all t > 0, x ∈ E.
An operator A : P → P is said to be sub-homogeneous if it satisfies A(tx) > tAx for all
t > 0, x ∈ P .

In recent papers [18,21], the authors considered the following sum operator equation:

Ax+Bx = x, (7)

where A, B are monotone operators. They established the existence and uniqueness of
positive solutions for (7) and present the following interesting results.
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164 H. Feng, C. Zhai

Theorem 1. (See [21].) Let P be a normal cone in a real Banach spaceE,A : P → P be
an increasing γ-concave operator, and B : P → P be an increasing sub-homogeneous
operator. Assume that

(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ0 > 0 such that Ax > δ0Bx for all x ∈ P .

Then the operator equation (7) has a unique solution x∗ in Ph. Moreover, constructing
successively the sequence yn = Ayn−1 + Byn−1, n = 1, 2 . . . , for any initial value
y0 ∈ Ph, we have yn → x∗ as n→∞.

Theorem 2. (See [18].) Let P be a normal cone a real Banach space E, A : P → P be
an increasing operator, and B : P → P be a decreasing operator. Assume that:

(i) for any x ∈ P and t ∈ (0, 1), there exist ϕi(t) ∈ (t, 1) (i = 1, 2) such that

A(tx) > ϕ1(t)Ax, B(tx) 6
1

ϕ2(t)
Bx; (8)

(ii) there exists h0 ∈ Ph such that Ah0 +Bh0 ∈ Ph.

Then the operator equation (7) has a unique solution x∗ in Ph. Moreover, for any initial
values x0, y0 ∈ Ph, constructing successively the sequences

xn = Axn−1 +Byn−1, yn = Ayn−1 +Bxn−1, n = 1, 2, . . . ,

we have xn → x∗, yn → x∗ as n→∞.

Remark 1. When B is a null operator, Theorems 1, 2 also hold.

3 Existence and uniqueness of positive solutions for problem (1)

In this section, we use Theorems 1, 2 to study problem (1), and we obtain some new
results on the existence and uniqueness of positive solutions.

Throughout this section, we work in the Banach space C[0, 1] = {x : [0, 1] → R is
continuous} with the standard norm ‖x‖ = sup{|x(t)|: t ∈ [0, 1]}. Let P = {x ∈
C[0, 1]: x(t) > 0, t ∈ [0, 1]}, then it is a normal cone in C[0, 1] and the normality
constant is 1. We know that this space can be equipped with a partial order given by

x 6 y, y ∈ C[0, 1] ⇐⇒ x(t) 6 y(t), t ∈ [0, 1].

Theorem 3. Assume (Q) and

(H1) f, g : [0, 1] × [0,+∞) → [0,+∞) are continuous and increasing with respect
to the second argument, g(t, 0) 6≡ 0;

(H2) g(t, λx) > λg(t, x) for λ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,+∞), and there exists
a constant γ ∈ (0, 1) such that f(t, λx) > λγf(t, x) for all t ∈ [0, 1], λ ∈
(0, 1), x ∈ [0,+∞);

(H3) there exists a constant δ0 > 0 such that f(t, x) > δ0g(t, x), t ∈ [0, 1], x > 0.
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Then problem (1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1].
And, for any initial value u0 ∈ Ph, constructing successively the sequence

un+1(t) =

1∫
0

G(t, s)
[
f
(
s, un(s)

)
+ g
(
s, un(s)

)]
ds, n = 0, 1, 2 . . . ,

we have un(t)→ u∗(t) as n→∞, where G(t, s) is given as (2).

Proof. From Lemma 1 we know that problem (1) has an integral formulation given by

u(t) =

1∫
0

G(t, s)
[
f
(
s, u(s)

)
+ g
(
s, u(s)

)]
ds,

where G(t, s) is given as in (2).
Define two operators A : P → E and B : P → E by

Au(t) =

1∫
0

G
(
t, s)f

(
s, u(s)

)
ds, Bu(t) =

1∫
0

G(t, s)g
(
s, u(s)

)
ds.

Then we can see that u is the solution of problem (1) if and only if u = Au+Bu. From
(H1), (2)–(4) we know that A : P → P and B : P → P . In the following, we check that
A, B satisfy all assumptions of Theorem 1.

Firstly, we show that A, B are two increasing operators. For u, v ∈ P with u > v, we
have u(t) > v(t), t ∈ [0, 1], and, by (H1), (2)–(4),

Au(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds >

1∫
0

G(t, s)f
(
s, v(s)

)
ds = Av(t).

That is, Au > Av. Similarly, Bu > Bv.
Secondly, we prove that A is a γ-concave operator and B is a sub-homogeneous

operator. For any λ ∈ (0, 1) and u ∈ P , from (H2) we obtain

A(λu)(t) =

1∫
0

G(t, s)f
(
s, λu(s)

)
ds > λγ

1∫
0

G(t, s)f
(
s, u(s)

)
ds = λγAu(t).

That is, A(λ(u)) > λγAu for λ ∈ (0, 1), u ∈ P . So the operator A is a γ-concave
operator. Also, for any λ ∈ (0, 1) and u ∈ P , from (H2) we obtain

B(λu)(t) =

1∫
0

G(t, s)g
(
s, λu(s)

)
ds > λ

1∫
0

G(t, s)g
(
s, u(s)

)
ds = λBu(t).
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That is, B(λu)(t) > λBu for λ ∈ (0, 1), u ∈ P . So the operator B is sub-homogeneous.
Next, we prove that Ah ∈ Ph and Bh ∈ Ph. From (H1), (5), and (6),

Ah(t) =

1∫
0

G(t, s)f
(
s, sα−1

)
ds 6

tα−1

(1− σ2)Γ(α)

1∫
0

(1− s)α−1f(s, 1) ds,

Ah(t) =

1∫
0

G(t, s)f
(
s, sα−1

)
ds >

σ1t
α−1

(1− σ2)Γ(α)

1∫
0

s(1− s)α−1f(s, 0) ds.

From (H3) and (H1) we have

f(s, 1) > f(s, 0) > δ0g(s, 0) > 0.

Note that α− 1 > 0 and g(t, 0) 6≡ 0, we can get

1∫
0

(1− s)α−1f(s, 1) ds >

1∫
0

s(1− s)α−1f(s, 0) ds

> δ0

1∫
0

s(1− s)α−1g(s, 0) ds > 0.

Let

l1 :=
σ1

(1− σ2)Γ(α)

1∫
0

s(1− s)α−1f(s, 0) ds > 0,

l2 :=
1

(1− σ2)Γ(α)

1∫
0

(1− s)α−1f(s, 1) ds > 0.

Then l2 > l1 > 0 and thus l1h(t) 6 Ah(t) 6 l2h(t), t ∈ [0, 1]. So we have Ah ∈ Ph.
Similarly,

Bh(t) =

1∫
0

G(t, s)g
(
s, sα−1

)
ds 6

tα−1

(1− σ2)Γ(α)

1∫
0

(1− s)α−1g(s, 1) ds

Bh(t) =

1∫
0

G(t, s)g
(
s, sα−1

)
ds >

σ1t
α−1

(1− σ2)Γ(α)

1∫
0

s(1− s)α−1g(s, 0) ds,

also from g(t, 0) 6≡ 0 we can easily prove Bh ∈ Ph. That is, condition (i) of Theorem 1
holds.
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Further, we prove that condition (ii) of Theorem 1 is also satisfied. For u∈P , by (H3),

Au(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds > δ0

1∫
0

G(t, s)g
(
s, u(s)

)
ds = δ0Bu(t).

So we obtain Au > δ0Bu, u ∈ P .
Finally, from Theorem 1 we know that operator equation Au+Bu = u has a unique

solution u∗ in Ph; for any initial value u0 ∈ Ph, constructing successively the sequence
un = Aun−1 +Bun−1, n = 1, 2, . . . , we have un → u∗ as n→∞. That is, problem (1)
has a unique positive solution u∗ in Ph. And, for any initial value u0 ∈ Ph, constructing
successively the sequence

un+1(t) =

1∫
0

G(t, s)
[
f
(
s, un(s)

)
+ g
(
s, un(s)

)]
ds, n = 0, 1, 2 . . . ,

we have un(t)→ u∗(t) as n→∞.

Corollary 1. Assume (Q) and

(H1′) f : [0, 1] × [0,+∞) → [0,+∞) is continuous and increasing with respect to
the second argument, f(t, 0) 6≡ 0;

(H2′) there exists a constant γ ∈ (0, 1) such that f(t, λx) > λγf(t, x) for all t ∈
[0, 1], λ ∈ (0, 1), x ∈ [0,+∞).

Then the following problem

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, 2 < α 6 3,

u(0) = u′(0) = 0, u(1) =

1∫
0

q(s)u(s) ds

has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1]. And, for any
initial value u0 ∈ Ph, constructing successively the sequence

un+1(t) =

1∫
0

G(t, s)f
(
s, un(s)

)
ds, n = 0, 1, 2 . . . ,

we have un(t)→ u∗(t) as n→∞, where G(t,s) is given as (2).

Proof. From Remark 1 and Theorem 3 the conclusions hold.

Theorem 4. Assume (Q) and

(H4′) f : [0, 1] × [0,+∞) → [0,+∞) is continuous and increasing with respect to
the second argument, f(t, 0) 6≡ 0;

Nonlinear Anal. Model. Control, 22(2):160–172
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(H5′) g : [0, 1] × [0,+∞) → [0,+∞) is continuous and decreasing with respect to
the second argument, g(t, 1) 6≡ 0;

(H6′) for λ ∈ (0, 1), there exist ϕi(λ) ∈ (λ, 1) (i = 1, 2) such that

f(t, λx) > ϕ1(λ)f(t, x), g(t, λx) 6
1

ϕ2(λ)
g(t, x)

for t ∈ [0, 1], x ∈ [0,+∞).

Then problem (1) has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1].
And, for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn+1(t) =

1∫
0

G(t, s)
[
f
(
s, xn(s)

)
+ g
(
s, yn(s)

)]
ds,

yn+1(t) =

1∫
0

G(t, s)
[
f
(
s, yn(s)

)
+ g
(
s, xn(s)

)]
ds,

n = 0, 1, 2 . . . , we have xn(t) → u∗(t), yn(t) → u∗(t) as n → ∞, where G(t, s) is
given as (2).

Proof. Similar to the proof of Theorem 3, we consider two operators A : P → E and
B : P → E by

Au(t) =

1∫
0

G(t, s)f
(
s, u(s)

)
ds, Bu(t) =

1∫
0

G(t, s)g
(
s, u(s)

)
ds.

From (H4), (H5) we know that A : P → P is increasing and B : P → P is decreasing.
Further, from (H6) we can prove that A, B satisfy (8). So we only need to prove that
Ah+Bh ∈ Ph. From (H4), (H5), (5), and (6),

Ah(t) +Bh(t) =

1∫
0

G(t, s)
[
f
(
s, sα−1

)
+ g
(
s, sα−1

)]
ds

6
tα−1

(1− σ2)Γ(α)

1∫
0

(1− s)α−1
[
f(s, 1) + g(s, 0)

]
ds,

Ah(t) +Bh(t) =

1∫
0

G(t, s)
[
f
(
s, sα−1

)
+ g
(
s, sα−1

)]
ds

>
σ1t

α−1

(1− σ2)Γ(α)

1∫
0

s(1− s)α−1
[
f(s, 0) + g(s, 1)

]
ds.

https://www.mii.vu.lt/NA
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From (H4) and (H5) we have

f(s, 1) + g(s, 0) > f(s, 0) + g(s, 1) > 0.

Note that α− 1 > 0 and f(t, 0) + g(t, 1) 6≡ 0, we can get

1∫
0

(1− s)α−1
[
f(s, 1) + g(s, 0)

]
ds >

1∫
0

s(1− s)α−1
[
f(s, 0) + g(s, 1)

]
ds > 0.

Let

l3 :=
σ1

(1− σ2)Γ(α)

1∫
0

s(1− s)α−1
[
f(s, 0) + g(s, 1)

]
ds > 0,

l4 :=
1

(1− σ2)Γ(α)

1∫
0

(1− s)α−1
[
f(s, 1) + g(s, 0)

]
ds > 0.

Then l4 > l3 > 0 and thus l3h(t) 6 Ah(t) + Bh(t) 6 l4h(t), t ∈ [0, 1]. So we have
Ah+Bh ∈ Ph.

Finally, from Theorem 2 we know that operator equation Au+Bu = u has a unique
solution u∗ in Ph; for any initial values x0, y0 ∈ Ph, constructing successively the
sequences

xn = Axn−1 +Byn−1, yn = Ayn−1 +Bxn−1, n = 1, 2, . . . ,

we have xn → x∗, yn → x∗ as n → ∞. That is, problem (1) has a unique positive
solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1]. And, for any initial values x0, y0 ∈ Ph,
constructing successively the sequences

xn+1(t) =

1∫
0

G(t, s)
[
f
(
s, xn(s)

)
+ g
(
s, yn(s)

)]
ds,

yn+1(t) =

1∫
0

G(t, s)
[
f
(
s, yn(s)

)
+ g
(
s, xn(s)

)]
ds,

n = 0, 1, 2 . . . , we have xn(t)→ u∗(t), yn(t)→ u∗(t) as n→∞.

Corollary 2. Assume (Q), (H1′) and

(H7′) for λ ∈ (0, 1), there exist ϕ(λ) ∈ (λ, 1) such that f(t, λx) > ϕ(λ)f(t, x) for
t ∈ [0, 1], x ∈ [0,+∞).
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Then the following problem

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, 2 < α 6 3,

u(0) = u′(0) = 0, u(1) =

1∫
0

q(s)u(s) ds

has a unique positive solution u∗ in Ph, where h(t) = tα−1, t ∈ [0, 1]. And, for any
initial value u0 ∈ Ph, constructing successively the sequence

un+1(t) =

1∫
0

G(t, s)f
(
s, un(s)

)
ds, n = 0, 1, 2 . . . ,

we have un(t)→ u∗(t) as n→∞, where G(t, s) is given as (2).

Proof. From Remark 1 and Theorem 4 the conclusions hold.

It is easy to see that there are many functions which satisfy the conditions of Theo-
rems 3, 4. Here we present two simple examples.

Example 1. Consider the following problem:

D2.2
0+ u(t) + u1/4(t) +

u(t)

1 + u(t)
et + a = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

s2u(s) ds,

(9)

where a > 0 is a constant. In this example, α = 2.2, q(t) = t2. Then q : [0, 1]→ [0,∞)

with q ∈ L1[0, 1] and σ1 =
∫ 1

0
s1.2(1 − s)s2 ds = 25/546 > 0, σ2 =

∫ 1

0
s1.2s2 ds =

5/21 < 1. Take 0 < b < a, and let

f(t, x) = x1/4 + b, g(t, x) =
x

1 + x
et + a− b, γ =

1

4
.

Clearly, f, g : [0, 1] × [0,∞) → [0,∞) are continuous and increasing with respect
to the second argument, g(t, 0) = a − b > 0. In addition, for λ ∈ (0, 1), t ∈ [0, 1],
x ∈ [0,∞), we have

g(t, λx) =
λx

1 + λx
et + a− b > λx

1 + x
et + λ(a− b) = λg(t, x),

f(t, λx) = λ1/4x1/4 + b > λ1/4(x1/4 + b) = λγf(t, x).

Moreover, if we take δ0 ∈ (0, b/(e+ a− b)], then we obtain

f(t, x) = x1/4 + b > b =
b

e+ a− b
· (e+ a− b) > δ0

[
x

1 + x
et + a− b

]
= δ0g(t, x).
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So all the conditions of Theorem 3 are satisfied. Therefore, problem (9) has a unique
positive solution in Ph, where h(t) = t1.2, t ∈ [0, 1].

Example 2. Consider the following problem:

D2.2
0+ u(t) + u1/2(t) +

t

1 + u1/3(t)
+ a = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =

1∫
0

s2u(s) ds,

(10)

where a > 0 is a constant. In this example, α, q(t) are the same with Example 1. Let

f(t, x) = x1/2 + a, g(t, x) =
t

1 + x1/3
.

Clearly, f : [0, 1] × [0,∞) → [0,∞) is continuous and increasing with respect to the
second argument, f(t, 0) = a > 0. g : [0, 1] × [0,∞) → [0,∞) is continuous and
decreasing with respect to the second argument, g(t, 1) = t/2 6≡ 0. In addition, let
ϕ1(λ) = λ1/2, ϕ2(λ) = λ1/3. Then ϕ1(λ), ϕ2(λ) ∈ (λ, 1) for λ ∈ (0, 1). Further, we
have

f(t, λx) = λ1/2x1/2 + a > λ1/2
(
x1/2 + a

)
= ϕ1(λ)f(t, x),

g(t, λx) =
t

1 + (λx)1/3
6

t

λ1/3(1 + x1/3)
=

1

ϕ2(λ)
g(t, x).

So all the conditions of Theorem 4 are satisfied. Therefore, problem (10) has a unique
positive solution in Ph, where h(t) = t1.2, t ∈ [0, 1].

Remark 2. In [15,24], the nonlinear terms were required super-linearity, sub-linearity or
boundness. Here our nonlinear terms f , g in Examples 1, 2 do not satisfy these conditions.
So the conclusions of Examples 1, 2 cannot been obtained by the main results in [15,24].
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