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Abstract. We study the existence of positive solutions for a nonlinear Riemann-Liouville fractional
differential equation with a sign-changing nonlinearity, subject to multi-point fractional boundary
conditions.
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1 Introduction
We consider the nonlinear fractional differential equation

D§ u(t) + Af(t,u(t)) =0, te(0,1), (E)
with the multi-point fractional boundary conditions

u(0) =/ (0) = --- = u""2(0) = 0,

m
DOy = D asDu®)] .
i=1

BC)

where A is a positive parameter, « € R, « € (n — 1,n],n € N,n > 3,¢; € R for all
i=1,....mmeN),0<{E << <LpgeRpell,n—-2],qe(0,p], Df,
denotes the Riemann—Liouville derivative of order «, and the nonlinearity f may change
sign and may be singularatt = Qort = 1.

We present intervals for parameter A\ such that problem (E)-(BC) has at least one
positive solution. By a positive solution of (E)~(BC) we mean a function © € C([0,1])
satisfying (E) and (BC) with w(¢) > 0 for all ¢ € (0, 1]. This problem is a generalization
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of the problem studied in [7], where p € N and ¢ = 1. Other particular cases of
problem (E)-(BC) and of problem from [7] were investigated in [13] (where n = 3,
p=0anda; = 0forall? = 1,...,m) and in [14] (where p = 0 and a; = 0 for all
i = 1,...,m and n is an arbitrary natural number, n > 3). In [11], the author studied
the ex1stence of pseudo solutions of problem (E)-(BC) in a reflexive Banach space with

=1, f(t,u) = g(t) f(t,u), p = ¢ = 0 and instead of derivative D, , he considered the
pseudo fractional derivative D®. For some recent results on the existence and multiplicity
of positive solutions for systems of fractional differential equations with various boundary
conditions, see the monograph [5].

Fractional differential equations describe many phenomena in various fields of engi-
neering and scientific disciplines such as physics, biophysics, chemistry, biology, eco-
nomics, control theory, signal and image processing, aerodynamics, viscoelasticity, elec-
tromagnetics, and so on (see [1-3,8-10, 12, 15]).

The paper is organized as follows. Section 2 contains some auxiliary results, which
investigate a nonlocal boundary value problem for fractional differential equations. In
Section 3, we give the existence theorems for the positive solutions with respect to a cone
for our problem (E)-(BC). Finally, in Section 4, two examples are given to illustrate our
main results.

2 Auxiliary results

We present here the definitions of the Riemann-Liouville fractional integral and the
Riemann-Liouville fractional derivative and some auxiliary results that will be used to
prove our main results.

Definition 1. The (left-sided) fractional integral of order « > 0 of a function f:
(0,00) — R is given by

t
(Io+f %/ ) 1f (s)ds, t>0,
0

provided the right-hand side is pointwise defined on (0, 00), where I'(v) is the Euler
gamma function defined by I'(a) = [~ t*"te~*dt, o > 0.

Definition 2. The Riemann—Liouville fractional derivative of order a > 0 for a function
f:(0,00) — Ris given by

os.00 = (§) e

:M(i)/md v

where n = |« + 1, provided that the right-hand side is pointwise defined on (0, o).
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Positive solutions for a fractional boundary value problem 101

The notation |« stands for the largest integer not greater than o.. If « = m € N, then
Dy f(t) = f™)(t) for t > 0, and if « = 0, then DY, f(t) = f(¢t) fort > 0.
We consider now the fractional differential equation

Dy u(t)+z(t) =0, 0<t<l, (1)
with the boundary conditions

u(0) = u/(0) = -+ = u"(0) =0,

: m . (2)
Dy u(t) |t:1 = Z a; D u(t) |t:£i ’

where« € (n—1,n],n >23,0< & < -~ <&n < 1l,pqgeR pelln-—2,
q € [0,p], and T € C(O,ll) N LY(0,1). We denote by A = I'(a)/T'(a — p) — (T'(x)/
D(a—q) >0 g™

Lemma 1. If A # 0, then the function u € C([0,1]) given by

_ ; —s)* 1z s e 1 —8)* P13 (s) ds
u(t) = F(a)o/@ )" 1) ds + F‘“‘p>o/<1 )P i(s) d
&
2l YT 13(s) ds
g g [ e N

is solution of problem (1)—(2).
Proof. We denote by

1
c] = /1 5)* P71 (s) ds
0
1 i
_ (6 —g) 115 (5) ds.
Ara—g) 2% [ (6 H )@
=10
Then the continuous function u from (3) can be written as
u(t) = et - I8, 5 (1)
t
e / s)ds, telo,1]. @)
0
Because D, u(t) = 1D (t* ') — Dy I§ 2(t) = —Z(t) for all ¢ € (0,1),

we deduce that u satisfies equation (1). In addition, we have u(0) = «/(0)
u(=2)(0) = 0.

Nonlinear Anal. Model. Control, 22(1):99-114
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Because
o) —p~
DP u(t) = ¢y ———t9 P~ — TO7PE(1),
0+ ( ) F(Ot 7p) 0+ ( )
') g~
D2 u(t) = ¢cq ———2— 797 TOTI% (),
0+ ( ) F(O[ . q) 0+ ( )
by a simple computation we conclude that Dfj, u(t)[;—1 = > a;D§ u(t)|i¢,, that is
Do) 1
a
1—s)* P 15(s)d
ch(a—p / s) Z(s)ds
0
m F( ) 1 i
@ a—qg—1 a—q—1-
= a;j| cr=——=E&"1 —7/&—5 9= Z(s)ds |.
2 ( Ma—q) Mg )&
Therefore, we deduce that w is solution of problem (1)—(2). O]

Lemma 2. If A # 0, then the solution u of problem (1)—(2) given by (3) can be written

as
1
- [Gesisas, e, )
0
where
G(t S) = !]1 t S Z a; gz fla ) (6)
and
1 o1 —s)e Pl —(t—s)2l 0<s<t<,
gl(tvs) = T -1 —p—1
L(a) | ¢ (1— )Pt 0<t<s<1,
(7
1 temal(] — )Pl _ (f— gl 0< s <t <1,
galt,s) = o4 -
I‘(afq) taq (175)0‘17 s Ogtg'Sg]‘?

forall (t,s) € [0,1] x [0, 1].

Proof. By Lemma 1 and relation (3), we deduce
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1 ja—1 m &
apl ds — aq 1
AFa p/ (s)ds AT (a— qzlazf
0 = 0

m &
Zaz{ / 71— )P = (& — 9) I () ds

+ /fia_q_l(l —8)* P71 (s) ds}
&i
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=/191(t78) ) ds + a_i /1 (&> 5) /1G 8,
0 - 0

where G and ¢;, g are given in (6) and (7).
Therefore, we obtain expression (5) for the solution u of problem (1)-(2) given
by (3). O

Lemma 3. The functions g1 and go given by (7) have the properties:

(@) g1(t,s) < hi(s) forallts € [0,1], where hy(s) = (1 — s)*P~1(1 — (1 — s)P)/
I'(a), s €[0,1];

() g1(t,8) =t Lhy(s) forall t,s € [0,1];

(©) g1(t,s) <t Y/T(a) forall t,s € [0,1];

(d) gao(t,s) = t* "9 hy(s) for all t,s € [0,1], where ha(s) = (1 — s)* P71 x
(1—=(1—=s)P1)/T(a—-q) se<[0,1];

() g2(t,s) < (1/T(a—q)t* 7! forallt,s € [0,1];

(f) The functions g, and g2 are continuous on [0,1] x [0, 1]; g1 (¢, s) = 0, g2(t,s) = 0
forallt,s €10,1]; g1(t,s) > 0, g2(t,s) > Oforallt,s € (0,1).

Proof. For the proof of properties (a)—(c), see [6].
(d) From (7), if s < t, we obtain
1

ets) =t [t (1 — 8) P — (£ — 5)2 797
> ﬁ e O e (e s
piirer R I ED A
- ﬁt“‘q‘l(l —5) 1= (1—s)P79)
= 17" ha(s),

where ha(s) = (1/T(a —q))(1 — ) P~11 — (1 — s)P79), s € [0, 1].
If t < s, we deduce

ga(t,s) = mt“*qﬂ(l —5)aTPTl > pematlp, (s),
Hence, we conclude ga(t, s) > t*~ 9 hy(s) forall ¢, s € [0, 1].
(e) We have
a—g—1 a—p—1 et
g2(t, 8) <mt (1—29) <m Vi, sel0,1].
(f) This property follows from the definitions of g; and g and from properties (b)
and (d) above. O
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Lemma 4. Assume that a; > 0 foralli = 1,...,m and A > 0. Then the function G
given by (6) is a continuous function on [0, 1] x [0, 1] and satisfies the inequalities:

(@) G(t,s) < J(s)forallt,s € [0,1], where J(s) = hi(s)+(1/A) > 1" aig2(&, s),
s €[0,1];

(b) G(t,s) =t*"LJ(s) forallt,s € [0,1];

(©) G(t,s) < ot* ! forall t,s € [0,1], where 0 = 1/T(a) + S0, @&l ™07
(AL (e = q))-

Proof. By definition of the function G we deduce that G is a continuous function. In
addition, by using Lemma 3, we obtain for all ¢, s € [0, 1]

@) G(ts)< Z a;g2(&i,8) = J(s);
a—1 ™M
(b) G(t,s) =t hi(s) + A Zaigg(&,s)zto‘flt}(s);
i=1
() G(t,s) < e + i ia}gﬁq‘l =gt L O
VS Ty T AT g &5

Lemma 5. Assume that a; > 0 foralli=1,...,m, A > 0,7 € C(0,1)N L'(0,1) and
Z(t) > 0forallt € (0,1). Then the solution u of problem (1)—(2) given by (3) satisfies
the inequality u(t) >t ‘u(t’) for all t,t' € [0,1].

Proof. By using Lemma 4, we obtain for all ¢,¢' € [0, 1]
1 1
u(t) = /G(t,s)i(s) ds > /to‘*lJ(s)i(s) ds
0 0

1
> ¢! /G(t’7 8)7(s)ds = t* " tu(t'). O
0

In the proof of our main results, we shall use the Guo—Krasnosel’skii fixed point
theorem presented below (see [4]).

Theorem 1. Let X be a Banach space and let C' e X beaconein X. Assw (1 and 29
are bounded open subsets of X with0 € {21 C {21 C 22 andlet A: CN(§22\ 1) = C
be a completely continuous operator such that, either

() || Au|l < |lu)l, w € CN O, and || Aul| > |

,ue CNol,

,u € CNOofy, or
,U,ECﬂaQQ.

Then A has a fixed point in C 0 (22 \ ;).

Nonlinear Anal. Model. Control, 22(1):99-114
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3 Main results

In this section, we investigate the existence of positive solutions for our problem (E)—
(BC). First, we present the assumptions that we shall use in the sequel.

(Hl)aeRaE(n—ln]neNn 3, € Rforalli =1,...,m (m € N),
0<&G < <&n<lpgeR,pell,n—2],q¢ [O,p],al >0f0rallz’:
1,...,m, /\ >0, A =T(a)/T(a—p) — (T(a)/T(a—q) >, a;£? ' > 0.

(H2) The function f € C((0,1) x [0,00),R) may be singular at ¢ = 0 and/or
t = 1, and there exist the functions r,z € C((0,1),]0,00)), g € C(]0,1] x
[0,00),[0,00)) such that —7’( ) < f(t,z) < z(t)g( x) for all ¢t € (0,1) and
z € [0,00) with 0 < [\ r(t)dt < 00,0 < [ 2(t) dt < co.

(H3) There exists ¢ € (0,1/2) such that f, = hmu_>OO minsepe1—¢ f(t,u)/u = oo

(H4) There exists ¢ € (0, 1/2) such that liminfy, oo minge(e,1—¢) f(t,u) > Lo, with
Lo= (20[01 r(s)ds)/(c*~ 1f 5)ds), and goo =limy, 0o maxye(o 1) 9(t, u)/
u = 0, where J and o are given in Sectlon 2 (Lemma 4).

We consider the fractional differential equation

D, x(t) + A(f(t, [#(t) — do®)]") + (1) =0, 0<t<1, 8)
with the multi-point fractional boundary conditions
2(0) = 2/(0) = --- = 2"2(0) = 0,

- )
DE )], = a; D x(1)],_

where A > 0 and ((t)* = ((¢) if ¢(¢t) > 0, and ¢(t)* = 01if ¢(¢) < 0. Here w(t) =
fo s)ds, t € [0,1], is solution of problem

Dy, w(t)+r(t) =0, 0<t<l,

w(0) = w'(0) =+ = w"7(0) = 0,

Di wl(t }t 1 Za’ 0wt t&i'

Under assumptions (H1)—(H2), we have w(t) > 0forallt € [0, 1]. We shall prove that
there exists a solution x of problem (8)—(9) with z(t) > Aw(t) on [0, 1] and z(¢) > Aw(t)
n (0, 1). In this case, © = x — Aw represents a positive solution of problem (E)—(BC).
Therefore, in what follows, we shall investigate problem (8)—(9).
By using Lemma 2, a solution of equation

1

x(t) = )\/G(t, s)(f(s, [z(s) — )\w(s)]*) +r(s))ds, tel0,1],
0

is a solution for problem (8)—(9).

http://www.mii.lt/NA



Positive solutions for a fractional boundary value problem 107

We consider the Banach space X = C([0, 1]) with the supremum norm ||-||, and we
define the cone

P={zeX:z(t) >t "|z| vt €[0,1]}.

For A > 0, we introduce the operator 7' : X — X defined by
1
Tx(t) = )\/G(t, s)(f (s, [x(s) = dw(s)]") +r(s))ds, te0,1], z € X.
0

It is clear that if = is a fixed point of operator 7, then z is a solution of prob-
lem (8)—(9).

Lemma 6. If (H1) and (H2) hold, then operator T’ : P — P is a completely continuous
operator.

Proof. Let x € P be fixed. By using (H1) and (H2), we deduce that Tz(t) < oo for all
t € [0, 1]. Besides, by Lemma 4, we obtain for all ¢,¢" € [0, 1]

Ta(t) <X [ J(s)(f(s, [x(s) = Mw(s)]") +r(s)) ds,

Ta(t) =X [t I(s)(f (s, [2(s) — /\w(s)r) +r(s))ds

S O~ _

>t ().
Therefore, Tz (t) > t*~||Tx| for all t € [0,1]. We deduce that Tz € P, and hence,

T(P)C P.
By using standard arguments, we conclude that operator T : P — P is a completely
continuous operator. O

Theorem 2. Assume that (H1), (H2) and (H3) hold. Then there exists \* > 0 such
that, for any A € (0, \*], the boundary value problem (E)-(BC) has at least one positive
solution.

Proof. We choose a positive number R; > o fol r(s)ds > 0, and we define the set
2 ={x € P:|z|]| < R}
We introduce

A* :min{l,Rl <M1/J(s)(z(s)+r(s))ds> }
0

with M} = max{max;c(o,1), uefo,r,] 9(f, ), 1}.

Let A € (0, \*]. Because w(t) < ot*™! f01 r(s)ds for all t € [0, 1], we deduce for
anyx € PN sy andt € [0,1]

[e(t) = Mw(t)]” < 2(t) < o] < Ry

Nonlinear Anal. Model. Control, 22(1):99-114
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and

(1) = w() > 19|z — Acto~! /r(s) ds — o1 <R1 _ )\o/r(s) ds>

0

> ¢! <R1 —No

ok‘_\ﬁH
=
=
o,

V)
N———
WV
~

Q
L
/N
=
\

Q
o&‘_\‘H
<
&
o,

w
N———
WV
o

Then for any x € PN Jf2 and ¢ € [0, 1], we obtain

Tx(t) < )\/J(s)(z(s)g(s, [z(s) — )\w(s)]*) +r(s))ds
0

< )\*Ml/J(s)(z(s) +r(s))ds < Ry = |||
0

Therefore, we conclude
|Tz|| < ||lz|| Vae PNnos. (10)

On the other hand, for ¢ from (H3), we choose a positive constant L > 0 such that

1—c —1
L}Q()\CQ(Q_l)/J(s)ds> .

C

By (H3), we deduce that there exists a constant M > 0 such that
flt,u) > Lu Vte€|e,1—¢], u>= M. (1D

Now we define Ry = max{2R1,2My/c* 1} and let {25 = {z € P: ||z|| < Rz}.
Then for any = € P N 925, we obtain

z(t) —  w(t) =t |z|| — Aot™? /r(s) ds > ¢! (RQ - a/r(s) ds)

0 0

1
> ¢! <R1 - U’/T‘(S) ds) >0 Vtelo,1].
0

Therefore, we conclude

[o(t) — Aw(®)]” = (t) — Aw(t) > 1! (Rg - U/T(s) ds>

c“ 1R
LIS

> > M Vielel-d. (12)
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Positive solutions for a fractional boundary value problem 109

Then for any x € PN Jf25 and t € [¢,1 — ¢], by (11) and (12) we deduce
1—c
Tx(t) = A / G(t,s)(f(s, [z(s) — )\w(s)]*) +r(s)) ds
1—c o
> A / G(t,s)L[z(s) — Mw(s)] ds > AL / t“_lJ(s)cT ds
L 2(a—1)R ¢
> / J(s)ds > Ry = ||.

Then
|Tz|| = |z|| Vae PnNofs. (13)

~ By (10), (13) and Theorem 1(i) we conclude that 7" has a fixed point 1 € P N
(£25\ 1), thatis Ry < ||z1|| < Ra. Since ||z1]| > Ry, we deduce

1 1

21(8) = Mw(t) 2t“‘1<x1| —JA/T(S)dS) > o1 <31 —J/T(S)dS)

0 0
_ a—1
— Alt )

and so z1(t) > Mw(t) + A;t*~ 1 forall t € [0,1], where A; = Ry — afol r(s)ds > 0.
Let uy(t) = z1(t) — Aw(¢) for all ¢ € [0,1]. Then w; is a positive solution of

problem (E)—~(BC) with u;(t) > A;t*~! for all t € [0,1]. This completes the proof of

Theorem 2. O

Theorem 3. Assume that (H1), (H2) and (H4) hold. Then there exists A\, > 0 such
that, for any A\ > M\, the boundary value problem (E)-(BC) has at least one positive
solution.

Proof. By (H4) there exists M3 > 0 such that

1—c

1 -1
flt,u) =20 [ r(s)ds (ca_l J(s) ds) Vtelel—c¢, u> M.
frow(e |

c

We define

1 —1
A = Moy <cala/r(s) ds) .
0

Nonlinear Anal. Model. Control, 22(1):99-114
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We assume now A > A,. Let R3 = 2o fol r(s)dsand 23 = {x € P: ||z|| < R3}.
Then for any z € P N 0f23, we deduce

1 1
2(t) = Aw(t) > £z — Aot /r(s) ds — o1 <Rg - /\a/r(s) ds>
0 0

1 1
:to‘*l)\a/r(s) ds > t“fl)\*a/r(s) ds
0 0

B MQta71

-1

- >0 Vtelo,1].
C

Therefore, for any x € P N 923 and t € [¢, 1 — ¢|, we have
M2ta71

-1

[2(t) — Mo(t)]" = z(t) — Mw(t) >

> M.

C(X

Hence, for any 2 € PN 023 and t € [¢, 1 — ¢], we conclude

Tz(t) = X [ G(t,s)f (s, [z(s) — )\w(s)}*) ds

>A [ 7 I(s)f(s,uls) — dw(s)) ds

C

t* 1 J(s) <20’/1’I"(S) ds) (co‘l/_
0

c
B R3to¢71
- -1

-1
J(s) ds) ds

e e S

Therefore, we obtain

ITz|| = ||lz|| YzePnoss. (14)

On the other hand, we consider the positive number ¢ = (2 fol J(s)z(s)ds)~ L.
Then by (H4) we deduce that there exists M3 > 0 such that g(¢, u) < euforall ¢t € [0, 1],
u > Ms. Therefore, we obtain g(t,u) < My + eu for all ¢ € [0,1], u > 0, where

My = maxefo,1], uefo,mz] 9(t, u).
We define now

Ry > max{Rg, 2A max{My, 1} / J(s)(z(s) +7(s)) ds}
0

and 24 = {z € P: ||z|| < Ra}.

http://www.mii.lt/NA



Positive solutions for a fractional boundary value problem 111

Then for any x € P N 924, we have

x@)—xw@)>ta—wxn—Aaﬁ—l/ﬁ(@ds::ﬁ—1<34—Aa/ﬂmgcu>

0

0
1 1
> ot <R3 — )\0/7“(3) ds) = to‘flx\a/r(s) ds
0 0
M. tozfl
== >0 Vtel0,1].

Ca—l

1
> to‘fl)\*a/r(s) ds
0
Then for any = € P N 924, we obtain

Tx(t) < )\/J(s) [2(s)g(s, [z(s) — )\w(s)}*) +7(s)] ds
0
1

<A [ J(s)[2(s) (Mg + e(2(s) — Aw(s))) +7(s)] ds

o

< Amax{My, 1} / J(s)(2(s) + r(s)) ds + AeRy / J(s)z(s)ds

R, R
<242 —Ry=|af| Vtelo,1].

) 2

Therefore,
|Tz|| < |lz|| V2 ePnNafy. (15)

By (14), (15) and Theorem 1(ii) we conclude that 7" has a fixed point ;1 € P N

(£24\ 123), 50 Ry < ||l21]] < Ra.
In addition, we deduce that for all ¢ € [0, 1],

1 1
z1(t) — Mw(t) > z1(t) — Aot® ! /r(s) ds >t Y|z || — Aot ™! /r(s) ds
0 0

1 1
>t 'Ry — Aot ! /r(s) ds = Aot* ! /r(s) ds
0 0

1
_ M. ta—l
> \ot® 1/r(s)ds: ;71 .
0

Nonlinear Anal. Model. Control, 22(1):99-114
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Let ui(t) = 21(t) — Aw(t) forall ¢ € [0, 1]. Then u; (t) > Ayte=t forall t € [0, 1],
where Ay = M, /c®~1. Hence, we conclude that u; is a positive solution of problem (E)—
(BC), which completes the proof of Theorem 3. O

In a similar manner to that used in the proof of Theorem 3, we deduce the following
result.

Theorem 4. Assume that (H1), (H2) and

(PAIZD There exists ¢ € (0,1/2) such that foo = limy ;00 mingepe1-¢) f(t,u) = 00
and goo = limy, 00 Maxye(o,1) 9(t, u)/u = 0

hold. Then there exists X* > 0 such that, for any A\ > X* the boundary value problem
(E)—(BC) has at least one positive solution.

4 Examples

Leta = 10/3 (n =4),p =3/2,¢q =4/3,m = 3,& = 1/4, & = 1/2, & = 3/4,
ayp = 1,(12 = 1/2, az = 1/3
We consider the fractional differential equation

DY u(t) + Af(t,u(t)) =0, te(0,1), (E")
with the boundary conditions

u(0) = /(0) = v"(0) = 0,
o (BC)

3/2 4/3 1 _4/3 1
Doi U(t)|t:1 = Doi U(t)’t:1/4 + §D04/r “(t)’t:uz + §D0+ “(t)‘t:3/4'

Then we obtain A = T'(10/3)(1/T'(11/6) —3/4) = 0.86980822. So assumption (H1)
is satisfied. Besides, we deduce

(t.5) 1 t/3(1 —5)%/6 —(t—5)7/3, 0<s<t<1,
75 = /1A o\

” T(10/3) | ¢7/3(1 — )/°, 0<t<s<1,
(t.5) t(1—s)%0 —t+s 0<s<t<l1,

g2(t,s) =

? #(1 — s)5/, 0<t<s<1,

6tt.9) = n(t:5) + - (o

=~ =
~
+
[\)
Q
L)
VR
N —
©w
~
+
W
Q
V]
7 N\
=~ |
®w
N~~~
~

forall¢,s € [0, 1].
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We also obtain h(s) = (1/T(10/3))(1 — 5)*/6(1 — (1 — s)3/2) for all s € [0,1],
o = 1/T(10/3) + 3/(4A) ~ 1.22220971 and

hi(s) + x[5(1 =)0+ 259, 0<s< g,
Sy = [T RO R, <<y,
S) =
h(s) + x[3(1 =)0 +45°], 3<s<,
hi(s) + 15 (1 —5)5/6, 3<s< 1
Example 1. We consider the function
u? +u+1
tou) = ——"— 4 1Int, te(0,1), u>0.
fle) = T 0.1
We have r(t) = —Intand 2(t) = 1/ /t(1 forallte (0,1), g(t,u) = u®>+u+1 for
allt € [0,1] and u > 0, fo t)dt =1, fo (2/3) (1/3) ~ 3.63. Therefore,

assumption (H2) is satisfied. In addition, for c E (O7 1/2) fixed, assumption (H3) is also
satisfied (fo = 00).

After some computations, we deduce that fo $)(z(s) + r(s))ds ~ 1.12036124.
We choose R1 = 2 (R > o fo s)ds), and then we obtain M7 = 7 and \* ~ 0.255.
By Theorem 2 we conclude that problem (E*)—-(BC¥) has at least one positive solution for
any A € (0, \*].

Example 2. We consider the function

_vuedl 1
VB —t) Vvt

Here we have 7(t) = 1/y/tand z(t) = 1//t3(1 — t) forall t € (0,1), g(t,u) = Vu + 1

f(tu) = € (0,1), u>0.

forall t € [ 1] and u > 0. For ¢ € (0,1/2) fixed, assumptions (H2) and (H4) are
satisfied (fo r(t)dt = 2, fo A 444, limy oo mingepe - f(t,u) = oo and
goo = 0).

For ¢ = 1/4, we obtain f1 4 J(5)ds ~ 0.23472325 and Lo =~ 529.001. From the
proof of Theorem 3 we deduce that Mo =~ 91277.5 and )\, ~ 948407. Then by Theorem 3

we conclude that, for any A > ., our problem (E*)—(BC*) has at least one positive
solution.
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