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Abstract. An existence theorem for Volterra-type integral inclusion is establish in b-metric spaces.
We first introduce two new F -contractions of Hardy–Rogers type and then establish fixed point
theorems for these contractions in the setting of b-metric spaces. Finally, we apply our fixed point
theorem to prove the existence theorem for Volterra-type integral inclusion. We also provide an
example to show that our fixed point theorem is a proper generalization of a recent fixed point
theorem by Cosentino et al.
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1 Introduction

The theory of differential equations are based on nonlinear functional analysis. Many
existence theorems for the solution of differential equations are proved by means of
fixed point theorems. The famous Banach contraction principle has a lot of applications
in theory of integral equations. There are many generalizations of Banach contraction
principle, see, for example, [1–37]. Wardowski [37] gave an interesting generalization of
Banach contraction known as F -contraction. Several authors generalized F -contraction
by combining it with some existing contractive conditions, see, for example, Acar and
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Altun [1], Batra and Vashistha [6], Cosentino and Vetro [13], Mınak et al. [22], Paesano
and Vetro [26], Piri and Kumam [29], Secelean [31], and Sgroi and Vetro [32].

The problem of the convergence of measurable functions with respect to a measure,
lead to a generalization of notion of a metric. Using this idea, Czerwik [14] gave a gen-
eralization of the famous Banach fixed point theorem [14] in so-called b-metric spaces.
For some important results on b-metric spaces, we refer the reader to [4, 9, 10, 15, 33].
Recently, Cosentino et al. [12] extended F -contraction in the setting of b-metric spaces
and proved some fixed point theorems.

In this paper, we generalize the result of Cosentino et al. for new class of F -contrac-
tions in the setting of b-metric spaces. We also construct an example to show the generality
of our result. Finally, we apply our result to obtain existence theorems for Volterra-type
integral inclusion in b-metric spaces.

2 Preliminaries

Before going towards our findings, we need the following definitions, notions and results.

Definition 1. (See [14].) Let X be a nonempty set. A mapping d : X ×X → [0,∞) is
said to be a b-metric on X if for each x, y, z ∈ X , we have a real number s > 1 such that

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) 6 s[d(x, y) + d(y, z)].

Then the triplet (X, d, s) is said to be a b-metric space.

Note that every metric space is a b-metric but converse is not true.

Example 1. Let X = [0,∞) and d : X × X → [0,∞), d(x, y) = |x − y|2 for each
x, y ∈ X . Clearly, (X, d, 2) is a b-metric space, but not a metric space.

Following is one more interesting and very famous examples of b-metric, which is not
a metric.

Example 2. (See [14].) Let p ∈ (0, 1) and lp(R) = {{xn} ⊂ R:
∑∞
n=1 |xn|p <∞} en-

dowed with the functional d : lp(R)× lp(R)→ R,

d
(
{xn}, {yn}

)
=

( ∞∑
n=1

|xn − yn|p
)1/p

for each {xn}, {yn} ∈ lp(R). This is a b-metric space with s = 21/p.

Recall that a sequence {xn} in a b-metric space (X, d, s) converges to a point x ∈ X
if limn→∞ d(xn, x) = 0. A sequence {xn} in a b-metric space (X, d, s) is a Cauchy
sequence if for each ε > 0, there exists a natural number N(ε) such that d(xn, xm) < ε
for each m,n > N(ε). A b-metric space (X, d, s) is a complete if each Cauchy sequence
in X converges to some point of X .
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Lemma 1. (See [14].) Let (X, d, s) be a b-metric space, and let {xn} be a sequence
in X . If limn→∞ xn = y and limn→∞ xn = z, then y = z.

Let (X, d, s) be a b-metric space. The closed and bounded sets in X are defined in
a similar manner as for a metric space. We denote by CB(X) the class of all nonempty
closed and bounded subsets of X and by CL(X) the class of all nonempty closed subsets
of X .

Let x ∈ X and A ⊂ X , d(x,A) = inf{d(x, a): a ∈ A}. For A,B ∈ CB(X), the
function H : CB(X)× CB(X)→ [0,∞),

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

is said to be a Hausdorff b-metric [15] induced by the b-metric d. For A,B ∈ CL(X), the
function H : CL(X)× CL(X)→ [0,∞), given by

H(A,B) =

{
max{supx∈A d(x,B), supy∈B d(y,A)} if the maximum exists,

∞ otherwise,

is said to be a generalized Hausdorff b-metric induced by b-metric d.
Following properties based on b-metric are taken from [15].

Lemma 2. Let (X, d, s) be a b-metric space. For any A,B,C ∈ CB(X) and any x, y ∈
X , we have the following:

(i) d(x,A) 6 d(x, a) for each a ∈ A;
(ii) d(x,B) 6 H(A,B) for each x ∈ A;

(iii) H(A,A) = 0;
(iv) H(A,B) = H(B,A);
(v) H(A,B) 6 s[H(A,C) +H(C,B)];

(vi) d(x,A) 6 s[d(x, y) + d(y,A)].

Lemma 3. (See [15].) Let (X, d, s) be a b-metric space. For any A,B ∈ CL(X) and any
x ∈ X , we have the following:

(i) For h > 1 and a ∈ A, there exists b ∈ B such that d(a, b) 6 hH(A,B).
(ii) d(x,A) = 0⇔ x ∈ A = A, where A denotes the closure of the set A.

Definition 2. (See [12].) Let s > 1 be a real number. Denote by Fs the family of all
functions F : (0,∞)→ R satisfying the following conditions:

(F1) F is strictly increasing, that is, for each a1, a2 ∈ (0,∞) with a1 < a2, we have
F (a1) < F (a2);

(F2) For each sequence {dn} of positive real numbers, we have limn→∞ dn = 0 if and
only if limn→∞ F (dn) = −∞;

(F3) For each sequence {dn} of positive real numbers with limn→∞ dn = 0, there
exists k ∈ (0, 1) such that limn→∞ d kn F (dn) = 0.

Nonlinear Anal. Model. Control, 22(1):17–30
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(F4) For each sequence {dn} of positive real numbers such that τ+F (sdn) 6 F (dn−1)
for each n ∈ N and some τ > 0, we have τ +F (sndn) 6 F (sn−1dn−1) for each
n ∈ N.

Cosentino et al. [12] also showed that the following functions belong to Fs.

• F (x) = x+ lnx for each x > 0.
• F (x) = lnx for each x > 0.

3 Main results

We begin this section with the following definition.

Definition 3. Let (X, d, s) be a b-metric space, and let α : X×X → [0,∞) be a function.
(i) A mapping T : X → CL(X) is αs-admissible if for x ∈ X and y ∈ Tx such

that α(x, y) > s2, we have α(y, z) > s2 for each z ∈ Ty.
(ii) A mapping T : X → CL(X) is α∗s-admissible mapping if for x, y ∈ X with

α(x, y) > s2, we have α∗(Tx, Ty) > s2, where α∗(Tx, Ty) = inf{α(u, v): u ∈
Tx and v ∈ Ty}.

Remark 1. Note that for s = 1, above definition reduces to α-admissible and α∗-admis-
sible, as defined in [24] and [3], respectively.

Example 3. Let X = [−1, 1] endowed with the b-metric d(x, y) = |x − y|2 with s = 2.
Define

T : X → CL(X), Tx =


{0, 1} if x = −1,
{1} if x = 0,

{−x} if x /∈ {−1, 0}
and

α : X ×X → [0,∞), α(x, y) =

{
0 if x = y,

5 if x 6= y.

It is straightforward to see that T is αs-admissible, but not α∗s-admissible.

Before proving our main results, we prove an auxiliary result.

Lemma 4. Let (X, d, s) be a b-metric space, and let {xn} be any sequence in X for
which there exist τ > 0 and F ∈ Fs such that

τ + F
(
sd(xn, xn+1)

)
6 F

(
d(xn−1, xn)

)
, n ∈ N.

Then {xn} is a Cauchy sequence in X .

Proof. Given that

τ + F
(
sd(xn, xn+1)

)
6 F

(
d(xn−1, xn)

)
, n ∈ N. (1)

Let dn = d(xn, xn+1) for each n ∈ N. Thus, by (1) and property (F4), we get

τ + F
(
sndn

)
6 F

(
sn−1dn−1

)
, n ∈ N.
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Consequently, we get
F
(
sndn

)
6 F (d0)− nτ, n ∈ N. (2)

Letting n → ∞ in (2), we get limn→∞ F (sndn) = −∞. Then, by property (F2), we
have limn→∞ sndn = 0. From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

(
sndn

)k
F
(
sndn

)
= 0.

From (2) we have(
sndn

)k
F
(
sndn

)
−
(
sndn

)k
F (d0) 6 −

(
sndn

)k
nτ 6 0, n ∈ N. (3)

Letting n→∞ in (3), we get

lim
n→∞

n(sndn)
k = 0. (4)

This implies that there exists n1 ∈ N such that n(sndn)k 6 1 for each n > n1. Thus, we
have

sndn 6
1

n1/k
, n > n1. (5)

To prove that {xn} is a Cauchy sequence, consider m,n ∈ N with m > n > n1. By
using the triangular inequality and (5), we have

d(xn, xm) 6
m−1∑
i=n

sidi 6
∞∑
i=n

sidi 6
∞∑
i=n

1

i1/k
.

This implies {xn} is a Cauchy sequence since
∑∞
i=1 i

−1/k is convergent.

Now we define the notion of Hardy–Rogers-type (F, α)-contraction.

Definition 4. Let (X, d, s) be a b-metric space and α : X ×X → [0,∞) be a function.
A mapping T : X → CL(X) is called Hardy–Rogers-type (F, α)-contraction if there
exist F ∈ Fs and τ > 0 such that

τ + F
(
α(x, y)H(Tx, Ty)

)
6 F

(
R(x, y)

)
, x, y ∈ X, (6)

whenever min{α(x, y)H(Tx, Ty), R(x, y)} > 0, where

R(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx)

with a1, a2, a3, a4, L > 0 satisfying a1 + a2 + a3 + 2sa4 = 1 and a3 6= 1.

Theorem 1. Let (X, d, s) be a complete b-metric space with s > 1, and let T : X →
CL(X) be a Hardy–Rogers-type (F, α)-contraction such that the following conditions
hold:

(i) T is an αs-admissible mapping;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > s2;
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(iii) For any sequence {xn} in X such that xn → x and α(xn, xn+1) > s2 for each
n ∈ N, we have α(xn, x) > s2 for each n ∈ N.

Then T has a fixed point.

Proof. By hypothesis (ii), there exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > s2. If
x1 ∈ Tx1, then x1 is a fixed point of T . Let x1 /∈ Tx1. As α(x0, x1) > s2, there exists
x2 ∈ Tx1 such that

sd(x1, x2) 6 α(x0, x1)H(Tx0, Tx1). (7)

Since F is strictly increasing, we have

F
(
sd(x1, x2)

)
6 F (α(x0, x1)H

(
Tx0, Tx1)

)
. (8)

From (6), we have

τ + F
(
sd(x1, x2)

)
6 τ + F

(
α(x0, x1)H(Tx0, Tx1)

)
6 F

(
a1d(x0, x1) + a2d(x0, Tx0) + a3d(x1, Tx1) + a4d(x0, Tx1) + Ld(x1, Tx0)

)
6 F

(
a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2) + a4d(x0, x2) + L · 0

)
6 F

(
a1d(x0, x1) + a2d(x0, x1) + a3d(x1, x2) + sa4

(
d(x0, x1) + d(x1, x2)

))
= F

(
(a1 + a2 + sa4)d(x0, x1) + (a3 + sa4)d(x1, x2)

)
. (9)

Since F is strictly increasing, we get from above that

sd(x1, x2) < (a1 + a2 + sa4)d(x0, x1) + (a3 + sa4)d(x1, x2).

That is,

(1− a3 − sa4)d(x1, x2) < (s− a3 − sa4)d(x1, x2) < (a1 + a2 + sa4)d(x0, x1).

As a1 + a2 + a3 + 2sa4 = 1, we have

d(x1, x2) < d(x0, x1).

Now, from (9), we obtain

τ + F
(
sd(x1, x2)

)
6 F

(
d(x0, x1)

)
.

Since T is αs-admissible, we have α(x1, x2) > s2. Continuing in the same way, we get
a sequence {xn} ⊂ X such that

xn ∈ Txn−1, xn−1 6= xn and α(xn−1, xn) > s2, n ∈ N.

Furthermore,

τ + F
(
sd(xn, xn+1)

)
6 F

(
d(xn−1, xn)

)
, n ∈ N. (10)
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Thus, by Lemma 4, {xn} is a Cauchy sequence inX . As (X, d, s) is complete, there exists
x∗ ∈ X such that xn → x∗ as n → ∞. By condition (iii), we have α(xn, x∗) > s2 for
each n ∈ N. We claim that d(x∗, Tx∗) = 0. On contrary suppose that d(x∗, Tx∗) > 0,
there exists n0 ∈ N such that d(xn, Tx∗) > 0 for each n > n0. For each n > n0, we
have

d(x∗, Tx∗) 6 sd(x∗, xn+1) + sd(xn+1, Tx
∗)

< sd(x∗, xn+1) + α(xn, x
∗)H(Txn, Tx

∗)

< sd(x∗, xn+1) + a1d(xn, x
∗) + a2d(xn, xn+1) + a3d(x

∗, Tx∗)

+ a4d(xn, Tx
∗) + Ld(x∗, xn+1)

6 sd(x∗, xn+1) + a1d(xn, x
∗) + a2d(xn, xn+1) + a3d(x

∗, Tx∗)

+ sa4
(
d(xn, x

∗) + d(x∗, Tx∗)
)
+ Ld(x∗, xn+1). (11)

Letting n→∞ in (11), we have

d(x∗, Tx∗) 6 (a3 + sa4)d(x
∗, Tx∗) < d(x∗, Tx∗),

which is a contradiction. Thus, d(x∗, Tx∗) = 0.

Example 4. Let X = N ∪ {0} be endowed with a b-metric d(x, y) = |x − y|2 for each
x, y ∈ X with s = 2. Define

T : X → CL(X), Tx =

{
{0, 1} if x = 0, 1,

{x, x+ 1} if x > 1

and

α : X ×X → [0,∞), α(x, y) =


4 if x, y ∈ {0, 1},
1
3 if x, y > 1,

0 otherwise.

Take F (x) = x+ lnx for each x ∈ (0,∞). Under this F , condition (6) reduces to

α(x, y)H(Tx, Ty)

R(x, y)
eα(x,y)H(Tx,Ty)−R(x,y) 6 e−τ (12)

for each x, y ∈ X with min{α(x, y)H(Tx, Ty), R(x, y)} > 0. Assume that a1 = 1,
a2 = a3 = a4 = L = 0 and τ = 1/3. Clearly, min{α(x, y)H(Tx, Ty), d(x, y)} > 0 for
each x, y > 1 with x 6= y. From (12), for each x, y > 1 with x 6= y, we have

1

3
e−2/3|x−y|

2

< e−1/3.

Thus, T is Hardy–Rogers-type (F, α)-contraction with F (x) = x + lnx. For x0 = 1,
we have x1 = 0 ∈ Tx0 such that α(x0, x1) = 4. Moreover, it is easy to see that T is
αs-admissible mapping and for any sequence {xn} ⊆ X such that xn → x as n → ∞
and α(xn, xn+1) = 4 for each n ∈ N. Hence, we have α(xn, x) = 4 for each n ∈ N.
Therefore, all conditions of Theorem 1 are satisfied, and T has a fixed point in X .
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Remark 2. Note that [12, Thm. 3.4] is not applicable here with F (x) = x+ lnx. To see
this, take x = 0 and y = 3. Thus, this example shows the importance of our result.

Corollary 1. Let (X, d, s) be a complete b-metric space with s > 1, and let T : X →
CL(X) be a mapping such that

s2H(Tx, Ty) 6 k
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

+ a4d(x, Ty) + Ld(y, Tx)
)
, x, y ∈ X,

where k ∈ (0, 1), a1, a2, a3, a4, L > 0 satisfying a1 + a2 + a3 + 2sa4 = 1 and a3 6= 1.
Then T has a fixed point.

Proof. Let α(x, y) = s2 for each x, y ∈ X , and let τ > 0 such that k = e−τ . Then for all
x, y ∈ X with Tx 6= Ty, the given inequality reduces to (6), where F (x) = lnx. Thus,
conclusion follows from Theorem 1.

Definition 5. Let (X, d, s) be a b-metric space and α : X ×X → [0,∞) be a function.
A mapping T : X → CL(X) is called Hardy–Rogers-type (F, α∗)-contraction if there
exist F ∈ Fs and τ > 0 such that

τ + F
(
α∗(Tx, Ty)H(Tx, Ty)

)
6 F

(
R(x, y)

)
(13)

for each x, y ∈ X , whenever min{α∗(Tx, Ty)H(Tx, Ty), R(x, y)} > 0, where

R(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx)

with a1, a2, a3, a4, L > 0 satisfying a1 + a2 + a3 + 2sa4 = 1 and a3 6= 1.

Theorem 2. Let (X, d, s) be a complete b-metric space with s > 1, and let T :X →
CL(X) be a (F, α∗)-contraction of Hardy–Rogers type such that the following conditions
hold:

(i) T is an α∗s-admissible mapping;
(ii) There exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > s2;

(iii) For any sequence {xn} in X such that xn → x and α(xn, xn+1) > s2 for each
n ∈ N, we have α(xn, x) > s2 for each n ∈ N.

Then T has a fixed point.

Proof. The proof of this theorem runs along the same lines as the proof of Theorem 1.

4 Consequences

In this section, we apply our results to obtain some new fixed point theorems for mappings
on b-metric spaces endowed with a partial ordering/graphs. If we define

α : X ×X → [0,∞), α(x, y) =

{
s2 if x 4 y,

0 otherwise,

then the following result is a direct consequence of our results.
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Theorem 3. Let (X, d, s,4) be a complete ordered b-metric space with s > 1, and let
T : X → CL(X) be a mapping for which there exist F ∈ Fs and τ > 0 such that

τ + F
(
s2H(Tx, Ty)

)
6 F

(
R(x, y)

)
, x, y ∈ X, (14)

with x 4 y, whenever min{s2H(Tx, Ty), R(x, y)} > 0, where

R(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx)

with a1, a2, a3, a4, L > 0 satisfying a1 + a2 + a3 + 2sa4 = 1 and a3 6= 1. Moreover, the
following conditions hold:

(i) For each x ∈ X and y ∈ Tx such that x 4 y, we have y 4 z for each z ∈ Ty;
or if x 4 y, then we have Tx ≺r Ty, that is, for each a ∈ Tx and b ∈ Ty, we
have a 4 b;

(ii) There exist x0 ∈ X and x1 ∈ Tx0 with x0 4 x1;
(iii) For any sequence {xn} in X such that xn → x as n → ∞ and xn 4 xn+1 for

each n ∈ N, we have xn 4 x for each n ∈ N.

Then T has a fixed point.

Now, we drive a fixed point theorem for multivalued mappings from a metric spacesX ,
endowed with a graph, into the space of nonempty closed subsets of the metric space.
Subsequently, we assume that G = (V (G), E(G)) is a directed graph such that the set
of its vertices V (G) coincides with X (i.e., V (G) = X) and the set of its edges E(G) is
such that E(G) ⊇ ∇, where ∇ = {(x, x): x ∈ X}. Moreover, G has no parallel edges.
If we define

α : X ×X → [0,∞), α(x, y) =

{
s2 if (x, y) ∈ E(G),

0 otherwise,

then the following result is a direct consequence of our main results.

Theorem 4. Let (X, d, s) be a complete b-metric space endowed with the graph G,
having s > 1, and let T : X → CL(X) be a mapping for which there exist F ∈ Fs
and τ > 0 such that

τ + F
(
s2H(Tx, Ty)

)
6 F

(
R(x, y)

)
(15)

for each x, y ∈ X with (x, y) ∈ E(G), whenever min{s2H(Tx, Ty), R(x, y)} > 0,
where

R(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty) + a4d(x, Ty) + Ld(y, Tx)

with a1, a2, a3, a4, L > 0 satisfying a1 + a2 + a3 + 2sa4 = 1 and a3 6= 1. Moreover, the
following conditions hold:

(i) For each x ∈ X and y ∈ Tx such that (x, y) ∈ E(G), we have (y, z) ∈ E(G)
for each z ∈ Ty; or if (x, y) ∈ E(G), then we have (a, b) ∈ E(G) for each
a ∈ Tx and b ∈ Ty;
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(ii) There exist x0 ∈ X and x1 ∈ Tx0 with (x0, x1) ∈ E(G);
(iii) For any sequence {xn} in X such that xn → x as n → ∞ and (xn, xn+1) ∈

E(G) for each n ∈ N, we have (xn, x) ∈ E(G) for each n ∈ N.

Then T has a fixed point.

5 Applications

In this section, we give existence theorems for Volterra-type integral inclusion. For this
purpose, letX = C([a, b],R) be the space of all continuous realvalued functions on [a, b].
Note that X is complete b-metric space by considering d(x, y) = supt∈[a,b] |x(t)−y(t)|2
with s = 2.

Consider the Volterra-type integral inclusion as

x(t) ∈
t∫
a

M
(
t, s, x(s)

)
ds+ g(t), t ∈ [a, b], (16)

where M : [a, b] × [a, b] × R → Pcv(R), and Pcv(R) denotes the family of nonempty
compact and convex subsets of R. For each x ∈ C([a, b],R), the operator M(·, ·, x) is
lower semi continuous. Further the function g : [a, b]→ R is continuous.

For the integral inclusion given above, we can define a multivalued operator T :
C([a, b],R)→ CL(C([a, b],R)) as follows:

Tx(t) =

{
u ∈ C

(
[a, b],R

)
: u ∈

t∫
a

M
(
t, s, x(s)

)
ds+ g(t), t ∈ [a, b]

}
.

Let x ∈ C([a, b],R), and denoteMx :=M(t, s, x(s)), t, s ∈ [a, b]. Now, forMx : [a, b]×
[a, b]→ Pcv(R), by Michael’s selection theorem, there exists a continuous operator mx :
[a, b] × [a, b] → R with mx(t, s) ∈ Mx(t, s) for each t, s ∈ [a, b]. This shows that∫ t
a
mx(t, s) ds+ g(t) ∈ Tx(t). Thus, the operator Tx is nonempty. Clearly, the operator

Tx is closed following [35].

Theorem 5. Let X = C([a, b],R), and let the multivalued operator

T : X → CL(X), Tx(t) =

{
u ∈ X: u ∈

t∫
a

M
(
t, s, x(s)

)
ds+ g(t), t ∈ [a, b]

}
,

where the function g : [a, b] → R is continuous and M : [a, b] × [a, b] × R → Pcv(R)
is such that for each x ∈ C([a, b],R), the operator M(·, ·, x) is lower semi continuous.
Assume that the following conditions hold:

(i) There exists a continuous mapping q : X → [0,∞) such that

H
(
M(t, s, x(s)

)
,M
(
t, s, y(s)

)
6 q(s)

∣∣x(s)− y(s)∣∣
for each t, s ∈ [a, b] and x, y ∈ X .
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(ii) There exist τ > 0 and α : X × X → (0,∞) such that for each x, y ∈ X , we
have

t∫
a

q(s) ds 6

√
e−τ

α(x, y)
, t ∈ [a, b];

(iii) There exist x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > 4;
(iv) If x ∈ X and y ∈ Tx such that α(x, y) > 4, then we have α(y, z) > 4 for each

z ∈ Ty;
(v) For any sequence {xn} ⊆ X such that xn → x as n→∞ and α(xn, xn+1) > 4

for each n ∈ N, we have α(xn, x) > 4 for each n ∈ N.

Then the integral inclusion (16) has a solution.

Proof. We have to show that the operator T satisfies all conditions of Theorem 1. First,
we check (6). Let x, y ∈ X be such that u ∈ Tx. Then we have mx(t, s) ∈ Mx(t, s)

for t, s ∈ [a, b] such that u(t) =
∫ t
a
mx(t, s) ds + g(t), t ∈ [a, b]. On the other hand,

hypothesis (i) ensures that there exists v(t, s) ∈My(t, s) such that∣∣mx(t, s)− v(t, s)
∣∣ 6 q(s)

∣∣x(s)− y(s)∣∣ ∀t, s ∈ [a, b].

Let us consider the multivalued operator S defined by

S(t, s) =My(t, s) ∩
{
w ∈ R:

∣∣mx(t, s)− w
∣∣ 6 q(s)

∣∣x(s)− y(s)∣∣}, t, s ∈ [a, b].

Since the operator T is lower semi continuous, there exists my : [a, b]× [a, b]→ R such
that my(t, s) ∈ S(t, s) for each t, s ∈ [a, b]. Thus, we get

r(t) =

t∫
a

my(t, s) ds+ g(t) ∈
t∫
a

M
(
t, s, y(s)

)
ds+ g(t), t ∈ [a, b],

and for each t ∈ [a, b], we have

∣∣u(t)− r(t)∣∣2 6

( t∫
a

∣∣mx(t, s)−my(t, s)
∣∣ds)2

6

( t∫
a

q(s)
∣∣x(s)− y(s)∣∣ds)2

6

(√
sup
s∈[a,b]

∣∣x(s)− y(s)∣∣2 t∫
a

q(s) ds

)2

= d(x, y)

( t∫
a

q(s) ds

)2

6
e−τ

α(x, y)
d(x, y).

Consequently, we have
α(x, y)d(u, r) 6 e−τd(x, y).
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Now, by just interchanging the role of x and y, we reach to

α(x, y)H(Tx, Ty) 6 e−τd(x, y), x, y ∈ X.

As natural logarithm belongs to Fs, applying it on above inequality and after some sim-
plification, we get

τ + ln
(
α(x, y)H(Tx, Ty)

)
6 ln

(
d(x, y)

)
.

Thus, T is (F, α)-contraction of Hardy–Rogers type with a1 = 1, a2 = a3 = a4 =
L = 0 and F (x) = lnx. All other conditions of Theorem 1 immediately follows by the
hypothesis. Therefore, the operator T has a fixed point, that is, the Volterra-type integral
inclusion (16) has a solution.

By using Corollary 1, we can prove the following existence theorem along the same
lines as the proof of above is done.

Theorem 6. Let X = C([a, b],R) and let the multivalued operator

T : X → CL(X), Tx(t) =

{
u ∈ X: u ∈

t∫
a

M
(
t, s, x(s)

)
ds+ g(t), t ∈ [a, b]

}
,

where the function g : [a, b] → R is continuous and M : [a, b] × [a, b] × R → Pcv(R)
is such that for each x ∈ C([a, b],R), the operator M(·, ·, x) is lower semi continuous.
Assume that the following conditions hold:

(i) There exists a continuous mapping q : X → [0,∞) such that

H
(
M(t, s, x(s)

)
,M
(
t, s, y(s)

))
6 q(s)

∣∣x(s)− y(s)∣∣
for each t, s ∈ [a, b] and x, y ∈ X .

(ii) There exists τ > 0 such that

t∫
a

q(s) ds 6

√
e−τ

4
, t ∈ [a, b].

Then the integral inclusion (16) has a solution.
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10. M.-F. Bota, E. Karapınar, O. Mleşniţe, Ulam–Hyers stability results for fixed point problems
via α-ψ-contractive mapping in b-metric space, Abstr. Appl. Anal., 2013(4):825293, 2013.

11. S.H. Cho, Fixed point theorems for α-ψ-contractive type mappings in metric spaces, Appl.
Math. Sci., 7:6765–6778, 2013.

12. M. Cosentino, M. Jleli, B. Samet, C. Vetro, Solvability of integrodifferential problem via fixed
point theory in b-metric spaces, Fixed Point Theory Appl., 2015(70), 2015.

13. M. Cosentino, P. Vetro, Fixed point results for F -contractive mappings of Hardy–Rogers-type,
Filomat, 28(4):715–722, 2014.

14. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1:
5–11, 1993.

15. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat.
Fis. Univ. Modena, 46(2):263–276, 1998.

16. E. Karapınar, Discussion on α − ψ contractions on generalized metric spaces, Abstr. Appl.
Anal., 2014:962784, 2014.

17. E. Karapınar, R. P. Agarwal, A note on ’Coupled fixed point theorems for α-ψ-contractive-type
mappings in partially ordered metric spaces’, Fixed Point Theory Appl., 2013(216), 2013.

18. E. Karapınar, B. Samet, Generalized α-ψ-contractive type mappings and related fixed point
theorems with applications, Abstr. Appl. Anal., 2012:793486, 2012.

19. M.A. Miandaragh, M. Postolache, Sh. Rezapour, Approximate fixed points of generalized
convex contractions, Fixed Point Theory Appl., 2013(255), 2013.

20. M.A. Miandaragh, M. Postolache, Sh. Rezapour, Some approximate fixed point results for
generalized α-contractive mappings, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ.
Buchar., 75(2):3–10, 2013.

21. G. Mınak, I. Altun, Some new generalizations of Mizoguchi–Takahashi type fixed point
theorem, J. Inequal. Appl., 2013(493), 2013.
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