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Abstract. We study a system of two parabolic nonlinear reaction–diffusion equations subject
to a nonlocal boundary condition. This system of nonlinear equations is used for mathematical
modeling of biosensors and bioreactors. The integral-type nonlocal boundary condition links the
solution on the system boundary to the integral of the solution within the system inner range. This
integral plays an important role in the nonlocal boundary condition and in the general formulation
of the boundary value problem. The solution at boundary points is calculated using the integral
combined with the proportional-integral-derivative controller algorithm. The mathematical model
was applied for the modeling and control of drug delivery systems when prodrug is converted
into active form in the enzyme-containing bioreactor before the delivering into body. The linear,
exponential, and stepwise protocols of drug delivery were investigated, and the corresponding
mathematical models for the prodrug delivery were created.

Keywords: mathematical modeling, nonlocal boundary condition, reaction–diffusion, immobilized
enzyme, bioreactor, PID controller.

1 Introduction

Our mathematical model belongs to an intensely studied class of problems, namely differ-
ential equations subject to nonlocal boundary conditions. Nonlocal boundary conditions
are commonly referred to as the boundary (or initial) conditions describing the relation-
ship between the desired solution values on multiple points. Unlike classical boundary
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conditions, nonlocal conditions do not describe the values of the solution or its deriva-
tive in a particular range of the single boundary point. The expressions describing the
nonlocal boundary conditions may contain integral expressions of the desired solution,
as is the case with our model. This is commonly called a problem with nonlocal integral
conditions.

Historically, the oldest mathematical works on the nonlocal conditions seem to be
the book [19] and the article [14]. Here these conditions are known as the “more general
boundary conditions” [21]. These works, however, have not attracted much attention.
As far as we know, the first mathematical models with nonlocal conditions describing
real physical processes appeared in scientific journals in the 1960s [2, 11]. These works,
although not immediately, have attracted more consideration in scientific publications,
especially in mathematical journals.

A relatively large number of mathematical models with nonlocal conditions describing
real processes in a number of applications have been created over the last few decades.
Among notable applications, there are heat conduction, thermoelasticity, hydrodynamics,
semiconductor devices, ecology, geophysical flows, population dynamics, electrochem-
istry, and biotechnology (see [3–5, 10, 13, 18] and the references therein).

The main peculiarity of the present work is a sufficiently detailed explanation of the
physical principles that were the basis of the nonlocal boundary condition, which reflects
the control (regulation) principle. The described control system is based on four mech-
anisms: the given control function (set-point function), the monitoring signal (integral
value, measured process variable), the control signal (computed by the PID controller),
and a mechanical device providing the boundary value.

In this article, we study a system of two parabolic nonlinear reaction–diffusion equa-
tions subject to a nonlocal boundary condition. This system of nonlinear equations is used
for mathematical modeling of biosensors and bioreactors [1]. Our purpose of this paper
is to provide a mathematical model suitable for the monitoring of the product molar flow
into the body. To this end, a control system is used to monitor the outflow of a bioreactor
through manipulation of its input parameters.

This model not only provides a set of diffusion–reaction equations, but also describes
the underlying physical process together with its possible applications.

Today about 5–10% of newly introduced drugs are prodrugs [15, 22]. They are more
stable and sometimes possess special parameters necessary for the treatment [22]. In the
body, or even in the cell, they are converted into an active form. Very often, enzymatic
conversion of a prodrug to an active form is applied. For these purposes, enzymatic
capacity of the body is explored [22].

However, this approach has some limitations. There is a limited number of suitable
enzymatic systems in the body and/or too low enzymatic activity. Also, there is a prob-
lem with side products of the enzymatic conversion of the prodrug into an active form.
Sometimes, side products are toxic or causing undesirable effects in the body.

In some cases, before delivering the drug into the body, a prodrug outside the body
should be activated. Immobilized enzyme-containing flow-through reactors can be used
in this case, the prodrug on the inlet of the reactor and an active form on the outlet.
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Such a construction has numerous advantages. Inside the reactor, we can organize any
enzymatic system possessing suitable specificity and necessary activity. We can organize
a polyenzymatic system capable of consuming the side products and converting them into
safe products, or simply locking them within the reactor. However, enzyme-containing
reactors are not very stable due to inactivation of an immobilized enzyme. Enzyme-
containing reactors possess different activities due to the variability of the conditions
of the production technology. Each reactor must be calibrated before the installation and
should be controlled during the whole cycle of operation. Performance of such bioreactors
can be monitored by controlling the concentration of the active drug at the output of the
reactor. Based on these data, the concentration of the prodrug can be monitored to achieve
necessary level of the active drug on the exit or necessary dynamics of the drug to be
delivered into the body. However, this is not always possible. Sometimes, the active drug
at the output cannot be detected by suitable instruments because the drug is immediately
consumed or diffused. In some cases, it is possible to control the enzymatic process inside
the bioreactor. For example, the hydrolysis process is led by the production of ions. This
means that the conductivity of such media is increasing. Sometimes, side products of
hydrolysis (or oxidation) are electrochemicaly active and can be easily detected. For this
purpose, it is necessary to construct an analytic system inside the biochemical reactor.

The article is divided into sections. In Section 2, we describe the model with PID con-
trol, giving an introspection into related models is provided in Section 3. In Section 4, we
describe the process in the bioreactor. Section 5 contains the numerical results illustrated
by charts and descriptions.

2 The mathematical model

We analyze a system of two differential equations widely used in mathematical modeling
[1]. The key feature of this model is the nonlocal boundary condition that combines two
different components of the solution.

We consider the boundary value problem for the system of two nonlinear diffusion–
reaction equations

∂S

∂t
= DS

∂2S

∂x2
− VmaxS

KM + S
,

∂P

∂t
= DP

∂2P

∂x2
+

VmaxS

KM + S
,

(x, t) ∈ D = {0 < x < d, 0 < t 6 T}, (1)

with initial conditions

S(x, 0) =

{
0, 0 6 x < d,

S0, x = d,
P (x, 0) = 0, 0 6 x 6 d, (2)

and boundary conditions

P (0, t) = 0, 0 < t 6 T ;

∂P

∂x

∣∣∣∣
x=d

= 0,
∂S

∂x

∣∣∣∣
x=0

= 0, 0 < t 6 T.
(3)
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The last nonlocal boundary condition is

S(d, t) = Kpe(t) +Ki

t∫
0

e(τ) dτ +Kd
de(t)

dt
, 0 < t 6 T. (4)

Here

e(t) = Q(t)− 2Dp

m2 − n2

m∫
n

P (x, t) dx, 0 < m,n < d, (5)

Q(t) is a given function (set-point), and Kp, Ki, and Kd are nonnegative coefficients for
the proportional, integral, and derivative terms.

The error function e(t) defines the difference between the required product molar flow
Q(t) and the measured flow

2Dp

m2 − n2

m∫
n

P (x, t) dx.

The nonlocal boundary condition (4) links the value of S(x, t) on the boundary where
x = d to the integral value of P (x, t) in the inner range [n,m]. The main peculiarity
of the boundary condition (4) is its nonlocality due to the integration not only in the
space domain [n,m], but also in the time domain [0, t]. The PID controller continuously
evaluates the error value e(t) and attempts to minimize the error over time by adjusting
the control variable S(d, t) to a new value determined by (4).

We examine the problem of maintaining the molar outflow of a drug (product), which
may vary over time. It is worth noting that the properties of the physical process prohibit
direct measurements at the boundary of the bioreactor; therefore, the viable options are
to regulate either the concentration or the flow of the substrate (or both). In the present
work, the substrate concentration is regulated.

3 Analysis of mathematical models

In this section, we provide a number of important properties of the mathematical
model (1)–(4). We comprehensively examine how the nonlocal condition (4) differs from
those of other authors. Also, we briefly point out analysis and numerical solution methods
for the boundary value problems with nonlocal conditions.

First of all, notice that in the boundary value problem, the value of S(d, t) is not given;
instead, condition (4) is stated.

Several other mathematical models subject to nonlocal conditions link the solution
within the range boundaries to the integral across the entire range. A typical example is
given in [4], where the author describes the quasi-static flexure of a thermoelastic rod. In
this case, the entropy η(x, t) satisfies the equation(

C + θ0
B2

A

)
∂η

∂t
= k

∂2η

∂x2
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and two nonlocal boundary integral conditions

η(−l, t) = θ0B
2

2cAl2

l∫
−l

(l − 3x)η(x, t) dx,

η(l, t) =
θ0B

2

2cAl2

l∫
−l

(l + 3x)η(x, t) dx.

In many articles [3, 6, 10], the authors study mathematical models subject to nonlocal
conditions that include the solution or its derivative values only over the boundary points.
In the one-dimensional case, there are only two points, the endpoints of the interval.
Various nonlocal conditions based only on the values of the solution at the endpoints are
rather widely analyzed in numerical analysis, peculiarly w.r.t. the stability of difference
schemes (see [6] and references therein).

All the previously discussed mathematical models with nonlocal conditions are de-
fined by a single second-order differential equation. The mathematical model (1)–(4)
is defined as a system of two differential equations with nonlocal condition (4), which
links the solutions of the equations S(d, t) and P (x, t). One of the first mathematical
models that considers a system of two differential equations subject to nonlocal conditions
was published in the monograph [17], where the mathematical models that describe the
processes occurring in bioreactors are studied. Bioengineers widely use the mathematical
model of an ideal reactor, the purpose of which is prediction of changes in the considered
system.

The processes occurring in the bioreactors are defined as a system of two differential
equations (1), which are similar to the equations considered in the present study, but are
subject to a different kind of nonlocal conditions (4). The conditions stated in [17] are
defined only at the boundary points.

Now we proceed to point out another more peculiarity of the model (1)–(4). It is worth
noting that our goal is not to simply solve problem (1)–(4) once with given parameter
values. Instead, we focus on picking the boundary substrate concentration S(d, t) in such
a way that the product value P (x, t) would possess a specific property defined beforehand.
In the simplest case, we aim to obtain the value of S(d, t) that minimizes the absolute
value of e(t).

In this sense, the mathematical model (1)–(4) is similar to (but does not fully match)
the inverse problem with the overdetermination (observation) condition.

The class of inverse problems is closely related to the issue of control. Namely, the
nonlocal (typically, integral) condition is used together with, and not instead of, the
boundary or initial conditions. This extra condition is usually termed as the overdeter-
mination (or observation) condition. The reasoning behind the use of such a condition is
the necessity of finding not only the solution itself, but also an unknown function of the
equation, typically interpreted as a characteristic of the energy source. An example of this
can be found in [12].

Nonlinear Anal. Model. Control, 22(2):261–272



266 F. Ivanauskas et al.

Another example [20] concerns the situation where the overdetermination condition
is not a boundary condition, but instead the value of the final solution. In this case, it is
required to solve a second-order parabolic equation with the usual boundary conditions
and, in addition, the final overdetermination condition. This additional condition means
that the value of the solution at time T must coincide with the given function, and hence,
the equation contains this unknown function (a characteristic of the source). The physical
interpretation of this problem is related to the issue of the environmental safeguard in
densely populated cities [20]. For comparison purposes, it is worth noting that in our case
the overdeterminantion condition takes a more complicated form and requires a particu-
larly fine minimization of e(t).

Yet another trait of model (1)–(4) is that the nonlocality in clause (4) in the general
case is twofold: first, w.r.t. the spatial variable x and, second, w.r.t. the time t. These
two types of nonlocality are different, and, as far as we know, both have not been jointly
addressed in the references.

The spectrum of the differential operator plays an important role in the stability of the
numerical solutions of simpler mathematical models with nonlocal conditions [6–10,16].
Note that the parameter values of the nonlocal condition can significantly change the
structure of the spectrum. Therefore, the theoretical study of the considered mathematical
model (1)–(4) subject to the double integral is an important task and poses new challenges
for numerical experiments.

As a final remark, the mathematical models with nonlocal conditions describing real
physical processes have been strongly encouraging the theoretical studies of differential
equations and numerical methods.

Many authors who considered the problems subject to nonlocal conditions empha-
sized that the nonlocal boundary value problems have certainly been one of the most
rapidly growing areas in various application fields. Hence, the development of numerical
methods for solving the nonlocal boundary value problems has also been an important
research area. The authors of the present article agree with these statements, but also
prefer to rephrase them. In our opinion, the progress made in the study of numerical
methods subject to nonlocal boundary value problems is indeed significant. However,
there is still not enough feedback from the numerical methods studies toward practical
applications. Too few works are devoted to the study of the new effects in application areas
subject to nonlocal boundary value problems. Such effects cannot be identified using the
normal classical conditions. Therefore, by the present article we try to strengthen the
feedback effect of the mathematical models with nonlocal conditions.

4 The physical model

Let us consider the enzymatic reaction

S
Enzyme−→ P,

where S is a substrate of the enzyme considered as a prodrug, and P is one of the
products of the enzymatic reaction to be controlled and considered as the active drug
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Figure 1. Principal structure of bioreactor.

(or the side product). We expect that the concentration of side product correlates with the
concentration of the active drug. Therefore, we consider as P the concentration of the
active drug, which can be monitored by an independent method (usually, electrochemical
and sometimes optical). The enzymatic conversion of substrate can be derived as the
Michaelis–Menten process:

VP =
VmaxS

KM + S
,

where VP is the product generation rate at a particular point within the bioreactor.
Suppose that an enzyme is immobilized in a drug delivery system named as a bioreac-

tor (Fig. 1). The enzyme is uniformly distributed in the bioreactor. The layer containing
the immobilized enzyme is permeable for substrate, which means that the substrate S
can diffuse in the bioreactor with diffusion coefficient DS . When substrate molecules
reach the active center of the immobilized enzyme, the substrate is converted into the
product P at the rate Vp. The product P diffuses inside the bioreactor with diffusion
coefficient DP . The concentration of the product P on the boundary of the bioreactor
is given by P0. Inside the bioreactor, an electrode wire net (electrode) is deposited in
order to perform the electrochemical monitoring of the enzymatic reaction. On the outer
surface of the bioreactor, a reservoir with variable concentration of substrate is deposited.
Let us consider that the concentration of the substrate S can be monitored depending on
the response of the electrochemical electrode.

The given bioreactor can be represented as an active transdermal patch. The transder-
mal patch is applied to the patient’s skin; one side of the transdermal patch delivers the
drug (product) to the patient, whereas the other side is equipped with a controlled substrate
(prodrug) supply system, which is designed to alter the substrate concentration or its flow.
The transdermal patch is equipped with two electrodes that measure the electrochemical
characteristics of the specific drug. In this way, it controls the concentration of the drug
in the inner range of the transdermal patch.

The treatment process requires the drug to be transferred to a patient in accordance
with the therapeutic protocol. This can be either a constant flow or a function of the time,
e.g., in the early treatment stage the drug flow must start at a high value and then gradually
decline as the treatment progresses, or the drug dose must continually rise until reaching
a prescribed value.

Nonlinear Anal. Model. Control, 22(2):261–272
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5 Results

Depending on the disease and the patient’s medical condition, a specific treatment pro-
tocol should be applied. During the treatment process, the patient must receive a strictly
prescribed drug dose. We provide three treatment protocols: linear, exponential, and
stepwise.

A numerical modeling was performed using a computer program developed by the
authors. It implements an explicit finite difference scheme using a forward difference
at time and a second-order central difference for the space derivative. The integral was
computed by the Simpson rule. The computed values of a substrate were used as an input
for the product value computation at the next step. The model properties are defined in
Table 1, and all the additional properties are presented later in the text.

The control algorithm was applied to three treatment protocols, which are presented
by different functions Q(t). The results of the linear treatment protocol modeling are
shown in Fig. 2, where Q(t) is a linear function.

Here we see how the PID controller performs over the set-point function Q(t), which
was set to the linear treatment protocol mode. In the beginning of the process, the substrate
concentration in the reactor is zero, and the value of the error function is high; therefore,
we observe that the substrate concentration from the beginning up to half a second is
relatively high, whereas the flow of the product is rising until it reaches the set-point. We
observe a little product flow overshoot and a slight drop until it reaches the required level
set by the set-point function. Later, while the product flow value is close to the set-point,
we observe the monotonous decrease in substrate concentration.

The second treatment protocol uses the exponential function Q(t). Basically, the
exponential treatment protocol (Fig. 3) differs from the linear one only in the derivative
of the set-point function, which is changing over time. Initially, the absolute value of the
derivative is larger, but over time it decreases. From the beginning of the process we have
an overshoot of the product flow, which is reduced later on. The smaller the absolute
value of the derivative of the set-point function, the quicker the stabilization of the control
mechanism. Accordingly, for this short (3 seconds) treatment process, it is more difficult
to stabilize in the beginning.

Table 1. Model constants and properties.

S mol · m−3 moment substrate concentration at the same particular point
of the bioreactor

P mol · m−3 moment product concentration at the same particular point
of the bioreactor

S0 0 mol · m−3 initial substrate concentration
Vmax 1.1× 10−3 mol · s−1 maximum reaction speed (maximal activity of the enzyme)
KM 2× 10−1 mol · m−3 Michaelis constant typical for such substrate and such enzyme
DS 5× 10−6 m2 · s−1 diffusion coefficient of substrate
DP 5× 10−6 m2 · s−1 diffusion coefficient of product
d 1× 10−3 m bioreactor thickness
[n;m] [1; 2]× 10−4 m measuring range
t s time
T s reaction duration
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Figure 2. Linear treatment protocol. Substrate (S) concentration S(d, t), product (P ) molar flow rate
Dp∂P/∂x|x=0, and set-point (Q) function Q(t). ParametersKp = 3×105,Ki = 4×106,Kd = 1.2×107.
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Figure 3. Exponential treatment protocol. Substrate (S) concentration S(d, t), product (P ) molar flow rate
Dp∂P/∂x|x=0, and set-point (Q) function Q(t). ParametersKp = 3×105,Ki = 4×106,Kd = 1.2×107.

The third protocol uses the stepwise function Q(t). The peculiarity of this protocol
is that the drug flow over time decreases in steps and the required drug flow value is
a piecewise constant function.

The stepwise treatment protocol (Fig. 4) is different from both the linear and expo-
nential ones. In this case, the set-point function Q(t) is discontinuous. The PID control
algorithm with experimentally selected values of the parameters (Kp, Ki, Kd) is able
to control the process of this kind. As long as the product flow has not reached the
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Figure 4. Stepwise treatment protocol. Substrate (S) concentration S(d, t), product (P ) molar flow rate
Dp∂P/∂x|x=0, and set-point (Q) function Q(t). ParametersKp = 3×105,Ki = 4×106,Kd = 1.2×107.

set-point value, the control process is similar to the linear or exponential ones. Later
on, the controller adjusts the substrate concentration, which in turn stabilizes the product
flow. When the set-point function value changes, the substrate concentration should be ad-
justed accordingly. Starting from the 2nd second, we see a rapid decrease of the substrate
concentration, which then increases again until stabilization.

Here we model a short-time treatment process (only 3 seconds), whereas the real
treatment process requires considerably more time.

These examples visually demonstrate the control mechanism and its ability to satisfy
the requirements for a variety of treatment protocols (represented as different set-point
functions Q(t)). During this short modeling time, the control mechanism is able to sta-
bilize and maintain a complex process. A numerical study revealed that the long running
treatment processes can apply the existing model, as the critical actions were maintained
at the short periods of time (see Fig. 4, time 0–0.5 s and 2–2.5 s).

6 Conclusions

In the present article, we propose a new type of nonlocal boundary condition for the
parabolic reaction–diffusion equation system applied to the bioreactor modeling. The
condition is nonlocal w.r.t. the time and space domains.

The double integral of this type in the nonlocal condition poses new challenges for nu-
merical experiments related to this mathematical model. The spectrum of the differential
operator plays an important role in the stability of the numerical solutions of simpler
mathematical models with nonlocal conditions. The parameter values of the nonlocal
condition can significantly change the structure of the spectrum. Therefore, the theoretical
study of the considered mathematical model is an important task.
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The mathematical model was applied for the modeling operation and control of drug
delivery systems when the prodrug is converted into an active form in the enzyme-
containing bioreactor before being delivered into the body. The linear, exponential, and
stepwise protocols of drug delivery were investigated, and the corresponding mathemati-
cal models for the prodrug delivery were created.
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difference schemes for a pseudoparabolic equation with nonlocal conditions, Nonlinear Anal.
Model. Control, 19(2):225–240, 2014.

10. G. Kalna, S. McKee, The thermostat problem with a nonlocal nonlinear boundary condition,
IMA J. Appl. Math., 69(5):437–462, 2004.

11. L.I. Kamynin, A boundary value problem in the theory of heat conduction with a nonclassical
boundary condition, U.S.S.R. Comput. Math. Math. Phys., 4(6):33–59, 1964, https://
doi.org/10.1016/0041-5553(64)90080-1.

12. V.L. Kamynin, On the inverse problem of determining the right-hand side of a parabolic
equation under an integral overdetermination condition, Math. Notes, 77(4):482–493, 2005.

13. J. Martín-Vaquero, J. Vigo-Aguiar, On the numerical solution of the heat conduction equations
subject to nonlocal conditions, Appl. Numer. Math., 59(10):2507–2514, 2009.

Nonlinear Anal. Model. Control, 22(2):261–272

https://doi.org/10.1016/0041-5553(64)90080-1
https://doi.org/10.1016/0041-5553(64)90080-1


272 F. Ivanauskas et al.

14. M. Picone, Su un problema al contorno nelle equazioni differenziali lineari ordinarie del
secondo ordine, Pisa Ann., 10(4):1–95, 1908.

15. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Järvinen, J. Savolainen,
Prodrugs: Design and clinical applications, Nature Reviews Drug Discovery, 7(3):255–270,
2008.

16. M. Sapagovas, On the stability of a finite-difference scheme for nonlocal parabolic boundary-
value problems, Lith. Math. J., 48(3):339–356, 2008.

17. K. Schügerl, Bioreaction Engineering: Reactions Involving Microorganisms and Cells, Wiley,
New York, 1987.

18. A. Štikonas, A survey on stationary problems, Green’s functions and spectrum of Sturm–
Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. Control,
19(3):301–334, 2014.

19. J.D. Tamarkin, On some general problems of the theory of ordinary linear differential operators
and the expansion of arbitrary functions into series, 1917 (in Russian).

20. W. Wang, M. Yamamoto, B. Han, Two-dimensional parabolic inverse source problem with
final overdetermination in reproducing kernel space, Chin. Ann. Math., Ser. B, 35(3):469–482,
2014.

21. W.M. Whyburn, Differential equations with general boundary conditions, Bull. Am. Math.
Soc., 48(10):692–704, 1942.

22. Y.-H Yang, H. Aloysius, D. Inoyama, Y. Chen, L.-Q. Hu, Enzyme-mediated hydrolytic
activation of prodrugs, Acta Pharmaceutica Sinica B, 1(3):143–159, 2011.

https://www.mii.vu.lt/NA


	Introduction
	The mathematical model
	Analysis of mathematical models
	The physical model
	Results
	Conclusions
	References



