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Abstract. In this paper, mathematical modelling of high voltage cables for power transmission
line design is presented. The Finite Volume Method (FVM) is used to approximate the developed
mathematical model (a system of nonlinear multi-physic differential equations) and OpenFOAM
(Open source Field Operation And Manipulation) tool is used to implement the obtained parallel
finite volume schemes.

In order to optimize the design of power lines with respect to technological parameters, different
cases of nonstationary load dynamics are investigated and the influence of system nonlinearity and
external day, month and years periodical boundary conditions and the source function regimes are
simulated. The main aim of this paper is to include into the mathematical model also economic
requirements and to optimize sizes of cables with respect to both technologic and economic
requirements. Numerical algorithms targeted to solve PDE-constrained optimization problems are
developed. Results of computational experiments are presented.

Keywords: mathematical modelling, finite volume method, differential equation, OpenFOAM, high
voltage cables.

1 Introduction

High voltage electrical lines make an important part of all infrastructure for electrical
energy supply systems. During design of such lines, two constraints essentially influence
the selection of optimal sizes of cable. The first one is thermal (technological), it should
guarantee that during exploitation the maximal temperature of cables is not exceeding
some nominal value. This thermal constraint is intensively investigated by many groups
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and companies, and there exist and constantly are developed new mathematical models,
algorithms and software tools to simulate accurately heat transfer in electrical cables [1,
2, 7, 8].

The second constraint is economical and attention to it have arisen only recently [5,
11]. It is well known that cables have heat resistance and therefore energy is lost in the
electricity supply systems. The amount of generated heat is inversely proportional to the
size of a cable. At the same time, the total cost of electrical cable system depends on the
sizes of cables. Thus the optimal balance must be obtained in order to minimize the cost
and satisfy the thermal constraint.

The first investigation on optimal sizes of cables, when economical requirements
are also included into the total cost model, was done in [5]. In this report, a simple
mathematical model is used to calculate the energy losses in electrical cables and it
is shown by analytical calculations that optimal sizes of cables should be increased in
comparison with sizes defined by the international technical standards. Similar problems
are investigated in [11].

It is interesting to note that the requirement to achieve a balance among technological
and economical aims starts to be important in many other technological fields. Here
we only mention “the green computing” challenge when the aim to reach high speed of
computations, as well as the energy cost constraint, should be balanced.

In our paper, we extend the analysis given in [5] and investigate much more accurate
mathematical models that take into account all basic factors of heat transfer in electrical
cables. Numerical simulation of heat transfer in and around cables is done by using special
numerical solvers, developed to solve heat conduction problems for multiphysics models.
Finite Volume Method (FVM) is used to approximate systems of differential equations
and OpenFOAM (Open source Field Operation And Manipulation tool is used to imple-
ment the obtained finite volume schemes [3]. This approach enabled us to investigate
different cases of nonstationary load dynamics and to estimate influence of day, month
and years periodical regimes. Optimal sizes of cables are obtained by applying numerical
algorithms targeted to solve PDE-constrained optimization problems.

The rest of this paper is organized as follows. In Section 2, the detailed mathematical
models of nonstationary heat transfer in and around electrical cables are formulated.
Results of computational experiments are presented in order to show possibilities of the
presented models and developed numerical solvers. In Section 3, the economic optimiza-
tion of cable sizes is investigated. It is shown that optimal sizes should be increased in
comparison with sizes defined by the international technical standards. A detailed analysis
of simplified and full models is done, results of computational experiments are presented.
Some final conclusions are given in Section 4.

2 Mathematical models of heat transfer

With regard to heat transfer in underground cables, we assume the diffusion to be the
main transfer mechanism. The heat source in the conductors is described by the Joule–
Lenz law. The mathematical model of nonstationary heat-transfer is given by the parabolic
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differential equation [1, 2]:

cρ
∂T

∂t
= ∇ · (λ∇T ) + F (x, t, T ), x ∈ Ω,

T (x, 0) = T0, x ∈ Ω,
T and λ∇T are continuous, x ∈ Ω,

(1)

here x = (x1, x2), T (x, t) is temperature in the Kelvin scale, λ(x) > 0 is the heat
conductivity coefficient, F (x, t, T ) defines the source function. Coefficient ρ(x) > 0 is
the mass density, c(x) > 0 is the specific heat capacity, T0 is the initial temperature.

The heat source in the conductors is described by the Joule–Lenz law:

F (x, t, T ) =

{
q0(1+α(T

∗)(T (x, t)−T ∗))( Ij(t)
Sj

)2, t ∈ [0, tmax], x ∈ Ωcond,j ,

0 otherwise.

In the model, we take into account the nonlinear dependence of the resistance q on tem-
perature, T ∗ is the reference temperature, Ij is the electrical current in the jth conductor
and Sj is the cross section area of the jth conductor j = 1, . . . ,M .

We note that this model describes the heat transfer when a set of M cables is sim-
ulated and therefore the coefficients of the model are functions of space coordinates
x = (x1, x2). All coefficients are continuous in different geometrical subregions, but they
are discontinuous across these subregions. A geometry of regions can be very complicated
and the values of coefficients may vary hundreds and even thousands times, therefore
numerical simulation of such systems is a very challenging task.

For more complicated technological situations multi-physic models should be used.

2.1 Model A

Let us consider a single cable placed in the PVC tube directly buried in the soil. A tube
is placed in the center of the soil domain. Due to its relatively low heat conduction
coefficient, a tube represents a significant thermal resistance for the cooling of the cable.
The main heat transfer mechanism in air is described by air circulation inside the tube.
Velocities of the free convection process are computed by solving the Navier–Stokes
equations in the air area. The model of laminar incompressible flow is given by the
following system of equations [3]:

∇ · u = 0, (2)

ρ
∂u

∂t
+ ρu∇ · u−∇ · (η∇u) = −∇p− ρα̃g(T − T0),

ρc

(
∂T

∂t
+∇ · (uT )

)
−∇ · (λ∇T ) = F,

where ρ(x) > 0 is the density of material in particular area, u(x, t) is velocity of the flow,
p is the pressure, η is the dynamic viscosity, α is the thermal expansion coefficient.
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(a) (b)

Figure 1. A single cable in a PVC tube: (a) distribution of temperature, (b) distribution of velocity fields.

Next, some results of simulations are presented. Let us consider the case of one cable,
which is placed in a PVC tube buried in the soil. The heat transfer is simulated during
three summer months, when the soil is assumed to be semi-dry, boundary conditions are
taken T = 293 K on all boundaries, and the electrical current is equal to 470 A. Figure 1
shows a distribution of temperature and velocity fields in the domain of computations.
More results are presented in [3].

2.2 Model B

Another multi-physic model should be used when main properties of the soil start to be
important for accurate simulation of industrial installations of cables. Then we should
take into account the effect of soil thermal resistivity. It is known from engineering ex-
periments that in a well-designed high power electrical lines system, the soil may account
for half or more of the total thermal resistance. The heat conductivity (or resistance) of
the soil essentially depends on the moisture (water) content in the soil.

The macroscopic equation that describes the conservation of water in soil both in
liquid and vapor states is defined by the Darcy law:

∂Θ

∂t
= ∇ ·

(
DΘ(Θ, T )∇Θ +DT (Θ, T )∇T −K(Θ, T )~g

)
, (3)

where Θ is the volumetric moisture (water) content. The macroscopic equation that de-
scribes the conservation of energy in soil is given by

ρceff(Θ, T )
∂T

∂t
= ∇ ·

(
λeff(Θ, T )∇T

)
+∇ ·

(
L(T )Jv

)
, (4)

where L(T ) is the latent heat of vaporization.
In Fig. 2, we present distribution of temperature for different types of soil. The results

essentially depend on the moisture (water) content in the soil.
The obtained systems of PDEs are solved by using the Finite Volume Method (FVM).

OpenFOAM (Open source Field Operation And Manipulation) tool is used to implement
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(a) (b) (c)

Figure 2. Distribution of temperature for different types of soil: (a) moist soil λ = 1.11, (b) average soil
λ = 0.83, (c) dry soil λ = 0.41.

the given finite volume schemes. OpenFOAM is a C++ toolbox (library) targeted for
the development of customized numerical solvers for partial differential equations [1]
The efficiency and accuracy of this tool are analyzed in [3]. The parallel version of this
tool is presented. The efficiency analysis of parallel algorithms for solving the given
multiphysics problem is investigated in [4, 10].

2.3 Temperature constraints of cable optimization

The developed software tool enables users to simulate the distribution of temperature
T (x, t) in and around cables. All main factors influencing this distribution can be simu-
lated in accurate way.

• The maximum temperature of all cables during the whole working cycle of the
electrical power system is defined:

TC = max
x∈D, 06t6tF

T (x, t),

where D denotes the metal area of the cable. The main technological constraint

TC 6 Tmax (5)

must be fulfilled during the whole working cycle. This constraint can be satisfied
by appropriate selection of cross sections Sj of cables and/or regulating the values
of applied electrical currents Ij .

• A distribution of temperature is important for computation of heat sources F since
the heat resistance coefficient q(T ) depends on temperature.

3 Economic optimization of cable sizes

The total life cycle cost CT of the cables can be estimated as

CT = CI + CL, (6)

here CI defines the installation cost and CL defines the cost of energy losses.
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3.1 Full economic model

The installation cost (or investment cost) per meter of cable length (L = 1 m) is defined as

CI = (C0 + CPS)(1 + p)n, (7)

where C0 is a constant part of installation cost, CP is the price of cable conductor in euro
per m3 and S =

∑M
j=1 Sj is the total metal area of all cables. The cost also includes the

interest rate p and the economic lifetime of the cable n (in years).
When a copper cable is dismantled, the cooper can be recycled and the scrap value

CPSS should be subtracted from the investment value

CI = (C0 + CPS − CPSS)(1 + p)n. (8)

Next, we define the cost of energy losses:

CL = q0

n∑
j=1

(1 + p)n−jτT (tj)

×
M∑
m=1

tj∫
tj−1

(
1 + α(T ∗)

(
T (xm, t)− T ∗

))I2
m(t)

Sm
dt, (9)

where T (xm, t) defines the temperature at the center of the mth cable at time t, and τT
defines the electricity tariff. Here the interest rate p is assumed to be constant during
the lifetime of the cable. Temperatures T (xm, t) are defined from the appropriate multi-
physic mathematical model used to simulate heat conduction in electrical cables.

3.2 Simplified economic model

Let us assume that energy losses of all cables are constant during each year time, the
resistance q is not depending on temperature, the electricity tariff τT is constant,CPS = 0.
We also assume that the sizes of all cables are equal Sm = S0, m = 1, . . . ,M . Then the
optimal value of S =MS0 is obtained by minimizing the simplified function P (S) (see,
also [5]):

P (S) := C0 + CPS +NC(n)q0τT
ME

S
, (10)

where E defines the total amount of currents that flow through all cables per year

E =M max
16m6M, 16j6n

tj∫
tj−1

I2
m(t) dt

and NC is the so called capitalization factor

NC(n) =
(1 + p)n − 1

p(1 + p)n
.
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If the scrap value of recycled copper is taken into account, then we modify coefficient
CP :

C̃P = CP − CPS . (11)

The optimal value of S is obtained from the equation

P ′(S) := CP −NC(n)q0τT
ME

S2
= 0

and it is given by

Sopt =

(
NC(n)q0τTME

CP

)1/2

.

3.3 Analysis of the simplified model

In this paragraph, the dependence of the total cost on the size of conductor is investigated.
Let us assume that one electrical cable is put into the soil,M = 1, and the constant current
I0(t) = 740 A is applied during the whole working cycle. In model (10), the following
values of parameters are used:

C0 = 56.7
EUR

m
, CP = 0.125 · 106 EUR

m3
,

τT = 0.066
EUR
kWh

, p = 0.05.

The value of copper resistance q0 is taken at 90 ◦C temperature and equal to 1.98 ×
10−8 Ωm.

In Table 1, for different values of n, optimal cable conductor sizes and the total life
cycle cost P (S) per meter for optimal cables Sopt are presented. For comparison, the
total cost of a standard cable with ST = 400 mm2 is given. The cable size ST is defined
by technological requirements that temperature of cables should be bounded by some
specified value TM . Thus the technologic-economic optimal size of cables is obtained
from the modified formula

S∗opt = max(ST , Sopt). (12)

It follows from the presented results that the economic approach can help to save up
to 90 euro per one meter of cable during 40 years life cycle.

Table 1. Analysis of total life cycle cost of the cables.

n N(n) Sopt, mm2 P (400) P (Sopt)
1 0.952 219 121.6 111.3
5 4.329 466 174.6 173.2

10 7.722 622 227.7 212.3
20 12.462 791 302.0 254.3
30 15.373 878 347.6 276.2
40 17.159 928 375.6 288.6
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Remark 1. Here we can make one important conclusion. The economic approach starts
to be important only if total cost is optimized for a sufficiently long life cycle of cables.
For short time investments strategy (up to 5 years), the technological approach leads to
the main restriction of cable sizes.

The same conclusion is valid with respect to a possibility to recycle copper at the end
of life cycle of cables. As it follows from (11), this step reduces installation cost and there-
fore leads to larger optimal sizes of cables and larger savings of operation cost. Again, this
possibility is important only if this deposit money is returned to an initial investor.

Remark 2. The international technical standards define minimum allowed sizes of cables
and such sizes are always defined with some safety margin. As it follows from economic
analysis, a strategy to increase sizes of cables leads to reduction of the total cost.

3.4 Analysis of the full model of electrical cables

In this section, we take into account one important property of the mathematical model
that the conductor heat resistance q(T ) depends on temperature and this effect is simulated
by the linearized approximation [1, 8]:

q(T ) = q0

(
1 + α(T ∗)

(
T (x, t)− T ∗

))
,

where T ∗ is the reference temperature. Thus the full mathematical model (see, e.g. (1))
enables us to compute the distribution of temperature in an accurate way and to analyze
the effects of the following factors:

• The dependence of temperature on dynamics of electrical current I(t);
• The influence of different boundary conditions during summer and winter seasons;
• The dependence of temperature dynamics on the selected layout of cables;
• The dependence of heat transfer dynamics on surrounding porous media and air

properties and geometry of the region.

In all computations, we simulate the system of three cables arranged horizontally and
directly buried in the soil. A schematic description of the layout of cables is shown in
Fig. 3.

Figure 3. The layout of three cables in the soil.
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Figure 4. The daily dynamics of electrical currents.

Figure 5. The daily dynamics of temperature in the conductor region of the central cable for different cable
cross sections S.

All three cables are loaded by the same current I(t) during the total life cycle. We have
considered a case when the periodicity of I(t) is equal to 24 hours. The daily dynamics
of the electrical current is shown in Fig. 4.

The developed software solver POWEROPT is used to simulate a distribution of
temperature in and around cables for given parameters of cables, porous media and air [3,
10]. The results depend on the geometry of cable grid and specified boundary conditions.
In the presented computational experiments, we have used the following parameters of
cables and soil: cables are buried in averaged moisture soil at the 1500 mm depth, distance
between cables center is 500 mm (Fig. 3).

First, it is important to investigate the dependence of temperature on the cross sections
of cables. In Fig. 5, we present the dynamics of temperature in the conductor region of
the second cable for different values of cross sections S. The boundary conditions are
specified for summer months.

The influence of boundary conditions is analyzed in Fig. 6, where dynamics of tem-
perature is presented for summer and winter months. The boundary condition T0 = 293
is specified for summer case and T0 = 278 for winter case. The cross section of all three
cables is S = 500 mm2, and only temperature of the central cable is presented.
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Figure 6. The daily dynamics of temperature for summer and winter cases.

Figure 7. The daily dynamics of temperature for different placements of cables.

Next, we have investigated the influence of different placements of cables. In Fig. 7,
the dynamics of temperature is presented for cables with cross sections S = 500 mm2

and the following cases: 1) one cable, 2) three cables in line, the central cable, 3) three
cables in line, the last cable, 4) a trefoil case, the upper cable.

3.5 Determination of optimal sizes of cables

In this section, we solve the PDE-constrained optimization problem to find optimal sizes
of cables. The full cost function

CF (S) := (C0 + CPS − CPSS)(1 + p)n + q0

n∑
j=1

(1 + p)n−jτT (tj)

×
M∑
m=1

tj∫
tj−1

(
1 + α(T ∗)

(
T (xm, t)− T ∗

))I2
m(t)

Sm
dt, (13)
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is minimized, here S =
∑M
m=1Sm and M is the number of cables, temperature T (xm, t)

is obtained by solving the full mathematical model of electrical cables. All main techno-
logic details (including material properties, geometry of the domain, boundary conditions)
are taken into account in POWEROPT software tool. For simplicity, in all computational
experiments, we assume that Sm = S0, m = 1, . . . ,M , i.e. the sizes of all cables are the
same.

3.6 Optimization algorithm

It is shown in previous computational experiments that the temperature distribution de-
pends monotonically on sizes of cables. Thus the minimization of functional (13) can be
done efficiently by using the golden section search algorithm [6]. It is well known that the
convergence rate of this algorithm is geometrical and the error reduction factor r = 0.618.

The temperature of cables is simulated for T = 40 years duration. At each step of the
minimization algorithm, a new value of CF (S) is computed. A system of nonstationary
nonlinear PDE equations should be solved for the specified value of S in order to com-
pute temperature of cables. This step of the optimization algorithm is very CPU time
demanding, up to 24 hours is required to solve optimization problem on one processor.
Thus a parallel version of the solver is used to reduce the computation time [4, 10]. The
scalability analysis, which is presented in these papers shows a quite good efficiency of the
developed parallel solvers of the basic direct problem on heat conduction in and around
the cables.

Results of computational experiments on optimization of cables for two specific val-
ues of I0 are presented in Table 2.

The optimization analysis have started from the size of cables S = 300 mm2 which is
sufficient to guarantee the technological requirements. It clearly seen from the presented
results that the full cost CF of operating system can be reduced essentially if sizes of
cables are increased above the standard size ST = 300 mm2. The reduction factor of 10
percents is obtained for I0 = 740.

The presented optimization results are showing that the function of total cost CF (S)
is changing slowly in the neighbourhood of the optimal point. Thus for industrial applica-
tions engineers can select sizes of cables from given specifications of cables presented in
the market. It is possible that a demand for larger size cables can justify changes of these
specification in future.

Table 2. Optimization results for the full mathematical model.

I0 = 570 I0 = 740
S, mm2 CF (S) S, mm2 CF (S)
300 993.5 300 1287.15
326.3 985.4 490 1168.64
365 982.7 494 1168.78
366.4 982.5 495 1167.84
371 983.28 497 1169.13
391 985.26 566 1184.79
541 1043.0 734 1256.41
700 1140.7 1000 1427.40
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4 Conclusions

In order to define optimal sizes of cables in new electrical power supply systems, it is
necessary to take into account both technologic and economic requirements. Technologic
requirements mainly should guarantee that during full life cycle and for all possible
scenarios, the maximum temperature will remain bellow some specified critical value
Tmax. The minimal values of allowed sizes of cables are defined by the international
technical standards [9]. We have developed a specialized software tool POWEROPT,
which is used to simulate a distribution of temperature in and around cables for given
parameters of cables, porous media and air [3, 10]. The mathematical model is restricted
to nonstationary two-dimensional approximation of the full three-dimensional problem.
Even such an approximation gives a big challenge for fast, robust and accurate simulation
of distribution of temperature in real world engineering applications. POWEROPT tool
enables engineers to define optimal sizes of cables ST such that, for cables with sizes
S > ST , the temperature inside cables never overshoot the critical value Tmax. In com-
parison with recommendations given by the international technical standards, this tool
gives a possibility to simulate accurately the influence of boundary conditions (summer
and winter conditions), the dynamics of variations in electrical power consumption during
day/week/month cycles, the dependence of the surrounding material properties on temper-
ature, moister content and similar factors. Thus the obtained recommendations improve
and optimize the existing recommendations defined by the technical standards.

We note that the recommendations of technical standards are still important, but users
should use them in a proper way and they should understand that these estimates are
obtained from simplified models and they have a safety margin.

In this paper, we have considered also economic approach in determination of optimal
sizes of electrical cables. The generated heat defines the energy loses and increases essen-
tially total life cycle cost CT of the electric network, and as a consequence, increases
the price of electricity for consumers. We note that generated heat (i.e. lost energy)
also influences seriously the ecological quality of our environment. It is typical that, in
most countries, energy companies should pay eco-taxes and fines in order to reduce such
a pollution.

The presented economic-technological optimization technology gives a possibility to
estimate the length of time required to cover expanses in using a larger size cables and
to get a profit of such a strategy. It is shown that this time duration is reduced and larger
sizes of cables are recommended if utilization of copper and the scrap value of recycled
copper is taken into account in the economic model.

At the end of conclusions, we present two important notes. First, for a long duration
life cycle, it is impossible to predict accurate parameter values of the economic model
(the electricity tariff τT , the interest rate p and the price of copper Cp). Thus the de-
veloped optimization tool POWEROPT can be used to simulated various scenarios and
give recommendations for engineers, city administration and ecologist. Second, in most
big energy supply projects, different companies, offices and operators are responsible for
different stages of exploitation of such lines. It is easy to see that they have different
time windows of participation and their profit strategies can be quite different from the
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optimal strategy of clients (city population or a whole society of country). The proposed
technology can help to find consensus in reaching the optimal solution.
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