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Abstract. This paper mainly concerns the derivation of the normal forms of the Bogdanov—Takens
(BT) and triple zero bifurcations for differential systems with m discrete delays. The feasible
algorithms to determine the existence of the corresponding bifurcations of the system at the origin
are given. By using center manifold reduction and normal form theory, the coefficient formulas of
normal forms are derived and some examples are presented to illustrate our main results.
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1 Introduction

Many researchers have studied some kinds of codimension bifurcation phenomena for
some delayed differential systems, these bifurcation phonmena include saddle-node bi-
furcation, Hopf bifurcation, Hopf-zero bifurcation, double Hopf bifurcation and so on.
And there are some results about the Bogdanov-Takens (BT) bifurcation (a double zero
eigenvalue with geometric multiplicity one) and triple zero (a triple zero eigenvalue with
geometric multiplicity one) bifurcation for general differential systems with one delay,
one can see, for example, [4, 6, 16,20, 21], and their results can be used to study the
codimension bifurcation of some predator—prey systems, neural networks models, Van
der Pol’s oscillator, etc. One can see, for example, [3,9-12, 14,15, 18,19,23].

Notice that the authors in [16, 20] have given some feasible formulas to determine
the BT singularity, triple zero singularity, and the generalized eigenspace associated with
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zero eigenvalue in R” for the following system:
i =AP)z(t) + B(P)z(t — 1) + F(z(t), z(t — 1),P),

where P € R? (¢ = 2 or 3) is a parameter vector, z € R"™. By using center manifold
reduction and normal form theory, the concrete normal forms (two or three dimension
ordinary differential equations) of the parameterized delay differential systems with BT
and triple zero bifurcations at the origin were obtained.

Now the general coefficient formulas of normal forms corresponding to BT and triple
zero bifurcations for general differential systems with many discrete delays have not been
given except for some special differential systems as discussed in [1, 13, 17,22]. In this
paper, we will generalize and apply these methods used in [16,20] to deduce the normal
forms of BT and triple zero bifurcations of the following system with m delays:

= AP)a() + 3 Bi(P)a(t — m) + F(a(t), 2t — 1), 2t — 7). P). ()
=1

The organization of this paper is as follows. In Section 2, the existence conditions
of BT and triple zero singularities for general systems with m delays will be given. In
Sections 3 and 4, by applying the center manifold theorem and normal form theory, the
corresponding coefficient formulas of the normal forms for delay differential system are
obtained. In Section 5, a real application is exhibited.

2 Stability of the trivial equilibrium

To study the BT and triple zero bifurcations of system (1), we first give the similar
assumptions as the authors used in [16,20]:

(H1) A(P), Bi(P) (1 =1,2,...,m)are C" (r > 2) smooth matrix-valued functions

from R? to R™*", F(x,y1,Y2,---,Ym, P) is a C" (r = 2) smooth function
from R™ x --- x R™ xR? to R™ and, for all P € RY, satisfies
—_———

m—+1
oF
F(0,0,0,...,0,P) =0, —(0,0,0,...,0,P) =0,
—— Oz ——
m+1 m+1

oF

—(0,0,0,...,0,P)=0 (I=1,2,...,m).

ayl \_\/_"

m—+1
Without loss of generality, we assume —7; < —7Tp < --- < —T,, < 0, then we

denote the Banach space of continuous mapping from [—7, 0] to R” with norm ||¢| =
maxge[—r;,0] |¢(0)| by C= C([_Th O]a Rn)' Let

0 m
LR = [ [dne(®)]6) 2 AP+ Y BiPlatt—7), @)
o =1
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in which x,(0) = z(t + 6), and np(0) is a bounded variation matrix-valued function on
[—71,0]. Especially, when P = 0, we have A = A(0), By = B1(0), B2 = B3(0), ...,
By, = B,,(0), and L(0)z; = Az(t) + Y.~ , Biz(t — 1) £ Lox(t). From the definition
of Ly we can obtain that Ly(§) = (A + 7%, B))E, Lo(07€) = (—1)7 1%, 1/ B,
Lo(eM¢) = (A+ X", Bie™ )&, where j € Nt for all £ € R™. These formulas will
be used frequently in the rest of this paper.

We rewrite system (1) as the following functional differential equation (FDE):

&(t) = L(P)zy + F(x, P), 3)
which can be linearized at (z;, P) = (0,0) as
l‘(t) = Loxt. (4)

From [7,8] a Cy-semigroup {Ty(t), t = 0} on C can be defined by the fundamental
solution of system (4) with infinitesimal generator Ay : C' — C:

0
Aop = ¢, D(Ag) = {¢ € C'([-m, 0, R"): $(0)= / [do(6)]6(0) = Lo¢}.
~n
With the definition of Aj, system (4) is equivalent to an abstract ordinary differential
equation (ODE) & = Agx in C. Furthermore, the spectrum of the operator .4 consists of

its point spectrum, i.e. 0(Ag) = 0,(Ag) = {A: Ag(X) = 0}, the characteristic equation
of system (4) is

Ao(A) 2 det (A — Lo(e*)) = det ()J —A-> Ble”’\> =0.

=1
To study system (1), we further make the following assumptions:

(H2) ReA#0if X € 0,,(Ao) \ {0};
(H3) A = 0 is the eigenvalue of .4y with algebraic multiplicity 2 (3) and geometric
multiplicity 1.

One can see that system (1) has a BT (triple zero) singularity if (H1)-(H3) hold. Then
we will give an equivalent description for BT and triple zero singularities in system (1).

Theorem 1. Ler (H1), (H2) hold, the delay differential system (1) has a BT singularity
when it satisfies the following conditions:
(i) rank(A+ > " B)=n—1,
(i) if N(A+ 32, By) = span{@\}, then )" B, + I¢) € R(A+ 3|2, By),
(i) if (A+3270 B)od = (-2 nBi+1)8Y, then (32, nBi+1)¢3—3 7" 77 Bix
#7/2 ¢ R(A+ 3", B)), where ¢, ¢ € R™.
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Theorem 2. Let (H1), (H2) and (i), (ii) in the above theorem hold, the delay differential
system (1) has a triple zero singularity when it satisfies the following conditions:

(V) (O iBi+1)¢9—> "0 2 BidY /2 € R(A+>" By) if (A+>"%, Bi)dy =
(Z?il 1B + I)(b?,

) (i B+ 1)¢g =32 2 BigY/2+ > 17 Bigl /6 ¢ R(A+ Y By) if
(A+X00 B¢s = Oy nBi+ 1) — -2 77 Big) /2, where ¢, ¢9, ¢3€R”.

By using the methods used in [4,16,20], we reduce system (1) to an ordinary differen-
tial system with dimension ¢ on its center manifold. Rewrite the parameterized system (1)
as the following FDE:

i(t) = Loxy + [L(P) — Lo|ay + F(xy, P), P(t) = 0. (5)

Define C' = C/([—71, 0], R xRY) as its phase space. In addition, let (t) = (z(t), P(t))
be the solution of (5), then (5) becomes

(t) = Loty + F(iy), 6)

where the operator Eoi"t = (Lox¢,0) is bounded linear and is from C to R™ x R?, and

F(z) = ([L(P(0)) — Lo]zt + F (x4, P(0)),0) & (ﬁ(a:t,P),O) withz, € C,P € Cy &
C([—71, 0], R?). The linearization of (6) at Z; = 0 is

i(t) = Lok, 7)

Define the infinitesimal generator of system (7) as Ao, then we have Ay = (Ap,0). The
eigenvalues of Ay include all eigenvalues of Ay and double or triple zero eigenvalues
introduced by P = 0. Let A be the set of 2q zero eigenvalues for system (7).

Similar to [20], we decompose the phase space C' of system (3). Let C' = P & Q,
where P is the invariant space of 4, corresponding to the zero eigenvalue and () is the
complementary space. C* = C([0, 1], R™*) is defined as the adjoint space of C, where
R™* is the n-dimensional space of row vectors. The bilinear inner product on C* x C'is
defined by

0o 0
(1, 6) = $(0)6(0) — / / B(E — 0) 0y (6) de. ®)
—T1 0

Under assumption (H3), one can see that the dimension of the space P is ¢. Let $(6)
and ¥(s) be the bases of P and its dual space P* respectively. Then (¥, $) = I,, where

(Lpa Qj) £ (1/11', d)z)
3 Normal form of BT bifurcation

To study the BT bifurcation at the origin of system (1), we need use the following lemma.

Lemma 1. The bases of P and its dual space P* are ®(0) = (¢1(0), 92(0)), ¥(s) =
col(y1(s), 1ha(s)), where 1(0) = ¢ € R™\ {0}, ¢2(0) = ¢5 + ¢70, ¢ € R" and

http://www.mii.lt/NA
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Pa(s) = Y8 € R\ {0}, ¢1(s) = ¢ — s909, ¥ € R™, which satisfy

(a) (A—s—ZBl)(b(f:O, (b) <A+ZBZ>¢82 (ZnBerI)dfi

=1 =1 =1

(© 9 <A+ZBI> =0, () v <A+ZBZ) = wS(ZnBl +I>,
1=1 =1 =1

© Vids + U Y mBioh — Ul > P Biol — Ui > 7 Bioh

=1 =1 =1

1 oes .
+5vs ; 7' Bigy =0,

m 1 m
(H Y363+ 08 ; B3 — Sus ; B = 1.
Without considering the factors of coefficient constant, we can determine the unique

vectors ¢, #9, 17, 19 by (a)—~(f).

Proof. By assumption (H3), we know that there are linearly independent functions ¢,
¢o € C satisfying Aggp; = 0, Ao = ¢;1.
By the definition of operator .Ap, Ag¢1 = 0 is equivalent to

LO¢1(9) = Oa 0= Oa
$1(0) =0, —1<6<0.

Hence, we obtain ¢1(6) = ¢} € R"\ {0}, (A+ >/~ B))¢) = 0. Similarly, Aopo = ¢1
is equivalent to

Loga(0) = ¢, 0=0,
¢2(0): ?7 71<9<07

which is solved by ¢2(0) = ¢+ ¢96, ¢3 € R, (A+> 1%, B))¢3 = 2, nBi+1)¢?.
To prove Lemma 1, it needs to use the adjoint operator Af, : C* — C* of Ay by

€))

0

Asp = —,  D(AF) = {%/1 € C'([-m1,0],R™): —(0)= / P(=0) dno(ﬁ)}-

o
From Ajys = 0, by

d
“ 0 0<s <,

ds
y (10)
/ Vs(—0)dno(0) =0, 5 =0,

we can deduce 15(s) = 19 € R™ \ {0}, (A + X", B)) = 0.

Nonlinear Anal. Model. Control, 21(6):731-750
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Furthermore, by A§y1 = 12 and

dwl() 1/’27 0<s<17

(1
/zm Jdno(8) =49, s =0,

we deduce ¢ (s) = 9f — s3, ) € R™, (A + 35", By) = 93,2 By + I).
Therefore, by solving (9)—(11), we can easily get (a)—(d) of the lemma. Finally, from
(¥, @) = I, and using (8) and (2) we have

(¥1, 1) = V6] — fwz (Zﬁ&)«m + 7 (Zn&)@ =1,

=1

(2, ¢2) = V569 — fwz (Zﬁ&)oﬁ + 3 (Zm&)% =1,

=1

(1, ¢2) = ZTﬁBl¢1+w ZnBz¢3—§ ?ZTmes? (12)
=1 =1
- 598 ;wag +uies =0,

(2, 1) = 090 + w3<anl>¢9 _o.

=1

In fact, the first and the fourth formulae in (12) hold naturally by (a)—(e) of the lemma.
The proof is complete. O

It is easy to see that &(6) satisfies & = &.J, where

0 1
1=(5 o)
__ Denote the Taylor expansion of ﬁ(xt, P) with respect to z; and P in system (7) as
F(zy,P) =3, 5o (1/w!) Fy (x4, P), we have

1~ m
5 P2, P) = Aiz(t)ar + Asz(t)as + > [Bua(t —m)ar + Bpa(t — m)as]
=1

+Z Z Diiji(t—Tk)x(t—Tj), (13)
i=1 0<k<j<m

where 79 = 0 and Ay, Az, Bj1, B2, Diy; are coefficient matrices. According to the
discussion in the above, we also know there is no terms of O(P?) in Fy (¢, P) because
F(0,P) = 0 forall P € R2.
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From (13) we can get the following system:
1~
§F2(§l'>z7 P)
= A1 [ ( )(Zl, ZQ)T]al + AQ[@(O)(Z:[, ZQ)T] (65

+Z{Bl1 ) (21, 22) " Jar + Bia [B(=7) (21, 22) T ] an }

+Z Z Dikj[(d1:(=7), d2i(—7k)) (21, 22) 1] [B(—75) (21, 22) 7],

i=1 0<k<j<m

where ¢;; stands for the ith element of ¢;.
After some calculations we obtain

1~
iFQ(@ZuP)

Az61(0 +ZBI2¢1 Tl)] 221

m

A161(0) + > Bua( Tl)‘|a121+
=1

Az2(0 +ZBzz¢2 71)10022
=1

+ | A162(0 +ZBM¢2 Tl)]a122+
=1

m

+> > Dinjdr(—7)bri(—7k)2}

i=1 0<k<j<m

+ Z Z Dikj [¢1(—75)$2i(— k) + d2(—75)d1s(—71) | 2122

i=1 0<k<j<m
+ Z Digej o (—T75) i (— k) 23
i=1 0<k<j<m

Since ¢1(0) = ¢1(—71) = ¢, $2(0) = 5, da(—71) = 3 — ¢, ¥1(0) = ¥Y,
2(0) = 93, the above expression can be simplified by substituting them into it. Further-
more, by [20] we also know

= (I_ P1172)f21’ f%(Z,O,P) = W(O)F\2(¢Zap)a

1
2
2 2
1 [(?1) _ 2] 1 [z _ [ a1z 1 [z [ aoz
Aa(0)=(la) ()= () ()-S50

and for other p, it has

3

p, p € Im(M})e,
0, pelIm(My),

(I—leg)p: {

the bases of Im (M )¢ and Im (M) can be seen in [20].

Nonlinear Anal. Model. Control, 21(6):731-750
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The normal form for (6) on the center manifold corresponding to the space P can be
written as 2 = Jz + g3(2,0,P)/2 + h.o.t., (see [20] for detail).
Hence, we have the following theorem.

Theorem 3. Let (H1)-(H3) hold. Then the delay differential system (1) can be reduced to
the following two-dimensional system of ODE on the center manifold at (x;, P) = (0,0):

where

5y =

5y =

dy =

do =

Let

Z1 = 2o, %9 = 0121 + 0920 + dlzf + doz129 + h.o.t., (14)

Uy <A1 + Bz1> Pan + 95 <A2 +)° Bl2> Plaz,

=1 =1

{¢? (Al +ZBM>¢?+¢3 <A1 +ZBI1> 9 *ZTZBZW?
=1 =1 =1

+ {w? <A2 + ZBm)cﬁ? + 98

=1

wSZ Z D%,

i=1 0<k<i<m

}m

<A2 + Z Bl2> P9 — ZTszzci)? }0427

1=1 =1
wg{ Z Z Di; <¢(1)¢gi + ¢(2)¢(1)i) - Z (71 + Tj)Dikj¢?¢?i}

i=1 0<k<j<m i=1 0<k<j<m

+200% 0 > Diydlel:

i=1 0<k<j<m
99, (ol 3t
_ 8&1 8&2
1I= 92 9y |

60{1 00[2

in addition, we need assume
(H4) det IT #£ 0.

In this case, system (14) has two equilibria £y = (0,0) and Ez = (—d1/d;,0). The
bifurcation curves near the origin in the o and «o parameter space are the following

[1,13]:

TB:
H()Z
Hll
H:

H!:

61 = 0 (transcritical bifurcation occurs),

62 = 0, 61 < 0 (Hopf bifurcation from the zero equilibrium point),

02 = (da/dy1)d1, 61 > 0 (a Hopf bifurcation from equilibrium —(d; /dy, 0),

02 = (d2/7d1)d1, 61 < 0 (a homoclinic bifurcation with the zero equilibrium
point),

02 = (6dy/7d1)d1, 61 > 0 (a homoclinic bifurcation with the equilibrium
(=61/d1,0)).

http://www.mii.lt/NA
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4 Normal form of triple zero bifurcation

When system (1) has a triple zero singularity, similar to the discussion of BT bifurcation,
we first give the following lemma.

Lemma 2. The bases of P and its dual space P* have the representations P = span @,
P(0) = (¢1(0), 92(0), ¢3(0)), P* = span¥, ¥(s) = col(¢1(s), ¥a(s), ¥3(s)), where
$1(0) = ¢Y € R™ \ {0}, 2(0) = ¢5 + 696, ¢3(0) = 63 + ¢50 + ¢76%/2, 69, 63 € R™
and P3(s) = 3 € R™ \ {0}, ¥a(s) = 93 — sy, ihi(s) = ¢ — 53 + s*3/2,
P Y € R™, which satisfy:

@) <A+ZBZ>¢?0, (b) <A+ZBZ>¢8 <ZnBl+I>¢?,
=1

=1 =1

(c) <A+ZBz>¢3 = (ZTIBZ +I>¢2 - *27123@

=1 =1

A+ZBI> =0, (o) ¢3<A+ZBZ> :w§<anl+I>,

=1 =1

¢ — ¢3271231¢2+ wng B¢t =1,
R R

95— 55 ZT?B@(; + Y8 lzzln?’Bm?

L “ -

— 58 Z PBigs + wQZTfBl% 4w§;n“Bz¢?:o,

¢?<ZTzBl+I>¢g %wlz 7 Bio) + w?ZTﬁBmO
=1

=1

1 m
- 5v8 ZfﬁBmsg e ZrﬁBm‘) s ZT;*Bm?

1 1
+ 58 ZTE’Bmg — 5¥8 ZT;*B@S + 120% ZTme =0.
=1 =1

Without considering the factors of coefficient constant, we can determine the unique

vectors ¢?’ ¢(2)’ ¢g’ 1/)(1)’ 1/Jg’ '(/}g by (a)_(l)

Nonlinear Anal. Model. Control, 21(6):731-750
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Note that the proof of this lemma is similar to that of Lemma 1, we omit it here. It is
easy to see that $(0) satisfies ¢ = @J, where

01 0
J=10 0 1
0 0 0

Defining the Taylor expansion of F(z;, P) with respect to z; and P in system (7) as

~

F(2,P) = 35y Fu(:, P) /w!, we have

1~
iFQ(xtvP) = Alm(t)al —+ Azx(t)ag —+ Agl'(t)ag

NE

+ [Biz(t — 7)o + Bpa(t — 7)oz + Bisa(t — 7)o

=1

NE

+ Diiji(t—Tk)x(t—Tj), (15)

i=1 0<k<j<m

where 79 = 0 and A;, As, As, By, Bia, Bis, Dy, are all coefficient matrices. As
the discussion above, we also know there is no terms of O(P?) in Fy(z;, P) because

~

F(0,P)=0forall P € R3.
Therefore, the normal form for (6) on the center manifold corresponding to the space P
takes the form as
1
z=Jz+ Eg%(z, 0,P) + h.o.t.
(see [16] for detail), where

g =(I-Pl)f},  fi(20,P)=w(0)F(&2,P).

Following [16], we know

PI{Q (zf, 0, O)T = (zf, 0, —223 — Qleg)T, P},Q(Oéﬂl, 0, O)T = (a;21,0, —aiZg,)T,
T T T

P}’Q(O,zlzg,O)T: (O,zlzg, —22 — 2123) , P}’Q (O,zf,O) = (072%, —22122) ,
P}’Q(O, o2, O)T = (0,21, _OéiZQ)T7 P}’Q(O7 o 20, 0)T = (0, o;22, —aiz;;,)T,

and for other p, it has

1\c
(I—P}Q)p: b, pEIm(M2) )
’ 0, pe€Im(My),

the basis of Im (M3 )¢ and Im(M3 ) can be seen in [16].

http://www.mii.lt/NA
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From (15) we have the following expressions, where ¢;; stands for the ith element
of ¢;:

%ﬁg(gpz, P) = Ay [0(0) (21, 22, 23) T a1 + Ao [B(0) (21, 22, 23) | a2
+ A3 [B(0) (21, 22, 23) ] az +Z{Bl1 1) (21, 22, 23) T e
+ Bia [B(—7) (21, 22, 23) ]a2 + Bl3 [D(—7)(21, 20, 23) "] s }
£ S D [(bnlom) d(—me) + b (—7)) (21,22, 23)7]

i=1 0<k<j<m
X [@(—75)(21,22,23) "]

After some computations we get

1~
iFQ(@ZaP)

A1¢1(0 +ZBU¢1 Tl)‘|a12’1+
=1

+ | As¢1(0 +ZBZS¢1 (=7) |sz1 + | A12(0 +ZBM¢2 (=7)| ez
=1 =1

Az1(0 +ZBz2¢1 —7) |22
=1

+ | A2¢2(0 +2312¢2 —71) | aaza + | Ag2(0 +ZBZ3¢2 —T71) | 322
=1 =1

+ | A163(0 +ZBM¢3 —7) |12z + | A203(0 +ZBzz¢3 —7)| Q223
=1 =1

+ | Asé3(0 +Zst¢3 (—m)|aszs+ > > Dindr(—75)¢1i(—7k)2}
=1

i=1 0<k<j<m

+
NE

Dinj [01(=75)b2i(—Tk) + d2(—75)b1i(—Tk)] 2122

10<k<j<m

\T
N

"
NE

Dikj |61 (=75)b3i(—Tk) + ¢3(—75)b1i(—Tk)] 2123

10Kk m

&
A
A
N

J

+
NE

Dikj [¢2(—75)¢3i(—Tk) + ¢3(—75)h2i(—Th) | 2223

i=1 0<k<j<m
m m

+ Z Dirjpa(—7)p2i(—7r) 25 + Z Z Dikjpa(—75)$3i(—71) 73
i=1 0<k<j<m i=1 0<k<j<m

Nonlinear Anal. Model. Control, 21(6):731-750
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Note that ¢1(0) = ¢1(—7) = ¢, ¢2(0) = ¢, do(— ) $9 — 18y, ¢3(0) = ¢3,
$3(—7) = ¢g - Tl¢0 + 7'12¢1/2 ¥1(0) = 1/)1, P2(0) = ¢2 and ¢3(0) = ¢3’ thus we

have the following theorem.

Theorem 4. Let (H1)-(H3) hold. Then system (1) can be reduced to the following three-
dimensional system of ODE on the center manifold at (x¢,P) = (0,0):

Z1 =29, Z9 = 23,

.1 2 2 3 ) ) (16)
23 =M121 + Naze + N323 + hlzl + h2Z2 + h3z129 + haz123 + h.o.t.,

where

= Zfigéf)(i){ (Al + ZBu)Oq + <A2 + ZBZQ> o + <A3 + ZBIB> 0l3}7
=1 =1 =1
}al

= {%) (Al + ZBII> ¢ + 43 <A1 + ZBH> ¢5 — 27'5311(25(1)
=1 =1 =1
+ {wS <A2 +3 Bl2> 0 + 3 <A2 +>° Bz2> ¢ — > _ TiB¢! }a2
-

=1 =1 =1

+ {wg (Ag + i Blg> ¢ + 3 <A3 + i Blg> ¢ — zm:ﬂBngS(f
=1 =1 =1
N3 = {1/1? (Al + Zm:Bu) ¢ + 3 <A1 + iBu) $3 — Xm:TlBu(Zﬁ(f
=1 =1 =1
<A1 + zm: Bz1>¢g - iTlBu(bg + % iTzQBu(b? }041
+{ <A2+ZBl >¢ <A2+ZBZQ>¢3—§}1312¢?
=1
(A + Z Blg>¢) inBlgqsg + % ZTZQBlg(b? }a2
=1 =1

+ { <A3 + ZBB) ¢ + s <A3 + ZBZB> ¢ — > mBia¢!
= =1
<A3 + Z BlB) 95 — Z T B3y + Z 7 Bia} }a3
23
=1 0<k<j<m

Z Z D7k]¢0 1%
hy = 20 Z z Dig; 00 + 7/’3{ Z Dij (¢793; + ¢391:)
i=10<

i=1 0<k<j<m I<k<i<m

+ 93

+ 94

+1/13
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m

- Z Z (7% + Tj)Dikj]d)(l)(b?i} + w?{ Z Z Dirj$505;
i=1 0<k<j<m i=1 0<k<j<m

m

> Y D% —> Y TkDikj¢?i(¢3—Tj¢?)},

i=1 0<k<j<m i=1 0<k<j<m

hs =209 Y Dm‘qu?ﬁwg{z D Diks(¢969 + 65¢Y;)

i=1 0<k<j<m 1=1 0<k<j<m

- [(7k + Tj)Dikj]¢?¢?i}7

hs = 203 Z Di; 6%, + 1/&3{ Z Z Dirj (0769; + ¢9¢%;)

i=1 0<k<g<m i=1 0<k<g<m

- Z [(7e + Tj)Dikj]¢(1)¢(1)i}

+ wg{ Z Dinj (0765 + ¢39%;)

Let
O Omi Om
3011 6042 8043
_ | 92  On2  Om2
H - 30(1 8(12 8Q3
Ons  Ons Ona
8(){1 8(12 80/,3

In addition, we need assume
(HS) det IT # 0.

Following [1], the bifurcation diagrams of system (16) at the origin are as follows:

(i) system (16) undergoes a transcritical bifurcation when T' = {(aq, a9, a3):
m = O}a

(ii) system (16) undergoes a Hopf bifurcation when Hy; = {(a1, @z, a3): n3 =
—=m1/n2, N2 <0},

(iii) system (16) undergoes a Hopf bifurcation at equilibrium (—7;/h1,0,0) when
Hy = {(a1,az,a3): m3 = (ha/h1 — ha/(ham — hanz))ni, ha/(ham —
hina) > 0},

(iv) system (16) undergoes a BT bifurcation when B = {(«a1, ag,a3): n1 = 0,
n2 = 0},

(v) system (16) undergoes a zero-Hopf bifurcation when H3 = {(aq, s, a3):
771:(), 773:07 772<O}

Nonlinear Anal. Model. Control, 21(6):731-750
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S Application in a recurrent neural network

The authors in [2] and [5] have proposed the following three-node recurrent neural net-
work model with four discrete time delays:

1(t) = —2(t) + f(22(t = 72)),  B2(t) = —z2(t) + f(z3(t — 7)),
ig(f) = —.’Iﬁg(t) + af(xl(t — 7’1)) + bf(aig(t - Tg)),
where a,b € R, 7; > 0, f(x) is a general activation function, which satisfies f/(0) = 1.
Let uy (t) = x1(t), ua(t) = xo(t — 72) and uz(t) = x3(t — 72 — 74), then system (17)
is equivalent to the following system with two delays:
i (t) = —ur (t) + f(ua(t)), g (t) = —ua(t) + f(us(t)),
ug(t) = —us(t) + af (u1(t — 7)) + bf (uz(t — o)),

where 7 =711 + 79 + 14 and 0 = 73 + T4.
The characteristic equation for linearized system (18) at the equilibrium (0, 0, 0) is

A7)

(18)

AoN) =X #3022 430 +1— (A +1)be ™ —ae™ =0. (19)
By (19), we have

Ao(0)=1-b—a, Au(0) =3 —b+bo + ar,
AY(0) = 6 + 2bo — bo? — aT?, AY(0) =6 — 3bo? + bo® + a3,

From A (0) = Aj(0) = 0 we know that if

240 3+7
a=aqy = ——, b=byp=——— ,
oc—T1—1 oc—T1—1
then
2_7(2 —6(1 — 272
A7(0) = B+71)o*—7(2+7)0 —6(14+7)—27 .

c—1—1

Solving Af(0) = 0, it has

T2+ 7) + V71 + 1273 + 5272 + 967 + 72

= > 0,
71 2(3 +7)
724+ 7) — V7 + 1273 + 5272 + 967 + 72
09 = < 0.
23+ 1)

When a = ag, b = by and o = o1, we have

A (0) = 216 + 14472 + 2887 + 3473 + 374 — 7274 + 1273 + 5272 + 967 + 72
0 —(3+47)(6+ 72 4 67 — V7T + 1273 + 5272 + 967 + 72 '

One can verify that Aj’(0) > 0, hence, we get the following lemma.
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Lemma 3. Let
(I1) a = ag, b= by, 0 # 01 and
) a=a1=2+01)/(c1—7=1),b=by=—B+71)/(0o1—7—1),0 =0

hold. Then system (18) has BT (triple zero) bifurcation at the origin.

In the following we will analyze the BT and triple zero bifurcations of system (18) at
the origin, respectively.

5.1 BT bifurcation of system (18)

In this part, under condition (I1), we take ag and b, as bifurcation parameters to discuss
the BT bifurcation of system (18), and rewrite a and b as ag + a1 and by + ao, then we
obtain the system

y(t) = —uy (t) + f(u2(t)), Uy(t) = —ua(t) + f(us(t)),

20
() = —us(t) + (a0 + 00)f(ur(t — 7)) + (o + a0 fuglt — o)), )

the Taylor expansion of Eq. (20) up to the second order terms is as follows:

1~
U(t)=AU(t)+ BiU(t —7)+ BoU(t — o) + §F2(Ut,P) + h.o.t.,

where U (t) = (uy(t), ua(t), us(t))T,

-1 1 0 0
A=[lo0 -1 1|, B =][o0
0 0 -1 ao

0 0 0 0 O
0 0], Bo=|(0 0 0],
0 0 0 by O
Fy(ar, P)/2 = (f(00u3(6)/2, f"(00u3(1)/2, arur(t — 1)+ asus(t — o) +ao " (0) x
ui(t —7)/2+bof"(0)uz(t —a)/2)".

To obtain the normal form of system (20) on its center manifold, by the Lemma 1, we
have

1 6+4+1
o= (1 ov2) o= (000 1)
1 6+3 3

where v = (4+20)73 + (30 + 120 — 30%)0 + (—1802 + 03 + 120 + 60) 7 — 60 + 30> —
2702 + 42, and

Yoy = 27(2+0)
U324 0)m2 + (6420 — 02)7 + 6 — 302]
my = —2(2+ o)
T 6+ 67+ 272 + 720 — 302 — 027 + 270
—14+o0—-17
¢22:¢23:M7

240

Nonlinear Anal. Model. Control, 21(6):731-750



746 X. Liu, J. Wang

0y
i
X 0.05
Q(l : 0 0
Z0004 <002 002 0.04 4,-03-03 4 0, 0303 4
-0.05 B 0.3 -0.3;
= 0 nuf\vl\vf\v 0
H0 -0.10] U
_o 2l _0")
i 0 500 1000 0 500 1000
. Time t Time t

Figure 1. Bifurcation diagram of system (20) and dynamical evolution of the system. The left is the
bifurcation diagram, in the middle, a local asymptotically stable equilibrium (0, 0, 0) is shown with (a1, a2) =
(—0.006, —0.08). On the right, a stable limit cycle surrounding the equilibrium (0,0, 0) is plotted with
(a1, 2) = (—0.05,—0.02).

V110 — P1T + Y170 + 29910 — 31T — o172 — P11 — 20

¢12 - 2+O’ 5
=11 4 110 — YT — 29T + o1 7o — Y1 + P10 — Yoy T
P13 = o .

By Theorem 3, the delay differential system (20) can be reduced to system (14) on the
center manifold at (u;, P) = (0,0), where

2(1704’7’)(0[14’0&2)

01 =
' 646742724720 — 302 — 027 + 270
20—o+71) 3
Oy = 2(2
27 U 3(64 67 + 272 + 720 — 302 — 027 + 270)? 3 [(22+0)7
+3( -0 —|—20’)T +(24—120 +0o )T+6—60+303—902)a1
+(2+0)*+32-0—07)7"
+2(6 — 30 + 0 — 60)7 — 120 + 12+ 60%) as],
o (27 — 30)7"(0)
' 64674272+ 720 — 302 — 027 + 270
2/"(0
dy = S0 22+ 0)r* + 242+ 0)7°

~ 3(6 467 4+ 272 4+ 720 — 302 — 027 + 270)2
+ (=300% + 168 — 50° + 480) 7% + 3(—80 + 80 — 360> + 0* — 20°)7
+9(c —2)(c® + 50% + 20 — 6)].
Since [9(01,62) /a1, a2)| = 4(1 — o +7)3/(6 + 67 + 272 + 720 — 302 — 027 +
270)? # 0, then the map (1, 62) — (a1, ag) is regular.
Take 7 = 2, 0 = 0.2, f(2) = tanh(x) + 0.1z, then ag ~ —0.7857142857, by ~
1.785714286, 61 ~ 0.2043795620c; + 0.20437956200x2, 62 ~ —0.40537766171 +

0.1668851120cx2, d; ~ 0.01240875912, dy ~ 0.1551551317. Thus, the bifurcation
diagram in the o ap-plane can be obtained as shown on the left of the Fig. 1.
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As a verification, we take pair of parameters (aq, as) = (—0.006, —0.08), then we
can see that the trivial equilibrium (0, 0, 0) of system (20) is locally asymptotically stable
(see the middle of Fig. 1). The trivial equilibrium keeps stable with pair of parameters
(a1, a2) moving toward the bifurcation curve Hy, and lose its stability when (ag, as)
pass through H(, which leads to a stable limit cycle is bifurcated from the trivial equilib-
rium. As shown on the right of Fig. 1, system (20) displays a stable periodic orbit when
(a1, a2) = (—0.05,-0.02).

5.2 Triple zero bifurcation of system (18)

In this part, under condition (I2), we will discuss the triple zero bifurcation of system (18).
For computation simplicity, first we rescale system (18) by letting t = to, then take a;,
b1 and o as bifurcation parameters and write system (18) as

i1 (t) = (o1 + az) [~ur () + f (u2(t))],
U (t) = (01 + az) |[—ua(t Jrf(“S())]

is(t) = (01 + 03) { us(t) + (a1 + al)f<u1 (t - T)) @)
g1
+ (b1 + ag)f(Ug(t - 1)):| ,
the corresponding Taylor expansion of Eq. (21) up to the second order terms is as follows:

. 1~
U(t) = AU(1) + BlU<t — ;) + BoU(t = 1) + 5 Fy(Ur, P) + hoot.,
1

where U (t) = (uy(t), ua(t), us(t))T, and

-1 1 0 0 0 O 0 0 O
A:0'1 0 -1 1 , Bliﬂ'l 0 0 O s BQ—O’l 0 0 0 5
0 0 -1 ap 0 O 0 b O
7F2(l‘t7P)
T
as(—uy(t) +ua(t)) + alf 2“” ()
_ as(—us(t) + us(t)) + o1 523 (1) @

orfarun(t — )+ ar 50wl (t — I) + azua(t — 1)
+b1 me)U%(t = D]+ as[~us(t) + arui(t — ) + brua(t — 1)]

By using Lemma 2, we can compute

1 oi+l 192
1 g—L af_lgpylg

P0)= |1 0 14 162 ;
L0+ 1+ 50+36°

Nonlinear Anal. Model. Control, 21(6):731-750
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where

(01 + 2)[20%w13 — 201 (T + 1)wag + (72 + 27 + 2)w33]
2(—1+4 0y —1)o?

w11 =

)

1
2 —-7-1
2(—1+o0y—71)o? ( o1(o1 =7 = 1) (w1301 + was)

_ (Ufr — o172 + 307 — 2097 — 27% — 67 — 6)“’33)’

w12 =

(01 +2) (w2301 — w33T — W33) w301 + w33
2 (=1401—7)o1 ’ w227071’
3(-14+o01—17)
40[(3+ 7)o} — (13 + 372 + 67 + 6)01 — 2(75 + 372 + 67 — 6)]3
x [7(o1 +2)%(7 + 8) — 27° (0 + 2)((—2207 — 4007 — 1801 — 36)7°
+ (6507 — 1607 — 12007 — 4807 — 96)7° + (—44207 — 38507 + 17007
— 12007 — 6001 — 120)7 + 78007 — 205207 — 348007 + 240075 — 48007)
+ 07 ((7610% — 804005 — 1218007 + 2952007 + 3456007 + 38400,
+8640) 7% + (456607 — 1080007 — 3206407 + 2419207 + 3744007
+ 384007 + 11520) 7 + 68495% — 216007
— 2512807 + 51840% + 1440007 + 5760)],
_ 3o1(—1+01 —7)
2[(34 7)o — (134372 + 67 + 6)01 — 2(75 + 372 + 67 — 6)]?
x [07 (13077 + 390% — 24017 — 727 — 72)
— (o1 4+ 2) (120772 + 71 4+ 47° + 1277 + 247 + 24)],
—6(—1+o0y1 —7)o?
(B34 7)o} — (13 +372+6T7+6)01 —2(73 + 3724+ 67+6)

w13 =

Waz =

w33z =

By (22), we know the expressions of coefficient matrices in (15), and A3, By, Bis,
Bis, Bas, Dago, Dsog, D111 and Dago are zero matrices. Furthermore, by Theorem 4,
the delay differential system (21) can be reduced to system (16) on the center manifold at
(u¢, P) = (0,0), where

m = W330'1(041 + 042),
w33
=—— |01l =01+ 7)(ta1 + aso1 + 1) — a3(27 — 301) |,
12 (1—014-7')0—1[ 1( 1+ 7)(Tan + o1 + o) — as( )]

1 3 2
m[gl(l — 01 +T)((20'1 +T +2T+20’1)W33

— 20’1(’1’ —+ 1)WQ3 —+ 2(&&30%)0[1 —+ (T — 01 —+ 1)0’%(2&)13 — 2&]23 -+ 3&)33)0&2

n3 =
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+ (20’1(7’ — 01+ 1)(W21 +w22) =+ QWQ30'1(T — 0'1)

+ (TU% — 1201 — 272 — 2701 + 30% — 47')0.)33)043},
Wy — W330'1(2T — 30’1)f”(0)
e l—o1+71 ’

1
h2 = —U—((Ta'l +2’T+301 + 1)(JJ33
1

— 201 (w1101 + w1201 + w1307 + wa2 + 2W23))f”(0)7
hg = 2((.&)210_1 + w9201 + w2301 + 3W33)f//(0),
—f"(0)
[pp— - R
o1(l—o1+7)
+4T+40’1) — 20’1(0)110’1 “+ w1201 + w1301 —|—w22)(1 — 01 —|—T)
— 4wos (TO'l — O’% + 1)]

[wgg (20‘11 + 7201 — 57‘0% + 80? +27% 4+ 2701 — 50%

Take 7 = 0.2, f(z) = tanh(z)+22/2, then ay ~ 9.451604291, by ~ —8.451604291,
o1 ~ 1.578626340, f”(0) = 1, 71 ~ 0.6554453042a; + 0.655445304205, 17y ~
—0.65544530420r, — 0.498239732301 + 3.011924622013, 3 ~ 0.5239069738c; —
0.1559415893cr; — 0.156702101avs, hy ~ 7.505900258, hy ~ —12.39030109, hs ~
8.728384667, hy ~ 14.89038763.
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