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Abstract. In this paper, the existence and uniqueness of mild solution is initially obtained by use
of measure of noncompactness and simple growth conditions. Then the conditions for approximate
controllability are investigated for the distributed second-order neutral stochastic differential system
with respect to the approximate controllability of the corresponding linear system in a Hilbert
space. We construct controllability operators by using simple and fundamental assumptions on
the system components. We use Lemma 3, which implies the approximate controllability of the
associated linear system. Lemma 3 is also described as a geometrical relation between the range
of the operator B and the subspaces N⊥i , i = 1, 2, 3, associated with sine and cosine operators
in L2([0, a], X) and L2([0, a], LQ). Eventually, we show that the reachable set of the stochastic
control system lies in the reachable set of its associated linear control system. An example is
provided to illustrate the presented theory.

Keywords: approximate controllability, cosine family, state-dependent delay, neutral stochastic
differential equation, measure of noncompactness.

1 Introduction

Random noise causes fluctuations in deterministic models. So, necessarily, we move
from deterministic problems to stochastic ones. Stochastic evolution equations are natu-
ral generalizations of ordinary differential equations incorporating the randomness into
the equations. Thereby, making the system more realistic, [9, 21] and the references
therein explore the qualitative properties of solutions for stochastic differential equations.
Considering the environmental disturbances, Kolmanovskii and Myshkis [22] introduced
a class of neutral stochastic functional differential equations, which are applicable in
several fields, such as chemical engineering, aero-elasticity and so on. In recent years,
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controllability of stochastic infinite-dimensional systems has been extensively studied for
various applications. Several papers studied the approximate controllability of semilinear
stochastic control systems, see, for instance, [5,6,8,11,12,23,24] and references therein.
Controllability results are available in overwhelming majority for abstract stochastic dif-
ferential delay systems; rather than for neutral second-order stochastic differential with
state-dependent delay.

Mahmudov [24] investigated conditions on the system operators so that the semilinear
control system is approximately controllable provided the corresponding linear system is
approximately controllable. The main drawback of the papers [11, 23, 24] is the need
to check the invertibility of the controllability Gramian operator and a associated limit
condition, which are practically difficult to verify and apply.

Neutral differential equations appear in several areas of applied mathematics and thus
studied in several papers and monographs, see, for instance, [16, 17, 27] and references
therein. Differential equations with delay reflect physical phenomena more realistically
than those without delay.

Recently, much attention is paid to partial functional differential equation with state-
dependent delay. For details, see [1,3,18,19,20]. As a matter of fact, in these papers, their
authors assume severe conditions on the operator family generated byA, which imply that
the underlying space X has finite dimension. Thus, the equations treated in these works
are really ordinary and not partial equations.

This is an extension of our previous work [10] on approximate controllability of
neutral differential equation with state-dependent delay. We also remove the need to
assume the invertibility of a controllability operator used by authors in [4,5,7,25], which
fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our
approach also removes the drawbacks of the method applied in [11, 23, 24].

Hence, motivated by this fact in this paper, we study the existence and uniqueness
of mild solution and approximate controllability of the partial neutral stochastic differ-
ential equation of second-order with state delay. Specifically, we study the second-order
equations modeled in the form

d
(
x′(t) + g(t, xt)

)
=
[
Ax(t) + f(t, xρ(t,xt)) +Bu(t)

]
dt

+G(t, xt) dW (t), a.e. t ∈ J = [0, a],

x0 = φ ∈ B, x′(0) = ψ ∈ X,
(1)

where A is the infinitesimal generator of a strongly continuous cosine family {C(t),
t ∈ R} of bounded linear operators on a Hilbert space X . Let (Ω,F ,P) be a probability
space together with a normal filtration Ft, t > 0. The state space x(t) ∈ X , and the
control u(t) ∈ LF2 (J, U), where X and U are separable Hilbert spaces and d is the
stochastic differentiation. The history valued function xt : (−∞, 0]→ X , xt(θ) = x(t+
θ) belongs to some abstract phase space B defined axiomatically; g, f are appropriate
functions. B is a bounded linear operator on a Hilbert space U . Let K be a separable
Hilbert space, and {W (t)}t>0 is a given K-valued Brownian motion or Wiener process
with finite trace nuclear covariance operator Q > 0. The functions f, g : J × B → X
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Approximate controllability of a second-order stochastic system 753

are measurable mappings in X norm, and G : J × B → LQ(K,X) is a measurable
mapping in LQ(J,X) norm. LQ(J,X) is the space of all Q-Hilbert–Schmidt operators
from K into X . B is a bounded linear operator from U into X . φ(t) is B-valued random
variable independent of Brownian motion W (t) with finite second moment. Also, ψ(t) is
a X-valued Ft-measurable function.

2 Preliminaries

In this section, some definitions, notations and lemmas that are used throughout this paper
are stated. Let (Ω,F ,P) be a complete probability space endowed with complete family
of right-continuous increasing sub σ-algebras {Ft, t ∈ J} such thatFt ⊂ F . AX-valued
random variable is aF-measurable process. A stochastic process is a collection of random
variables S = {x(t, w) : Ω → X, t ∈ J}. We usually suppress w and write x(t) instead
of x(t, w).

Now suppose βn(t), n = 1, 2, . . . , be a sequence of real-valued one dimensional
standard Brownian motions mutually independent over (Ω,F ,P). Let ςn be a complete
orthonormal basis in K. Q ∈ L(K,K) be an operator defined by Qςn = λnςn with finite
trace Tr(Q) =

∑∞
n=1 λn 6∞. Let us define

W (t) =
∞∑
n=1

√
λnβn(t)ςn(t), t > 0,

which is a K-valued stochastic process and is called a Q-Wiener process. Let Ft =
σ(W (s), 0 6 s 6 t) be the σ-algebra generated by W and Fa = F . Let φ ∈ L(K,X),
and if

‖φ‖2Q = Tr(φQφ∗) =

∞∑
n=1

‖
√
λnφςn‖2 6∞,

then φ is called a Q-Hilbert–Schmidt operator. The completion LQ(K,X) of L(K,X),
with respect to the topology induced by norm ‖φ‖2Q = 〈φ, φ〉, is a Hilbert space.

The family {C(t), t ∈ R} of operators inB(X) is a strongly continuous cosine family
if the following are satisfied:

(a) C(0) = I (I is the identity operator in X);
(b) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R;
(c) The map t→ C(t)x is strongly continuous for each x ∈ X .

{S(t), t ∈ R} is the strongly continuous sine family associated to the strongly contin-
uous cosine family {C(t), t ∈ R}. It is defined as S(t)x =

∫ t
0
C(s)xds, x ∈ X , t ∈ R.

The operator A is the infinitesimal generator of a strongly continuous cosine function
of bounded linear operators C(t))t∈R, and S(t) is the associated sine function. Let N , Ñ
be certain constants such that ‖C(t)‖2 6 N and ‖S(t)‖2 6 Ñ for every t ∈ J = [0, a].
For more details, see the book by Fattorini [13]. In this work, we use the axiomatic
definition of phase space B introduced by Hale and Kato [14].
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Definition 1. (See [14].) Let B be a linear space of functions mapping (−∞, 0] into X
endowed with the seminorm ‖·‖B and satisfies the following conditions:

(A) If x : (−∞, σ + b]→ X , b > 0, such that xt ∈ B and x|[σ,σ+b] ∈ C([σ, σ + b];
X), then for every t ∈ [σ, σ + b), the following conditions hold:

(i) xt ∈ B;
(ii) ‖x(t)‖ 6 H‖xt‖B;

(iii) ‖xt‖B 6 K(t − σ) sup{‖x(s)‖, σ 6 s 6 t} + M(t + σ)‖xσ‖B, where
H > 0 is a constant, K,M : [0,∞) → [1,∞), K is continuous, M is
locally bounded, and H , K, M are independent of x(·).

(B) The space B is complete.

Lemma 1. (See [1].) If y : (−∞, a] → X is a function such that y0 = φ and y|J ∈
PC(X), then

‖yρ(s,ys)‖B 6
(
Ma + J̃φ

)
‖φ‖B +Ka sup

{∥∥y(θ)
∥∥, θ ∈ [0,max{0, s}

]}
,

s ∈ R(ρ−) ∪ [0, a],

where J̃φ = supt∈R(ρ−) J
φ(t), Ma = supt∈JM(t) and Ka = maxt∈J K(t).

Let us denote E as the expectation defined by E(h) =
∫
Ω
h(w) dP. Let L2(Ω,F ,

P;X) ≡ L2(Ω;X) be the Banach space of all strongly measurable, square integrable,
X-valued random variables equipped with the norm ‖x(·)‖2L2

= supE‖x(·;w)‖2X .
C(J1, L2(Ω;X)) denotes the Banach space of all continuous maps from J1 = (−∞, a]
into L2(Ω;X), which satisfy supt∈J1 E‖x(t)‖2 < ∞. L0

2(Ω,X) = {f ∈ L2(Ω,X):
f is F0-measurable} denotes an important subspace.

We denote by C the closed subspace of all continuously differentiable process x ∈
C1(J, L2(Ω;X)) consisting of Ft-adapted measurable processes such that φ, ψ ∈
L0
2(Ω;B) and seminorm ‖·‖C defined by ‖x‖C = (supt∈J ‖xt‖2B)1/2, where

‖xt‖B 6MaE‖φ‖B +Ka sup
{
E
∥∥x(s)

∥∥, 0 6 s 6 a
}
,

‖yρ(s,ys)‖B 6
(
Ma + J̃φ

)
E‖φ‖B +Ka sup

{
E
∥∥y(θ)

∥∥, θ ∈ [0,max{0, s}
]}
,

s ∈ R(ρ−) ∪ [0, a].

Here J̃φ = supt∈R(ρ−) J
φ(t), Ka = supt∈J K(t) and Ma = supt∈JM(t). It can be

easily seen that C endowed with norm topology is a Banach space.

Definition 2. (See [2].) The Hausdorff’s measure of noncompactness χY for a bounded
set B in any Banach space Y is defined by

χY (B) = inf{r > 0, B can be covered by finite number of balls with radii r}.

Lemma 2. (See [2].) Let Y be a Banach space and B,C ⊂ Y be bounded, then the
following properties hold:

(i) B is pre-compact if and only if χY (B) = 0;
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Approximate controllability of a second-order stochastic system 755

(ii) χY (B) = χY (B) = χY (convB), where B and convB are closure and convex
hull of B, respectively;

(iii) χY (B) 6 χY (C) when B ⊂ C;
(iv) χY (B + C) 6 χY (B) + χY (C), where B + C = {x+ y, x ∈ B, y ∈ C};
(v) χY (B ∪ C) = max{χY (B), χY (C)};

(vi) χY (λB) = ‖λ‖χY (B) for any λ ∈ R;
(vii) If the map Q : D(Q) ⊂ Y → Z is Lipschitz continuous with constant k, then

χZ(QB) 6 kχY (B) for any bounded subset B ⊂ D(Q), where Z is a Banach
space;

(viii) If {Wn}+∞n=1 is a decreasing sequence of bounded closed nonempty subset of Y
and limn→∞ χY (Wn) = 0, then ∩+∞n=1 is nonempty and compact in Y .

Definition 3. Let X and Y be Banach spaces, and Φ, Ψ be the Measure of Noncompact-
ness (MNC) inX and Y , respectively. If for any continuous function f : D(f) ⊂ X → Y
and any O ⊂ D(f), Ψ [f(O)] > Φ(O) implies that O is relatively compact, then f is
called (Φ, Ψ)-condensing map.

Theorem 1. (See [2].) Let Ψ be a MNC on a Banach spaceX . Let f be (Ψ, Ψ)-condensing
operator. If f maps a nonempty, convex, closed subset M of the Banach space X into
itself, then f has atleast one fixed point in M .

Definition 4. The set given byR(f) = {x(T ) ∈ X: x is a mild solution of (1)} is called
reachable set of system (1) for some T > 0. R(0) is the reachable set of the corresponding
linear control system (2).

Definition 5. System (1) is said to be approximately controllable if R(f) is dense in X .
The corresponding linear system is approximately controllable ifR(0) is dense in X .

Lemma 3. (See [26].) Let X be Hilbert space, and X1, X2 closed subspaces such that
X = X1 + X2. Then there exists a bounded linear operator P : X → X2 such that
for each x ∈ X , x = x − Px ∈ X1 and ‖x1‖ = min{‖y‖: y ∈ X1, (1 − Q)(y) =
(1−Q)(x)}, where Q denotes the orthogonal projection on X2.

We state the corresponding linear control system

x′′(t) = Ax(t) +Bu(t), t ∈ J,
x(0) = x0, x′(0) = x1.

(2)

Lemma 4. (See [13].) Under the assumption that h : [0, a]→ X is an integrable function
such that

x′′(t) = Ax(t) + h(t), t ∈ J,
x(0) = x0, x′(0) = x1

and h is a function continuously differentiable,
t∫

0

C(t− s)h(s) ds = S(t)h(0) +

t∫
0

S(t− s)h′(s) ds.

Nonlinear Anal. Model. Control, 21(6):751–769
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3 Main result

We define mild solution of problem (1) as follows:

Definition 6. An Ft-adapted process x : (−∞, a]→ X is a mild solution of problem (1)
if x0 = φ, x′(0) = ψx(·) ∈ C1(J, L2(Ω,X)), the functions f(s, xρ(s,xs)), G(s, xs) and
g(s, xs) are integrable, and for t ∈ [0, a], the following integral equation is satisfied:

x(t) = C(t)φ(0) + S(t)
[
ψ + g(0, φ)

]
−

t∫
0

C(t− s)g(s, xs) ds

+

t∫
0

S(t− s)
[
f(s, xρ(s,xs)) +Bu(s)

]
ds+

t∫
0

S(t− s)G(s, xs) dW (s).

To prove our result, we always assume ρ : J×B→ (−∞, a] is a continuous function.
The following hypotheses are used:

(Hφ) The function t → φt is continuous from R(ρ−) = {ρ(s, ψ): ρ(s, ψ) 6 0} into
B, and there exists a continuous bounded function Jφ : R(ρ−)→ (0,∞) such
that ‖φt‖B 6 Jφ(t)‖φ‖B for every t ∈ R(ρ−).

(Hf ) f : J ×B→ X satisfies the following:

(i) For every x : (−∞, a] → X , x0 ∈ B and x|J ∈ PC, the function
f(·, ψ) : J → X is strongly measurable for every ψ ∈ B and f(·, t) is
continuous for a.e. t ∈ J .

(ii) There exists an integrable function αf : J → [0,+∞) and a monotone
continuous nondecreasing function Υf : [0,+∞) → (0,+∞) such that
‖f(t, v)‖ 6 αf (t)Υf (‖v‖B) for all t ∈ J and v ∈ B.

(HG) The function G satisfies the following conditions:

(i) For almost all t ∈ J , the functionG(t, ·) : B→ LQ(K,X) is continuous.
For all z ∈ B, the function G(·, z) : J → LQ(K,X) is strongly Ft-
measurable.

(ii) There exists integrable function αG : J → [0,∞) and a monotone contin-
uous nondecreasing function ΥG : [0,∞)→ (0,∞) such that∥∥G(t, z)

∥∥2
Q
6 αG(t)ΥG

(
‖z‖2B

)
.

(Hg) g : J ×B→ X satisfies the following:

(i) For every x : (−∞, a] → X , x0 ∈ B and x|J ∈ PC, the function
g(·, ψ) : J → X is strongly measurable for every ψ ∈ B and g(·, t) is
continuous for a.e. t ∈ J .

(ii) There exists an integrable function αg : J → [0,+∞) and a monotone
continuous nondecreasing function Υg : [0,+∞) → (0,+∞) such that
‖g(t, v)‖ 6 αg(t)Υg(‖v‖B) for all t ∈ J and v ∈ B.

http://www.mii.lt/NA

w i t 
h d

 r a
 w



Approximate controllability of a second-order stochastic system 757

(Hl) There exists a function H : [0,∞) × [0,∞) → [0,∞), which is locally in-
tegrable in t. H is a continuous, monotone, nondecreasing in second variable,
also H(t, 0) ≡ 0 and

E
(∥∥f(t,m1)− f(t,m2)

∥∥2)+ E
(∥∥G(t,m1)−G(t,m2)

∥∥2)
6 H

(
t,E
(
‖m1 −m2‖2

))
,

E
(∥∥g(t,m1)− g(t,m2)

∥∥2) 6 H
(
t,E
(
‖m1 −m2‖2

))
for all t ∈ [0, a] and m1,m2 ∈ L2(Ω,F , X).

(H1) lim
τ→∞

inf
Υ (τ)

τ
= 0, Υ = max{Υg, ΥG, Υf}.

Lemma 5. (See [2].) Let m be a nonnegative, continuous function, and A > 0 such that

m(t) 6 A

t∫
t0

H
(
s,m(s)

)
ds, t ∈ [0, T1],

then m has no nonzero nonnegative solution.

3.1 Existence and uniqueness of mild solution

In this section, y : (−∞, a] → X is the function defined by y0 = φ and y(t) =
C(t)φ(0) + S(t)(ψ + g(0, φ)) on J . Clearly, ‖yt‖B 6 KaE‖y‖a + MaE‖φ‖B, where
E‖y‖a = sup06t6a{E‖y(t)‖, 0 6 s 6 a}.
Theorem 2. If hypotheses (Hf ), (Hg), (Hφ), (HG), (H1) and (Hl) are satisfied, then the
initial value problem (1) has atleast one mild solution.

Proof. Let S(a) be the space S(a) = {x ∈ C(J, L2(Ω;X)): x(0) = 0} endowed with
the norm of uniform convergence. x ∈ C0 is identified with its extension to (−∞, a] by
assuming x(θ) = 0 for θ < 0.

Let Γ : S(a)→ S(a) be the map defined by

(Γx)(t) =

t∫
0

C(t− s)g(s, xs) ds+

t∫
0

S(t− s)f(s, xρ(s,xs)) ds

+

t∫
0

S(t− s)G(s, xs) dW (s),

where x0 = φ and x = x+ y on J . It is easy to see that

‖xt‖B 6 KaE‖y‖a +KaE‖x‖a, ‖xρ(s,xs)‖B 6 KaE‖y‖a +KaE‖x‖a.

Thus, Γ is well defined and has values in S(a). Also, by axioms of phase space, the
Lebesgue-dominated convergence theorem and conditions (Hf ), (HG), (Hg) it can be
shown that Γ is continuous.
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758 S. Das, D.N. Pandey, N. Sukavanam

Step 1. We prove that there exists k > 0 such that Γ (Bk) ⊂ Bk, where Bk = {x ∈
S(a): E‖x‖2 6 k}. In fact, if we assume that the assertion is false, then for k > 0, there
exist xk ∈ Bk and t ∈ (0, a] such that k < ‖E(Γxk(tk))‖2,

E
∥∥Γxk(tk)

∥∥2
6 3

{
E

∥∥∥∥∥
t∫

0

C(t− s)g(s, xks) ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)f(s, xkρ(s,xks)) ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)G(s, xks) dW (S)

∥∥∥∥∥
2}

6 3

{
Na

t∫
0

(
αg(s)Υg

(
‖xks‖B

))
ds+ Ña

t∫
0

αf (s)Υf
(
‖xkρ(s,xks)‖B

)
ds

+ Ñ Tr(Q)

t∫
0

E
∥∥G(s, xks)

∥∥2 ds

}

6 3

{
Na

t∫
0

Υg
(
c+K2

ak
) t∫

0

αg(s) ds+ ÑaΥf
(
c+K2

ak
) t∫

0

αf (s) ds

+ Ñ Tr(Q)ΥG
(
c+K2

ak
) t∫

0

αG(s) ds

}
ds.

Hence,

1 < 3

(
Na

a∫
0

α(s) ds lim
k→∞

inf
ΥG(c+K2

ak)

k
+ Ña

a∫
0

α(s) ds lim
k→∞

inf
Υf (c+K2

ak)

k

+ Ñ Tr(Q)

a∫
0

α(s) ds lim
k→∞

inf
ΥG(c+K2

ak)

k

)

6 3
(
Na+ Ña+ Ñ Tr(Q)

) a∫
0

α(s) ds lim
τ→∞

inf
Υ (τ)

τ
, (3)

where α = max{αg, αf , αG}. Thus, (3) is a contradiction to hypothesis (H1). Hence,
Γ (Bk) ⊂ Bk.

Step 2. We prove that Γ is a condensing map on any bounded subset of the space
C(J, L2(Ω;X)). Let O be a bounded subset of C(J, L2(Ω;X)). Let M[0, a] be the
partially ordered linear space of all real monotone nondecreasing functions on [0, a], and

http://www.mii.lt/NA

w i t 
h d

 r a
 w



Approximate controllability of a second-order stochastic system 759

we define a Measure of Noncompactness (MNC), Ψ : C(J, L2(Ω;X))→M[0, a] by[
Ψ(O)

]
(t) = χt[Ot],

where χt is the Hausdorff MNC in C(J, L2(Ω;X)) and Ot = {xt = x|[0,t], x ∈ O} ⊂
C([0, t], L2(Ω;X)). If Ψ(O) 6 Ψ(ΓO), then it is proved that Ψ(O) = 0. Since the
function t→ [Ψ(O)](t) is nondecreasing and bounded, so for all ε > 0, it has only a finite
number of jumps of magnitude greater than ε. The disjoint δ1 neighborhoods of the points
corresponding to these jumps are removed from [0, a]. Using points βj , j = 1, 2, . . . ,m,
divide the remaining part into intervals on which the oscillations of Ψ(O) is less than ε.
These points βj are surrounded by disjoint δ2 neighborhoods. Now consider the family
o = {ok, k = 1, . . . , l} of all functions continuous with probability one such that ok
coincides with an arbitrary element of [(Ψ(O))(βj)+1] net of the setOβj on the segment
σj = [βj−1 + δ2, βj − δ2], j = 1, . . . ,m, and linear on the complementary segments.

Suppose p ∈ (ΓO)t. This implies p = Γo for some o ∈ O and∥∥o− oβjr ∥∥2C([0,t],L2(Ω;X))
6
[(
Ψ(O)

)
(βj) + ε

]
,

where oβjr is some element of [(Ψ(O))(βj) + ε] net of the set Oβj , i.e. oβjr = ok|σj . This
implies that for s ∈ σj ,

E
∥∥o(s)− ok(s)

∥∥2 6 E sup
βj−1+δ26s6βj−δ2

E
∥∥o(s)− ok(s)

∥∥2
6
∥∥o− oβj∥∥2

C([0,t],L2(Ω;X))
6
∥∥o− oβjr ∥∥2C([0,t],L2(Ω;X))

6
[(
Ψ(O)

)
(s) + 2ε

]2
.

Then

E sup
06s6t

∥∥(Γo)(s)− (Γok)(s)
∥∥2

6 3

{
E

∥∥∥∥∥
t∫

0

C(t− s)
(
g(s, os + ys)− g(s, oks + ys)

)
ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)
(
f(s, oρ(s,os) + yρ(s,ys))− f(s, okρ(s,oks )

+ yρ(s,ys))
)

ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)
(
G(s, os + ys)−G(s, oks + ys)

)
dW (S)

∥∥∥∥∥
2}

6 3

{
Na

t∫
0

E
∥∥g(s, os + ys)− g(s, oks + ys)

∥∥2 ds

+ Ña

t∫
0

E
∥∥f(s, oρ(s,o(s)) + yρ(s,y(s))

)
− f(s, okρ(s,ok(s))

+ yρ(s,y(s)))
∥∥2 ds
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+ Ñ Tr(Q)

t∫
0

E
∥∥G(s, os + ys)−G(s, oks + ys)

∥∥2 ds

}

6 3

{
Na

t∫
0

H
(
s,E

∥∥os − oks∥∥2) ds+ Ña

t∫
0

H
(
s,E

∥∥oρ(s,o(s)) − okρ(s,ok(s))

∥∥2) ds

+ Ñ Tr(Q)

t∫
0

H
(
s,E‖os − oks‖2

)
ds

}

6 3K2
a

{
Na

t∫
0

H
(
s,E

∥∥o(s)− ok(s)
∥∥2) ds+ Ña

t∫
0

H
(
s,E

∥∥o(s)− ok(s)
∥∥2)ds

+ CT

t∫
0

H
(
s,E

∥∥o(s)− ok(s)
∥∥2) ds

}

6 A

m∑
j=1

∫
σj

H
(
s,E

∥∥o(s)− ok(s)
∥∥2)ds+ A

m∑
j=1

∫
[0,t]−∪mj=1σj

H
(
s,E

∥∥o(s)− ok(s)
∥∥2) ds.

By choosing δ1 > 0 and δ2 > 0 sufficiently small, we can make sure that

[(
Ψ(O)

)
(t)
]2

6
[(
Ψ(ΓO)

)
(t)
]2

6 ε+A

t∫
0

H
(
s,
(
Ψ(O)

)
(s) + 2ε

)
ds.

Together with Lemma 5, we get that Ψ(O) ≡ 0. Similarly, we can prove that Γ is
continuous. The MNC Ψ possess all required properties. The operator Γ is condensing.
Then from Theorem 1 it is implied that there exist a mild solution to problem (1).

The uniqueness of mild solution follows from Lemma 5. Let m1,m2 ∈ C(J, L2(Ω;
X)) be two mild solution of Γ . Then it follows that

E sup
06s6t

‖m1 −m2‖2

6 3

{
E

∥∥∥∥∥
t∫

0

C(t− s)
(
g(s,m1s + ys)− g(s,m2s + ys)

)
ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)
(
f(s,m1ρ(s,m1s) + yρ(s,ys))− f(s,m2ρ(s,m2s) + yρ(s,ys))

)
ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)
(
G(s,m1s + ys)−G(s,m2s + ys)

)
dW (S)

∥∥∥∥∥
2}
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Approximate controllability of a second-order stochastic system 761

6 3

{
Na

t∫
0

E
∥∥g(s,m1s + ys)− g(s,m2s + ys)

∥∥2 ds

+ Ña

t∫
0

E
∥∥f(s,m1ρ(s,m1(s)) + yρ(s,y(s)))− f(s,m2ρ(s,ok(s)) + yρ(s,y(s)))

∥∥2 ds

+ Ñ Tr(Q)

t∫
0

E
∥∥G(s,m1s + ys)−G(s,m2s + ys)

∥∥2 ds

}

6 3

{
N

t∫
0

H
(
s,E‖m1s−m2s‖2

)
ds+ Ña

t∫
0

H
(
s,E‖m1ρ(s,m1s)−m2ρ(s,m2s )

‖2
)

ds

+ Ñ Tr(Q)

t∫
0

H
(
s,E‖m1s −m2s‖2

)
ds

}

6 3K2
a

{
N

t∫
0

H
(
s,E

∥∥m1(s)−m2(s)
∥∥2) ds+ Ña

t∫
0

H
(
s,E

∥∥m1(s)−m2(s)
∥∥2) ds

+ CT

t∫
0

H
(
s,E

∥∥m1(s)−m2(s)
∥∥2) ds

}

6 A

t∫
0

H
(
s,E

∥∥m1(s)−m2(s)
∥∥2) ds.

Thus, from Lemma 5 it follows that ‖m1 −m2‖2C(J,L2(Ω;X)) ≡ 0. Hence, m1 = m2

3.2 Approximate controllability

In this section, the approximate controllability of the distributed control system (1) is
studied as an extension of co-author N. Sukavanam’s method in [26]. Assume that f , g,
G satisfy the following conditions:

(C1) The function f, g : J × B → X are continuous. For all t ∈ J and for all
z1, z2 ∈ L2(J ;B), there exists constants Lf , Lg > 0 such that∥∥f(t, z1)− f(t, z2)

∥∥ 6 Lf‖z1 − z2‖B,∥∥g(t, z1)− g(t, z2)
∥∥ 6 Lg‖z1 − z2‖B.

(C2) The function G : J ×B → LQ(K,X) is Lipschitz continuous with constant
LG > 0 such that ∥∥G(t, z1)−G(t, z2)

∥∥ 6 LG‖z1 − z2‖B.
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762 S. Das, D.N. Pandey, N. Sukavanam

Also, y : (−∞, a] → X is the function defined by y0 = φ and y(t) = C(t)φ(0) +
S(t)(z + g(0, φ) on J . Clearly, ‖yt‖B 6 KaE‖y‖a + MaE‖φ‖B, where ‖y‖a =
sup06t6a ‖y(t)‖.

The operators Λi : L2(J,X) → X , i = 1, 2, and Λ3 : L2(J,X) → C0(J, L2(Ω,
(LQ(K,X)))) are defined as

Λ1x(t) =

a∫
0

S(t− s)x(s) ds, Λ2x(t) =

a∫
0

C(t− s)x(s) ds,

Λ3x(t) =

a∫
0

S(t− s)x(s) dW (s).

Clearly, Λi are bounded linear operators. We set Ni = ker(Λi), Λ = (Λ1, Λ2, Λ3)
and N = ker(Λ). Let C0(J,X) denote the space consisting of continuous functions
x : J → X such that x(0) = 0 endowed with the norm of uniform convergence. Let
Ji : L2(J,X)→ C0(J,X), i = 1, 2, and J3 : L2(J,X)→ C0(J, L2(Ω,LQ(K,X))) be
maps defined as follows:

J1x(t) =

t∫
0

S(t− s)x(s) ds, J2x(t) =

t∫
0

C(t− s)x(s) ds,

J3x(t) =

t∫
0

S(t− s)x(s) dW (s).

So, Jix(a) = Λi(x), i = 1, 2. For a fixed φ ∈ B and x ∈ C(J,X) such that x(0) = φ(0),
we define maps F, g : C0(J,X) → L2(J,X) by F (z)(t) = f(t, zt + xt) and g(z)(t) =
g(t, zt + xt). We also define maps G(z)(t) = G(t, zt + xt). Here xt(θ) = x(t + θ)
for t + θ > 0; xt(θ) = φ(t + θ) for t + θ 6 0; zt(θ) = z(t + θ) for t + θ > 0 and
zt(θ) = 0 for t + θ 6 0. Clearly, F, g,G are continuous maps. We also assume that
L2(J,X) = Ni +R(B), i = 1, 2, and L2(J, L2(U0, X)) = N3 +R(B). We denote Pi,
i = 1, 2, 3, the map associated to this decomposition and constructsX2 = Ni, i = 1, 2, 3,
and X1 = R(B). Also, set ci = ‖Pi‖2. We introduce the space

Z =
{
z ∈ C0(J,X): z = J1(n1)− J2(n2) + J3(n3), ni ∈ Ni, i = 1, 2, 3

}
,

and we define the map Γc : Z → C0 by

Γc = J1 ◦ P1 ◦ F − J2 ◦ P2 ◦ g + J3 ◦ P3 ◦G.

Lemma 6. If hypothesis (Hφ)–(Hg) and conditions (C1)–(C2) hold for f , g, G and
aKa(c1ÑLf + c2NLg) <

√
2, then Γ has a fixed point.
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Approximate controllability of a second-order stochastic system 763

Proof. For z1, z2 ∈ Z, let ∆f(s) = f(s, z2ρ(s,z2(s)) + xρ(s,x(s))) − f(s, z1ρ(s,z1(s)) +

xρ(s,x(s))), ∆g(s) = g(s, z2s + xs) − g(s, z1s + xs), and ∆G(s) = G(s, z2s + xs) −
G(s, z1s + xs) for all 0 6 t 6 a, then

E
∥∥(Γcz1 − Γcz2)(t)∥∥2
6 3

{
E

∥∥∥∥∥
t∫

0

S(t− s)
[
P1(∆f)

]
(s) ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

C(t− s)
[
P2(∆g)

]
(s) ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
t∫

0

S(t− s)
[
P3(∆G)

]
(s) ds

∥∥∥∥∥
2}

6 3

{
Ña

t∫
0

E
∥∥[P1(∆f)

]
(s)
∥∥ds+Na

t∫
0

E
∥∥[P2(∆g)

]
(s)
∥∥ds

+ Ñ Tr(Q)

t∫
0

E
∥∥[P3(∆G)

]
(s)
∥∥ds

}

6 3

{
Ñac1

t∫
0

E‖∆f‖2 +Nac2

t∫
0

E‖∆g‖2 + Ñ Tr(Q)c3

t∫
0

E‖∆G‖2 ds

}
.

Now
a∫

0

E‖∆f‖2 ds

=

a∫
0

E
∥∥f(s, z2ρ(s,z2(s)) + xρ(s,x(s))

)
− f

(
s, z1ρ(s,z1(s)) + xρ(s,x(s))

)∥∥2 ds

6 L2
f

a∫
0

∥∥z2ρ(s,z2(s)) − z1ρ(s,z1(s))∥∥2B ds 6 L2
f

a∫
0

∥∥z2s − z1s∥∥2B ds

6 aL2
fK

2
a

∥∥z2 − z1∥∥2 ds.

Similarly, we find for g, G,

a∫
0

E‖∆g‖2 ds =

a∫
0

E
∥∥g(s, z2s + xs

)
− g
(
s, z1s + xs

)∥∥2 ds

6 L2
g

a∫
0

∥∥z2s − z1s∥∥2B ds 6 aL2
gK

2
a

∥∥z2 − z1∥∥2 ds,
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a∫
0

E‖∆G‖2 ds =

a∫
0

E
∥∥G(s, z2s + xs

)
−G

(
s, z1s + xs

)∥∥2 ds

6 L2
G

a∫
0

∥∥z2s − z1s∥∥2B ds 6 aL2
GK

2
a

∥∥z2 − z1∥∥2 ds.

So, ∥∥(Γz2 − Γz1)(t)∥∥ 6 bt
∥∥z2 − z1∥∥2,

where b = 3aK2
a(c1ÑaL

2
f + c2NaL

2
g + Ñ Tr(Q)c3LG). Repeating this, we get

∥∥(Γnz2 − Γnz1)(t)∥∥∞ 6
(ba)n

2(n−1)/(2n)

∥∥z2 − z1∥∥2.
As ab < 1 and 2(n−1)/(2n) →

√
2 as n→∞, the map Γn is a contraction for sufficiently

large n, and therefore, Γ has a fixed point.

Theorem 3. Assume that the associated linear control system (2) is approximately
controllable on J = [0, a]. Let the space L2([0, a], X) = Ni + R(B), i = 1, 2,
L2(J, LQ(K,X)) = N3 + R(B) and condition of the preceding lemma hold, then the
semilinear control system with state-dependent delay is approximately controllable on J .

Proof. Assume x(·) to be the mild solution and u(·) to be an admissible control function
of system (2) with initial conditions x(0) = φ(0) and x′(0) = ψ + g(0, φ). Let z
be the fixed point of Γ . So, z(0) = 0 and z(a) = Λ1(P1(F (z))) − Λ2(P2(g(z))) +
Λ3(P3(G(z))) = 0. By Lemma 3 we can split the functions F (z), g(z) with respect to the
decomposition L2(J,X) = Ni + R(B), i = 1, 2, and L2(J, LQ(K,X)) = N3 + R(B)
by setting, respectively,

q1 = F (z)− P1

(
F (z)

)
, q2 = g(z)− P2

(
g(z)

)
, q3 = G(z)− P3

(
G(z)

)
.

We define the function y(t) = z(t) + x(t) for t ∈ J and y0 = φ. So, x(a) = y(a). Thus,
by the properties of x and z,

y(t) = C(t)x(0) + S(t)x′(0)−
t∫

0

C(t− s)
(
g(s, ys)− q2(s)

)
ds

+

t∫
0

S(t− s)
(
f(s, yρ(s,y(s)) − q1(s) +Bu(s)

)
ds

+

t∫
0

S(t− s)
(
G(s, ys)− q3(s)

)
dW (s).
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Approximate controllability of a second-order stochastic system 765

As C1(J, L2(Ω,U)) is dense in LF2 (J, U), we can choose a sequence v2n ∈ C1(J,
L2(Ω,U)) and a sequence v1n, v

3
n ∈ LF2 (J, U) such that Bv1n → q1 and Bv2n → q2

as n→∞. By Lemma 4 we get

yn(t) =

t∫
0

S(t− s)
(
f
(
s, ynρ(s,y(s))

)
−Bv1n(s) +Bu(s)

)
ds

−
t∫

0

C(t− s)
(
g
(
s, yns

)
−Bv2n(s)

)
ds+ C(t)φ(0) + S(t)

(
w − g(0, φ)

)

+

t∫
0

S(t− s)
(
G
(
s, yns

)
−Bv3n(s)

)
dW (s)

=

t∫
0

S(t− s)f
(
s, ynρ(s,y(s))

)
ds

+

t∫
0

S(t− s)
(
−Bv1n(s)−B d

ds
v2n(s)−

√
sBv3n +Bu(s)

)
ds

−
t∫

0

C(t− s)g
(
s, yns

)
ds+ C(t)φ(0) + S(t)

(
w + g(0, φ)

)

+

t∫
0

S(t− s)G
(
s, yns

)
dW (s).

Hence, by Definition 5 and the last expression we conclude that yn is the mild solution of
the following equation:

d
(
p′(t) + g(t, pt)

)
=

(
Ap(t) + f(t, pρ(t,p(t))) +G(t, pt) dW (t)

+B

(
−v1n(t)− d

dt
v2n(t)−

√
tv3n(t) + u(t)

))
dt

x(0) = φ ∈ B, x′(0) = ψ.

Hence, yn(a) ∈ R(a, f, g,G, φ, ψ). Since the solution map is generally continuous,
yn → y as n → ∞. Thus, y(a) ∈ R(a, f, g,G, φ, ψ). Therefore, R0(a, φ(0), ψ +
g(0, φ)) ⊂ R(a, f, g,G, φ, ψ), which means R(a, f, g,G, φ, ψ) is dense in X . Thus,
system (1) is controllable.

Remark 1. (See [15].) The condition L2([0, a], X) = Ni + R(B), i = 1, 2, implies
L2([0, a], X) = Ni +R(B), i = 1, 2, which in turn implies the approximate controlla-
bility of the linear control system (2).
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4 Example

In this section, we discuss a concrete partial differential equation applying the abstract
results of this paper. In this application, B is the phase space C0 × L2(h,X), see [19].

Consider the second-order neutral differential equation

∂

∂t

(
∂u(t, ξ)

∂t
+

t∫
−∞

π∫
0

b(t− s, η, ξ)u(s, η) dη ds

)

=
∂2u(t, ξ)

∂ξ2
+

t∫
−∞

a(t− s)u
(
s− ρ1(t)ρ2

(∥∥u(t)
∥∥), ξ) ds+Bv(t, ξ)

+ s

(
t,

∞∫
0

q2(s)y(t− s, ξ) ds

)
∂β(t), t ∈ [0, a], ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, a],

u(t, ξ) = φ(t, ξ), τ 6 0, 0 6 ξ 6 π,

(4)

where φ ∈ C0 × L2(h,X), 0 < t1 < · · · < tn < a. By defining the maps ρ, g, F :
[0, a]×B→ X

ρ(t, ψ) := ρ1(t)ρ2
(∥∥ψ(0)

∥∥),
g(ψ)(ξ) :=

0∫
−∞

π∫
0

b(s, υ, ξ)ψ(s, υ) dυ ds, F (ψ)(ξ) :=

0∫
−∞

a(s)ψ(s, ξ) ds

system (4) can be transformed into system (1). Assume that the functions ρi :R→ [0,∞),
a : R→ R are piecewise continuous.

(a) The functions b(s, η, ξ), ∂b(s, η, ξ)/∂ξ are measurable, b(s, η, π)=b(s, η, 0)=0,
and

Lg := max

{( π∫
0

0∫
−∞

π∫
0

1

h(s)

(
∂ib(s, η, ξ)

∂ξi

)2
dη dsdξ

)1/2

, i = 0, 1

}
<∞.

(b) The function F : R × R → R is continuous, and there is continuous function µ
such that

∫ 0

−∞ µ(s)2/h(s) ds <∞ and ‖F (t, ξ)‖ 6 µ(s)‖ξ‖.
(c) The functions aji ∈ C([0,∞);R), and

Lji :=

( 0∫
−∞

(aji (s))
2

h(s)
ds

)1/2

<∞, i = 1, 2, . . . , n, j = 1, 2.

Moreover, g(t, ·) is bounded linear operators.
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Approximate controllability of a second-order stochastic system 767

Hence, by assumptions (a)–(c) and Theorem 2 it is ensured that problem (4) has
a unique mild solution.

Now we check the approximate controllability of (4). For y ∈ D(A), y =
∑∞
n=1〈y,

φn〉φn and Ay = −
∑∞
n=1 n

2〈y, n〉φn, where φn(x) =
√

2/π sinnx, 0 6 x 6 π,
n = 1, 2, 3 . . . , is the eigenfunction corresponding to the eigenvalue λn = −n2 of
the operator A. φn is an orthonormal base. A will generate the operators S(t), C(t)
such that S(t)y =

∑∞
n=1(sin(nt)/n)〈y, φn〉φn, n = 1, 2, . . . , for all y ∈ X , and the

operator C(t)y =
∑∞
n=1 cos(nt)〈y, φn〉φn, n = 1, 2, . . . , for all y ∈ X . Let the infinite

dimensional control space be defined as U = {u: u =
∑∞
n=2 unφn,

∑∞
n=2 u

2
n < ∞}

with norm ‖u‖U = (
∑∞
n=2 u

2
n)1/2. Thus, U is a Hilbert space.

Let B̃ : U → X be defined as B̃u = 2u2φ1+
∑∞
n=2 unφn for u =

∑∞
n=2 unφn ∈ U .

The bounded linear operator B : L2([0, T ];U)→ L2([0, T ];X) is defined by (Bu)(t) =

B̃u(t).
Let a ∈ N ⊂ L2(0, T ;X), N is the null space of Γ . Also, a =

∑∞
1 an(s)φn.

Therefore,
T∫

0

S(T − s)a(s) ds = 0. (5)

This implies that
T∫

0

sinn(T − s)
n

an(s) ds = 0, n ∈ N .

The Hilbert space L2(0, T ) can be written as

L2(0, T ) = Sp{sin s}⊥ + Sp{sin 4s}⊥.

Thus, for h1, h2 ∈ L2(0, T ), there exists a1 ∈ {sin s}⊥, a2 ∈ {sin 4s}⊥ such that
h1 − 2h2 = a1 − 2a2. So, let u2 = h2 − a2, then h1 = a1 + 2u2, h2 = a2 + u2.
Also, let un = hn, n = 3, 4, . . . , and an = 0, n = 3, 4, . . . . Thus, we see that Lemma 3
is satisfied as U = {u: u =

∑∞
n=2 unφn,

∑∞
n=2 u

2
n < ∞} and B̃ : U → X: B̃u =

2u2φ1 +
∑∞
n=2 unφn. The approximate controllability is deduced from Theorem 3.

Conclusion. We prove existence and uniqueness of the system by assuming simple growth
conditions on the operators and Hausdorff measure of noncompactness. Our method to
prove approximate controllability, removes the need to assume the invertibility of a con-
trollability operator used by authors in [5], which fails to exist in infinite dimensional
spaces if the associated semigroup is compact. Our approach also removes the need
to check the invertibility of the controllability Gramian operator and associated limit
condition used by the authors in [24], which are practically difficult to verify and apply.

However, the case when the operator A is nondense in the Hilbert space X is still not
widely investigated. If the nondense case is similarly studied by using integrated semi-
groups, then the choice of operator A is not limited to only dense operators. Therefore,
a large class of stochastic partial differential equations belonging to this prototype of
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neutral functional differential equations can be studied. We considered the white noise as
a Wiener process, but this work can be extended to incorporate other disturbances in the
form of Poisson processes, etc.
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