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Abstract. We provide two upper bounds on the Clayton copula Cθ(u1, . . . , un) if θ > 0 and
n > 2 and a lower bound in the case θ ∈ [−1, 0) and n > 2. The obtained bounds provide a nice
probabilistic interpretation related to some negative dependence structures and also allow defining
three new two-dimensional copulas, which tighten the classical Fréchet–Hoeffding bounds for the
Clayton copula when n = 2.
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1 Introduction and main results

We consider one of many Archimedean copula families, the multivariate Clayton copula
(also called Mardia–Takahashi–Clayton–Cook–Johnson copula; see, e.g. [15, Table 4.1,
family (4.2.1)] or [7, Ex. 1.5] for the bivariate case and [15, Ex. 4.23] or [7, Sect. 4.6.1]
for the n-variate case n > 2)

Cθ(u) =

[(
n∑
i=1

u−θi − n+ 1

)
+

]−1/θ
, u = (u1, . . . , un) ∈ [0, 1]n,

where a+ := max{a, 0}. If θ > 0, then the dimension can be any integer n > 2, and if
θ ∈ [−1, 0), then n 6 1− 1/θ is only allowed (see, e.g. [12, Ex. 2.3]). By continuity, we
let C0(u) = Π(u) :=

∏n
i=1 ui. It is also assumed that Cθ(u) = 0 if θ > 0 and ui = 0

for at least one i = 1, . . . , n.
The Clayton copula is interesting as it can model various kinds of dependence, ranging

from comonotonicity in the limit as θ → ∞, independence if θ ↓ 0 (also if θ ↑ 0) and
countermonotonicity if θ = −1 [7, p. 168]. This copula is often used in modelling when
data shows asymmetry and lower tail dependence; see, e.g. [9,16] and [17] in finance, [1]
and [18] in insurance, [2] in multiple test theory, among many other applications. For
some other facts on the role of Clayton copulas in the Archimedean copula families, see,
e.g. [12] and [13].
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Bounds for the Clayton copula 249

The interest in obtaining sharper than the classical Fréchet–Hoeffding bounds (see,
e.g. [15, p. 30]) for the Clayton copula is partially motivated by the investigations of
Dindienė and Leipus [5] who wondered whether, given a sequence of random variables
X1, X2, . . . , such that for any integer n > 1 and (x1, . . . , xn) ∈ Rn, if

P

(
n⋂
i=1

{Xi 6 xi}

)
= Cθ

(
F1(x1), . . . , Fn(xn)

)
, (1)

where Fi(xi) = P(Xi 6 xi), i = 1, . . . , n, then there exists a κ > 0 such that

P

(
n⋂
i=1

{Xi > xi}

)
6 κ

n∏
i=1

P(Xi > xi), (2)

that is, random variables X1, X2, . . . are upper extended negatively dependent (or have
the UEND property) (see Section 3.1). It is well known (see [15, Cor. 4.6.3]) that Cθ(u)
is bounded from below (resp. above) by the independence copula Π if θ > 0 (resp.
θ ∈ [−1, 0)):

Cθ(u) > Π(u) if θ > 0,

Cθ(u) 6 Π(u) if θ ∈ [−1, 0).
(3)

In this paper, we provide two upper bounds on Cθ(u) if θ > 0 and a lower bound
in the case θ ∈ [−1, 0). The first bound (see Theorem 1 below) yields that random
variables X1, X2, . . . satisfying (1) for any n > 1 are pairwise UEND, i.e. P(Xi > xi,
Xj > xj) 6 (1 + θ)P(Xi > xi)P(Xj > xj) for any i 6= j. However, the full UEND
property requires further investigations, in particular, a sharper lower bound in Lemma 2
is needed.

Following Marshall et al. [10, p. xxvi], let us introduce some notations. For a vector
x = (x1, . . . , xn) ∈ Rn, n > 2, let x[1] > · · · > x[n] and x(1) 6 · · · 6 x(n) denote the
components of x in decreasing and increasing order, respectively.

Our first result is the following theorem for the case θ > 0:

Theorem 1. Let θ > 0 and n > 2. If u = (u1, . . . , un) ∈ [0, 1]n, then

Cθ(u) 6 θ(1− u(1) − u(2)) + (1 + θ)u(1)u(2). (4)

Remark 1. When n = 2 and θ > 0, the above inequality is simply

Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
6 θ(1− u1 − u2) + (1 + θ)u1u2, (u1, u2) ∈ [0, 1]2,

with no indication why the two smallest arguments u(1) and u(2) appear in the general
case. This is essentially due to the upper bound in Lemma 2 (see also Remark 3 below).

An application of Gronwall’s inequality allows obtaining another bound:
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250 M. Manstavičius, R. Leipus

Theorem 2. Let θ > 0 and n > 2. If u = (u1, . . . , un) ∈ (0, 1]n, then

Cθ(u) 6 Π(u) exp{θ lnu(1) lnu(2)}. (5)

Note that neither R1,θ(u1, u2) := θ(1− u1− u2) + (1 + θ)u1u2 nor R2,θ(u1, u2) :=
u1u2 exp{θ lnu1 lnu2} is a two-dimensional copula for any θ > 0 as the former is
not grounded, i.e. θ(1 − u1) = R1,θ(u1, 0) 6≡ 0 6≡ R1,θ(0, u2) = θ(1 − u2) when-
ever (u1, u2) ∈ [0, 1)2 (see [15, (2.2.2a)]), and the latter is unbounded in a neighbour-
hood of the origin, e.g. if xm = ym = exp{−m/θ}, m > 1, then R2,θ(xm, ym) =
exp{m(m − 2)/θ} → +∞ as m → ∞. Nevertheless, combining the obtained and
Fréchet–Hoeffding upper bounds, we have

Proposition 1. Let θ > 0. The functions Tj,θ : [0, 1]2 → [0, 1], j = 1, 2, given by

Tj,θ(u1, u2) := min
{
M(u1, u2), Rj,θ(u1, u2)

}
=

{
Rj,θ(u1, u2) if min{u1, u2} > νj ;

M(u1, u2) if min{u1, u2} 6 νj ,

where νj = θ/(1+θ)1{j=1}+e−1/θ1{j=2} andM(u1, u2) := min{u1, u2}, are copulas.

On the other hand, in the case θ ∈ [−1, 0) we have

Theorem 3. For any θ ∈ [−1, 0) and 2 6 n 6 1− 1/θ, the following inequality holds:

Cθ(u) > (−θ)

(
n∑
i=1

ui − n+ 1

)
+ (1 + θ)Π(u), u = (u1, . . . , un) ∈ [0, 1]n. (6)

Remark 2. When n = 2 and θ ∈ [−1, 0), inequality (6) becomes

Cθ(u1, u2) > θ(1− u1 − u2) + (1 + θ)u1u2, (u1, u2) ∈ [0, 1]2,

which is simply the reverse inequality discussed in Remark 1. So one may wonder why
the reverse inequality of (4) is not featured in Theorem 3 when n > 3? Such an inequality
simply fails already for n = 3 and, for example, θ = −1/4. Indeed, by taking u0 :=
(3/4, 3/4, 3/4), we get

C−1/4(u0) =
(
3 4
√

3/4− 2
)4 ≈ 0.3931 �

1

4

(
2 · 3

4
− 1

)
+

(
1− 1

4

)(
3

4

)2

=
35

64
.

Similar to the case when θ > 0, the lower bound given by (6) is not a copula for any
n > 2 as the right hand side is negative in a neighbourhood of the origin. Nevertheless, by
enforcing the lower bound to stay nonnegative, i.e. by using the lower Fréchet–Hoeffding
boundW (u1, u2) := (u1 +u2−1)+ on the set whereR1,θ becomes negative, we recover
a known result (see family (4.2.7) if θ ∈ (−1, 0] and family (4.2.1) if θ = −1 in Table 4.1
of [15]; a simple reparametrization is needed in the first case)1.

1We are grateful to prof. R.B. Nelsen for pointing this out at the Salzburg Workshop on Dependence Models
& Copulas, organized on September 19–22, 2016, where the results of this paper were presented.
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Proposition 2. Let θ ∈ [−1, 0]. The function T3,θ : [0, 1]2 → [0, 1] given by

T3,θ(u1, u2) := max
{

0, R1,θ(u1, u2)
}

is a copula (in fact, Archimedean).

The rest of the paper is organized as follows: Section 2 contains the proofs of the
stated results. Section 3 provides the details of the connection of the obtained bounds and
pairwise UEND property of a sequence of random variables joined by Clayton copula
(see Section 3.1) and describes when the new bounds are superior to the classical Fréchet–
Hoeffding bounds (see Section 3.2).

2 Proofs

In this section, the proofs of Theorems 1, 2 and 3 are split into several lemmas for
easier readability. In particular, Lemmas 1, 2, and 3 provide ingredients for the proof
of Theorem 1. The proof of Proposition 1 is given at the end.

Lemma 1. If (u1, u2) ∈ (0, 1]2, then u(1) lnu1 lnu2 6 (1− u1)(1− u2).

Proof. If u(2) = 1 then the stated inequality trivially becomes equality. So assume
u(2) < 1. Using Karamata’s inequality (see, e.g. [14, 3.6.15]), namely, lnx 6 (x − 1)/√
x for all x > 1, we get u(1) lnu1 lnu2 6 (1 − u1)(1 − u2)

√
u(1)/u(2) 6 (1 − u1) ×

(1− u2).

Lemma 2. For any x = (x1, . . . , xn) ∈ (1,∞)n, n > 2, the following holds:

0 <
(
∑n
i=1 xi − n+ 1) ln(

∑n
i=1 xi − n+ 1)−

∑n
i=1 xi lnxi

(
∑n
i=1 xi − n+ 1) lnx[1] lnx[2]

6 1. (7)

Proof. The non-negativity of the numerator above and its strict positivity on (1,+∞)n is
a simple consequence of the majorization theory (see [10, Ch. 3]). Indeed, the function
ν(x) = (1+x) ln(1+x) is strictly convex on I = (−1,∞), hence η(x) :=

∑n
i=1 ν(xi) is

strictly Schur-convex on In (see [10, Prop. C.1a]), that is, η(x̂) < η(x̃) if x̂ is majorized
by x̃, i.e.

k∑
i=1

x̂[i] 6
k∑
i=1

x̃[i], k = 1, . . . , n− 1, and
n∑
i=1

x̂[i] =

n∑
i=1

x̃[i],

and x̂ is not a permutation of x̃. Clearly, for any x = (x1, . . . , xn) ∈ (1,+∞)n,
x̂ := (x1 − 1, . . . , xn − 1) is majorized by x̃ = (

∑n
i=1(xi − 1), 0, . . . , 0), which is

not a permutation of x̂, hence

η(x̂) =

n∑
i=1

xi lnxi < η(x̃) =

(
n∑
i=1

xi − n+ 1

)
ln

(
n∑
i=1

xi − n+ 1

)
.
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To prove the stated upper bound in (7), for any x = (x1, . . . , xn) ∈ [1,∞)n, consider
fn(x) := gn(x) − (

∑n
i=1 xi − n + 1) lnx[1] lnx[2], where gn(x) := η(x̃) − η(x̂). We

will show that fn(x) 6 0 on [1,∞)n. Notice that, due to the symmetry of fn, we can
assume that x = (x[1], . . . , x[n]). Then

∂fn(x)

∂x1
= ln

(
n∑
i=1

xi − n+ 1

)
− lnx1 − lnx1 lnx2 −

lnx2
x1

(
n∑
i=1

xi − n+ 1

)
and

∂2fn(x)

∂x1∂x2
=

(
n∑
i=1

xi − n+ 1

)−1
− lnx1

x2
− lnx2

x1
−
∑n
i=1 xi − n+ 1

x1x2

= − lnx1
x2
− lnx2

x1
−
−x1x2 + (

∑n
i=1 xi − n+ 1)2

x1x2
(∑n

i=1 xi − n+ 1
) . (8)

Now, for hn(x) := −x1x2 + (
∑n
i=1 xi − n+ 1)2, x ∈ [1,∞)n, we have

∂hn(x)

∂x2
= −x1 + 2

(
n∑
i=1

xi − n+ 1

)
= x1 + 2

n∑
i=2

(xi − 1) > 1,

so that hn is nondecreasing in x2 ∈ [1,∞) and

hn(x) > hn(x1, 1, x3, . . . , xn) = −x1 +

(
x1 +

n∑
i=3

(xi − 1)

)2

> −x1 + x21 > 0,

since all xi > 1. Therefore, by (8), ∂2fn(x)/∂x1∂x2 6 0, implying that ∂fn/∂x1 is
nonincreasing in x2, and so

∂fn(x)

∂x1
6
∂fn
∂x1

(x1, 1, x3, . . . , xn) =
∂fn
∂x1

(x1, 1, . . . , 1) = 0,

since x2 = x[2] = 1 implies x2 = x3 = · · · = xn = 1. This means that fn is
nonincreasing in x1 and so fn(x) 6 fn(1, x2, . . . , xn) = fn(1, . . . , 1) = 0, since
x1 = x[1] = 1 implies x1 = x2 = · · · = xn = 1.

Remark 3. Some comments about the choice of x[1] and x[2] are in order. One can try,
more generally, taking (

∑n
i=1 xi − n + 1) lnx[m] lnx[k] with (m, k) ∈ {(i, j): i, j =

1, . . . , n} in the denominator of the fraction in (7). Then since, clearly, lnx[m] lnx[k] 6
lnx[1] lnx[2] 6 ln2 x[1], for any (m, k) ∈ {(i, j): i, j = 1, . . . , n}, (m, k) 6= (1, 1), the
upper bound in (7) would

• be false if k > 3, as on (1,+∞)n the numerator of the fraction in (7) stays bounded
and positive whereas the new considered denominator vanishes if x[k] ↓ 1 and
x[2] > 1 is kept fixed;

https://www.mii.vu.lt/NA



Bounds for the Clayton copula 253

• be true, but inferior to the claim of Lemma 2, if k = m = 1;
• be false if k = m = 2 in general, e.g. if n = 2 and (x1, x2) = (1.1, 1.5), then
g2(1.1, 1.5) > 0.038966 > 0.014535 > 1.6(ln 1.1)2.

Lemma 3. Let θ > 0. Then for any u = (u1, . . . , un) ∈ (0, 1)n, n > 2,

0 6
∂

∂θ
Cθ(u) 6 Cθ(u) lnu(1) lnu(2) 6 u(1) lnu(1) lnu(2). (9)

Proof. Write Cθ(u) = exp{Hθ(u)}, so that

∂

∂θ
Cθ(u) = Cθ(u)

∂

∂θ
Hθ(u), (10)

where
∂

∂θ
Hθ(u) =

gn(u−θ1 , . . . , u−θn )

θ2
(∑n

i=1 u
−θ
i − n+ 1

)
and gn(x) := (

∑n
i=1 xi − n + 1) ln(

∑n
i=1 xi − n + 1) −

∑n
i=1 xi lnxi. For xi :=

u−θi ∈ (1,∞), i = 1, . . . , n, we have x[1] = u−θ(1), x[2] = u−θ(2) and θ2 = (lnx[1] lnx[2])/

(lnu−1(1) lnu−1(2)). Lemma 2 gives

0 6
∂

∂θ
Hθ(u) =

lnu−1(1) lnu−1(2) gn(x)(∑n
i=1 xi − n+ 1

)
lnx[1] lnx[2]

6 lnu(1) lnu(2). (11)

Since Cθ(u) is a copula, the upper Fréchet–Hoeffding bound yields Cθ(u) 6 u(1), and
the last inequality in (9) follows from (10) and (11).

Proof of Theorem 1. If u(2) = 1, the stated inequality becomes an equality. So assume
u(2) < 1. It is known (see, e.g. [15, p. 115]) that limθ↓0 Cθ(u) =

∏n
i=1 ui. Thus it is

enough to show that, for any ε ∈ (0, θ),

Cθ(u)− Cε(u) =

θ∫
ε

∂Cx(u)

∂x
dx 6 (θ − ε)(1− u(1))(1− u(2)) (12)

and then pass to the limit as ε ↓ 0. Due to Lemmas 3 and 1, (12) follows from
θ∫
ε

(
∂Cx(u)

∂x
− (1− u(1))(1− u(2))

)
dx 6 0 ∀ε > 0.

Proof of Theorem 2. Inspecting equations (10)–(12), we see that

Cθ(u) 6 Cε(u) + lnu(1) lnu(2)

θ∫
ε

Cx(u) dx

for u ∈ [0, 1]n, θ > 0 and ε ∈ (0, θ). Applying of Gronwall’s inequality (see, e.g. [6])
to the function φ(x) := Cx+ε(u), x ∈ [0, θ − ε] yields Cθ(u) 6 Cε(u) exp{(θ − ε) ×
lnu(1) lnu(2)}. Passing to the limit as ε ↓ 0, we obtain the claim of the theorem.

Nonlinear Anal. Model. Control, 22(2):248–260
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Proof of Theorem 3. If θ = −1, the stated inequality is trivial. So we only need to
consider the case θ ∈ (−1, 0). For u = (u1, . . . , un) ∈ [0, 1]n, define the function

G
(n)
θ (u) := Cθ(u) + θ

(
n∑
i=1

ui − n+ 1

)
− (1 + θ)Π(u),

which is obviously jointly continuous. We claim that G(n)
θ (u) > 0 on the hypercube

[0, 1]n, which we divide into two sets:

A :=

{
(u1, . . . , un) ∈ [0, 1]n:

n∑
i=1

u−θi > n− 1

}
and B := [0, 1]n \A.

Then

∂G
(n)
θ (u)

∂u1
= u−θ−11

(
n∑
i=1

u−θi − n+ 1

)−1/θ−1
1A(u) + θ − (1 + θ)

n∏
i=2

ui

= u−θ−11

(
Cθ(u)

)θ+1
1A(u) + θ − (1 + θ)

n∏
i=2

ui.

On the set A, since −1/θ − 1 > 0 and Cθ(u) 6 Π(u) for θ ∈ (−1, 0) and u ∈ [0, 1]n,
we have

∂G
(n)
θ (u)

∂u1
6

(
n∏
i=2

ui

)1+θ

+ θ − (1 + θ)

n∏
i=2

ui

6 1 + (1 + θ)

(
n∏
i=1

ui − 1

)
+ θ − (1 + θ)

n∏
i=1

ui = 0

by Bernoulli inequality. On the set B, ∂G(n)
θ (u)/∂u1 6 0 trivially. Hence, for each fixed

(u2, . . . , un) ∈ [0, 1]n−1, G(n)
θ (u) (being continuous and piece-wise differentiable) is

nonincreasing in u1, which gives

G
(n)
θ (u) > G

(n)
θ (1, u2, . . . , un) > 0, (13)

where the last inequality follows by induction. Indeed, for n = 2, G(2)
θ (1, u2) = 0 for any

u2 ∈ [0, 1]. SupposeG(n)
θ (1, u2, . . . , un) > 0 for any n = 2, . . . , k−1. When n = k > 3,

G
(k)
θ (1, u2, . . . , uk) = G

(k−1)
θ (u2, . . . , uk) > G

(k−1)
θ (1, u3, . . . , uk) > 0

by the first inequality in (13) and induction hypothesis.

Proof of Proposition 1. First observe that both T1,θ and T2,θ satisfy the required boundary
conditions of a copula:

Tj,θ(0, u2) = Tj,θ(u1, 0) = 0, j = 1, 2,

https://www.mii.vu.lt/NA
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and
T1,θ(u1, 1) = T2,θ(u1, 1) = u1, T1,θ(1, u2) = T2,θ(1, u2) = u2.

It remains to show that both T1,θ and T2,θ are 2-increasing, i.e. for any rectangle A0 :=
[a1, a2]× [b1, b2] ⊂ [0, 1]2 with 0 6 a1 6 a2 6 1 and 0 6 b1 6 b2 6 1,

VTj,θ (A0) := Tj,θ(a1, b1)− Tj,θ(a2, b1)− Tj,θ(a1, b2) + Tj,θ(a2, b2)

> 0, j = 1, 2.

Split the square [0, 1]2 into four non-overlapping (except for touching boundaries) squares:

A1,j := [0, 0]× [νj , νj ], A2,j := [νj , 1]× [0, νj ],

A3,j := [0, νj ]× [νj , 1], A4,j := [νj , 1]× [νj , 1], j = 1, 2,

(for the choice of νj , see Section 3.2 (i) and (ii)). Then the intersections A0 ∩ Ai,j ,
i = 1, 2, 3; j = 1, 2, are again rectangles (possibly line segments or even empty) and

VTj,θ (A0) = VRj,θ (A0 ∩Aj,4) +

3∑
i=1

VM (A0 ∩Aj,i).

As M is a copula, VM (A0 ∩ Aj,i) > 0 for each i = 1, 2, 3 and j = 1, 2. Moreover, if
A0 ∩ Aj,4 = [c1,j , c2,j ] × [d1,j , d2,j ] 6= ∅, where νj 6 c1,j 6 c2,j 6 1 and νj 6 d1,j 6
d2,j 6 1, then also

VR1,θ
(A0 ∩A1,4) = (1 + θ)(c2,1 − c1,1)(d2,1 − d1,1) > 0 (14)

and
VR2,θ

(A0 ∩A2,4) = zθ(c2,2; d1,2, d2,2)− zθ(c1,2; d1,2, d2,2) > 0,

since the function zθ(x; a, b) := xb1+θ ln x − xa1+θ ln x for e−1/θ 6 a 6 b 6 1 and
x ∈ [e−1/θ, 1] is nondecreasing in x, which follows from

d

dx
zθ(x; a, b) = b1+θ ln x(1 + θ ln b)− a1+θ ln x(1 + θ ln a)

> (1 + θ ln a)
(
b1+θ ln x − a1+θ ln a

)
> 0.

Hence both T1,θ and T2,θ are bivariate copulas.

3 Discussion

In this section we discuss an application of the obtained bounds to certain negative depen-
dence structures mentioned in Section 1 as well as give a comparison with the classical
Fréchet–Hoeffding bounds.

Nonlinear Anal. Model. Control, 22(2):248–260
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3.1 Connection to UEND structures

We now discuss some of the applications of the obtained bounds. For n = 2, Theorems 1
and 3 yield an interesting probabilistic interpretation, related to certain dependence struc-
tures. More explicitly, suppose random variables X1 and X2 are distributed according to
laws F1 and F2, respectively, and satisfy (1) with n = 2. Then, by (3) and (4), for θ > 0,

F1(x)F2(y) 6 P(X1 > x, X2 > y) 6 (1 + θ)F1(x)F2(y),

where Fi := 1− Fi, i = 1, 2, i.e. the variables X1, X2 are both positively dependent and
upper extended negatively dependent (UEND) (see [8]). Similarly, if −1 6 θ < 0, then

(1 + θ)F1(x)F2(y) 6 P(X1 > x, X2 > y) 6 F1(x)F2(y)

and, similarly, variables X1, X2 are both upper extended positively dependent (UEPD)
and negatively dependent. Note that the mentioned UEND and UEPD properties are much
easier to verify for classical Farley–Gumbel–Morgenstern, Frank or Ali–Mikhail–Haq
copulas (see [5]).

Unfortunately, extending the UEND property for θ > 0 (resp. UEPD for θ ∈ [−1, 0))
to n > 3 random variablesX1, . . . , Xn with mutual distribution function generated by the
Clayton copula (see (1)) requires a sharper lower bound (resp. upper bound) on Cθ than
provided by the independence copula Π. Indeed, e.g. for n = 3 and any (x1, . . . , xn) ∈
Rn, we have, by Sklar’s theorem and inclusion–exclusion principle,

P

(
3⋂
i=1

{Xi > xi}

)
= −2 +

3∑
i=1

Fi(xi) +
∑

16i<j63

Cθ
(
1− Fi(xi), 1− Fj(xj)

)
− Cθ

(
1− F1(x1), 1− F2(x2), 1− F3(x3)

)
. (15)

Now since Clayton copula is Archmedean and (3) holds, we can write

Cθ(u1, u2, u3) = Cθ
(
u1, Cθ(u2, u3)

)
> u1Cθ(u2, u3), (u1, u2, u3) ∈ [0, 1]3.

Using this and Theorem 1 for two of the three terms in the second sum of (15), we get

P

(
3⋂
i=1

{Xi > xi}

)
6 −2 +

3∑
i=1

Fi(xi) + Cθ
(
1− F2(x2), 1− F3(x3)

)
+
(
1− F1(x1)

)(
1− F2(x2)

)
+ θF1(x1)F2(x2)

+
(
1− F1(x1)

)(
1− F3(x3)

)
+ θF1(x1)F3(x3)

−
(
1− F1(x1)

)
Cθ
(
1− F2(x2), 1− F3(x3)

)
= (1 + θ)F1(x1)

(
F2(x2) + F3(x3)

)
+ F1(x1)

(
Cθ
(
1− F2(x2), 1− F3(x3)

)
− 1
)

6 θF1(x1)
(
F2(x2) + F3(x3)

)
+ (1 + θ)

3∏
i=1

Fi(xi),
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since, by Theorem 1,

Cθ
(
1− F2(x2), 1− F3(x3)

)
− 1 6 (1 + θ)F2(x2)F3(x3)−

(
F2(x2) + F3(x3)

)
.

Of course, by symmetry, we can replace the term F1(x1)(F2(x2) + F3(x3)) of the last
inequality by

min
{
F1(x1)

(
F2(x2)+F3(x3)

)
, F2(x2)

(
F1(x1)+F3(x3)

)
, F3(x3)

(
F1(x1)+F1(x1)

)}
,

but it still dominates the product
∏3
i=1 Fi(xi) when all Fi(xi), i = 1, 2, 3, are close to

zero. A sharper upper bound on the joint survival function could be possible provided
a better lower bound in Lemma 2 is obtained. This is left for future research.

Note that the extended negative dependence concept has been demonstrated to be
important in proving limit theorems of probability theory such as the strong law of large
numbers (see, e.g. [3, 11]), showing some max–sum equivalence properties for heavy-
tailed distributions (see, e.g. [4, 5]) or obtaining precise large deviations (see [8]).

3.2 New bounds vs. Fréchet–Hoeffding bounds

In this section, we compare the new bounds given in (4), (5) and (6) with the classical
Fréchet–Hoeffding bounds (see, e.g. [15, p. 30]), more precisely, with the upper bound
Cθ(u) 6 M(u) := u(1) for θ > 0 and with the lower bound Cθ(u) > W (u) :=
max{

∑n
i=1 ui−n+ 1, 0} for θ ∈ [−1, 0) and u = (u1, . . . , un) ∈ [0, 1]n. A typical plot

of the Clayton copula (with θ = 0.4) is shown in Fig. 1(a). Figures 1(b) and 1(c) show its
upper bounds R1,θ and R2,θ, respectively, while Figs. 1(d) and 1(e) provide plots of the
corresponding bounding copulas. To compare the improvement over classical Fréchet–
Hoeffding bounds, Fig. 2 shows the plots of the differences M − Cθ, T1,θ − Cθ and
T2,θ −Cθ, respectively, when θ = 0.4 while Fig. 3 provides similar graphs for θ = −0.4.
All graphs were produced using Maple computer algebra software by Maplesoft.

To make comparisons more concise, let

R1,θ(u) := θ(1− u(1) − u(2)) + (1 + θ)u(1)u(2), u ∈ [0, 1]n,

R2,θ(u) := Π(u) exp{θ lnu(1) lnu(2)}, u ∈ (0, 1]n.

Then we have:

(i) Bound (4) for u(2) < 1 is sharper than M(u) whenever u(1) > θ/(1 + θ), i.e.
R1,θ(u) 6 u(1) if and only if u(1) > θ/(1 + θ) (see Fig. 1(d)). If u(2) = 1,
bound (4) coincides with M(u).

(ii) Bound (5) is superior to M(u) for u(1) > 0 if and only if θ lnu(1) lnu(2) +∑n
j=2 lnu(j) 6 0 (see Fig. 1(e)). The case u(1) = 0 is not considered in Theo-

rem 2 since R2,θ can be defined at u(1) = 0 only for u(2) > e−1/θ by continuity
as 0 if u(2) > e−1/θ and as e−1/θ

∏n
j=3 u(j) if u(2) = e−1/θ. In particular, for

u(2) < 1, bound (5) is sharper whenever u(1) > e−1/θ. If u(2) = 1, bound (5)
coincides with M(u).

Nonlinear Anal. Model. Control, 22(2):248–260
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(a) Cθ(u1, u2) (b) R1,θ(u1, u2) (c) R2,θ(u1, u2)

(d) T1,θ(u1, u2) (e) T2,θ(u1, u2)

Figure 1. Plots of Clayton copula and its upper bounds (θ = 0.4) together with new copulas obtained from
them. Surfaces show contour lines.

(iii) Since e−1/θ 6 θ/(1 + θ) for θ > 0, we can clearly see that bound (5) is sharper
than (4) in the range u(1) ∈ [e−1/θ, θ/(1+θ)). In fact, a bit more can be asserted.
At least when n = 2, this interval extends to [e−1/θ, 1] (compare Figs. 1(d)
and 1(e)). To see this, for u = (u1, u2) consider Qθ(u) := R1,θ(u)−R2,θ(u) =
u1u2(1+θ(u−11 −1)(u−12 −1)−exp{θ lnu1 lnu2}) = u1u2hθ(u

−1
1 , u−12 ), where

hθ(x, y) := 1 + θ(x− 1)(y − 1)− exp{θ lnx ln y}, x, y ∈
[
1, e1/θ

]
.

Since

∂2hθ
∂x2

(x, y) =
θ ln y exp{θ lnx ln y}

x2
(1− θ ln y) > 0

for x, y ∈ [1, e1/θ], the first partial derivative ∂hθ/∂x is nondecreasing in x and
satisfies

∂hθ
∂x

(x, y) = θ(y − 1)− θ ln y exp{θ lnx ln y}
x

>
∂hθ
∂x

(1, y)

= θ(y − 1− ln y) > 0.

Hence, for any y ∈ [1, e1/θ],

hθ(x, y) > hθ(1, y) = 0,

which yields Qθ(u1, u2) > 0 whenever u(1) ∈ [e−1/θ, 1].
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(a) M(u1, u2)− Cθ(u1, u2) (b) T1,θ(u1, u2)−Cθ(u1, u2) (c) T2,θ(u1, u2)−Cθ(u1, u2)

Figure 2. Plots of differences between various upper bounds and Clayton copula (θ = 0.4). Surfaces show
contour lines.

(a) Cθ(u1, u2) (b) R1,θ(u1, u2) (c) T3,θ(u1, u2)

(d) Cθ(u1, u2)−W (u1, u2) (e)Cθ(u1, u2)−T3,θ(u1, u2)

Figure 3. Plots of Clayton copula and its lower bound (θ = −0.4) together with the new copula T3,θ(u1, u2) as
well as the differencesCθ(u1, u2)−W (u1, u2) andCθ(u1, u2)−T3,θ(u1, u2). Surfaces show contour lines.

(iv) If u = (u1, . . . , un) ∈ [0, 1]n satisfies
∑n
i=1 ui − n + 1 > 0 (i.e. W (u) > 0, in

particular u(1) > 0), then bound (6) is sharper than the lower Fréchet–Hoeffding
bound (i.e. given by W (u)) by Weierstrass inequality (see, e.g. [14, 3.2.37(1)]):

n∏
i=1

ui =

n∏
i=1

(
1− (1− ui)

)
> 1−

n∑
i=1

(1− ui) =

n∑
i=1

ui − n+ 1,

for any ui ∈ (0, 1], i = 1, . . . , n (the inequality is sharp if at least two uis are
less than 1). On the other hand, if u is such that W (u) = 0, then (6) is sharper
if the right hand side of (6) is non-negative. When θ = −0.4 and n = 2, this is
illustrated in Fig. 3.
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