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Abstract. In this paper, the existence and uniqueness of
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d solut initially obtained by use
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eutral stochastic differential system
nding linear system in a Hilbert
simple and fundamental assumptions on
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in L2([0, a], X') and L2(]0,
control system lies in the re
provided to illustrate tigg presenteigheory.
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1 Introductio

Random noise causes fluctuations in deterministic models. So, necessarily, we move
from deterministic problems to stochastic ones. Stochastic evolution equations are natu-
ral generalizations of ordinary differential equations incorporating the randomness into
the equations. Thereby, making the system more realistic, [9, 21] and the references
therein explore the qualitative properties of solutions for stochastic differential equations.
Considering the environmental disturbances, Kolmanovskii and Myshkis [22] introduced
a class of neutral stochastic functional differential equations, which are applicable in
several fields, such as chemical engineering, aero-elasticity and so on. In recent years,
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controllability of stochastic infinite-dimensional systems has been extensively studied for
various applications. Several papers studied the approximate controllability of semilinear
stochastic control systems, see, for instance, [5,6,8,11,12,23,24] and references therein.
Controllability results are available in overwhelming majority for abstract stochastic dif-
ferential delay systems; rather than for neutral second-order stochastic differential with
state-dependent delay.

Mahmudov [24] investigated conditions on the system operators so that the semilinear
control system is approximately controllable provided the corresponding linear system is
approximately controllable. The main drawback of the papers [11, 23, 24] is the need
to check the invertibility of the controllability Gramian operator and a associated limit
condition, which are practically difficult to verify and apply.

Neutral differential equations appear in several areas of applied atics and thus
studied in several papers and monographs, see, for instance, [16,.17, references
therein. Differential equations with delay reflect physical phenom ealistically
than those without delay.

Recently, much attention is paid to partial functional
dependent delay. For details, see [1,3,18,19,20]. As a matter
authors assume severe conditions on the operator faggily generat®d by A, which imply that
the underlying space X has finite dimensiog, Thus, equations treated in these works
are really ordinary and not partial equations.

approach also removes th

Hence, motivated by t ct in this paper, we study the existence and uniqueness
of mild solution and®a proxim ontrollability of the partial neutral stochastic differ-
ential equation of secorgorder with state delay. Specifically, we study the second-order
equations modeledyin the

g(tvxt)) = [A.’[(t) + f(ta xp(t,xt)) + Bu(t)] dt
+ G(t,z)dW(t), ae.t€ J=][0,al, (1)
ro=¢€B, 2(0)=1€X,

where A is the infinitesimal generator of a strongly continuous cosine family {C(t),
t € R} of bounded linear operators on a Hilbert space X. Let ({2, F, P) be a probability
space together with a normal filtration F;, ¢ > 0. The state space z(¢) € X, and the
control u(t) € L3 (J,U), where X and U are separable Hilbert spaces and d is the
stochastic differentiation. The history valued function z; : (—o0,0] = X, 24(0) = (¢t +
6) belongs to some abstract phase space B defined axiomatically; g, f are appropriate
functions. B is a bounded linear operator on a Hilbert space U. Let K be a separable
Hilbert space, and {W(t)};>0 is a given K-valued Brownian motion or Wiener process
with finite trace nuclear covariance operator ) > 0. The functions f,g : J x B — X
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are measurable mappings in X norm, and G : J x B — Lg(K,X) is a measurable
mapping in Lg(J, X) norm. Lg(J, X) is the space of all Q-Hilbert—Schmidt operators
from K into X. B is a bounded linear operator from U into X. ¢(t) is B-valued random
variable independent of Brownian motion W (¢) with finite second moment. Also, 9(t) is
a X -valued F;-measurable function.

2 Preliminaries

In this section, some definitions, notations and lemmas that are used throughout this paper
are stated. Let (§2, F, P) be a complete probability space endowed with complete family

of right-continuous increasing sub o-algebras { F;, t € J} such that F; . A X-valued
random variable is a F-measurable process. A stochastic process is a e@gilec§ion of random
variables S = {z(¢t,w) : 2 — X, ¢t € J}. We usually suppress (t) instead
of z(t, w).

Now suppose G,(t), n = 1,2,..., be a sequence of, valued one dimensional
standard Brownian motions mutually 1ndependent over ( Let ¢, be a complete
orthonormal basis in K. Q € L(K, K) be an operatogdefine Sn = AnSn With finite

trace Tr(Q) = >_77 ; Ay < 0. Let us define

W(t) = )

which is a K-valued stochasti and is called a Q-Wiener process. Let F; =
o(W(s), 0 < s < t) be the o-alg gelyrated by Wand F, = F. Let ¢ € L(K, X),

and if
ol = WNLRD) =D IV Andsnl* < o0
n=1

-HilbefySchmidt operator. The completion Lq (K, X) of L(K, X),
ology induced by norm [|¢[|, = (¢, ¢), is a Hilbert space.
€ R} of operators in B(X) is a strongly continuous cosine family

then ¢ is called a

(a) C(0) = I (1is the identity operator in X);
(b) C(t+s)+C(t—s)=2C(t)C(s) forallt,s € R;
(c) The map t — C(t)z is strongly continuous for each x € X.

{S(t), t € R} is the strongly continuous sine family associated to the strongly contin-
uous cosine family {C'(¢), ¢t € R}. Itis defined as S(t)x = fo s)zds,z € X, t € R.

The operator A is the infinitesimal generator of a strongly contlnuous cosine function
of bounded linear operators C'(t));cr, and S(t) is the associated sine function. Let N, N
be certain constants such that [|C'(¢)]|?> < N and ||S(¢)||> < N forevery t € J = [0, a].
For more details, see the book by Fattorini [13]. In this work, we use the axiomatic
definition of phase space ®B introduced by Hale and Kato [14].

Nonlinear Anal. Model. Control, 21(6):751-769
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Definition 1. (See [14].) Let B be a linear space of functions mapping (—oo, 0] into X
endowed with the seminorm ||-||ss and satisfies the following conditions:

(A) If & : (—o0,0 +b] — X, b > 0, such that z; € B and ([, ;44 € C([o,0 + b];
X), then for every ¢ € [0, o + b), the following conditions hold:
(i) z; € B;
(i) [Jlz(®) < Hllzells;
(i) ||zt||ls < K(t — o) sup{||z(s)||, o < s < t} + M(t + 0)||z,||5, Where
H > 0is a constant, K, M : [0,00) — [1,00), K is continuous, M is
locally bounded, and H, K, M are independent of x(-).

(B) The space ‘B is complete.

Lemma 1. (See [1].) Ify : (—o0,a] — X is a function such that and y|; €
PC(X), then
||yp(s,y5) B < (Ma+J¢)||¢||‘B +KaSU»p{Hy(9)’ O,max 073}}}a

s € R(p™) U[0, 4],

where J¢ = SUP¢eRr(p-) JO(t), M, = sup,. ; M (t/gd K, = max;c s K(t).

Let us denote E as the expectation defipeipby E(h Jo h(w)dP. Let Ly(£2, F,
ongly measurable, square integrable,
X-valued random variables equipped with ot [|z(-)[17, = sup E[lz(;w)|%-
C(J1, L2(82; X)) denotes the
into Lo(£2; X), which satisfy su
f is Fo-measurable} denofgs an imp

We denote by C the cl
CY(J, Ly(£2; X)) cBnsisting
L9(£2;B) and seminori-||c defined by ||z|c = (sup,c; ||7+]|3)

of all continuously differentiable process x €
-adapted measurable processes such that ¢,1 €
1/2 where

oEl|oMs + Ko sup{E|[z(s)||, 0 < s < a},

o+ J2)E|¢lls + Ko sup{E||y(0)||, 6 € [0,max{0,s}]},

[0, al.

Here J# = SUP;cr(p-) JO(t), Ko = sup,c; K(t) and M, = sup,c; M(t). It can be
easily seen that C endowed with norm topology is a Banach space.

Definition 2. (See [2].) The Hausdorff’s measure of noncompactness xy for a bounded
set B in any Banach space Y is defined by

Xy (B) = inf{r > 0, B can be covered by finite number of balls with radii r}.

Lemma 2. (See [2].) Let Y be a Banach space and B,C C Y be bounded, then the
following properties hold:

(i) B is pre-compact if and only if xy (B) = 0;
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(i) xv(B) = xy(B) = xy(convB), where B and convB are closure and convex
hull of B, respectively;

(iii) xv(B) < xy(C) when B C C,

(iv) xy(B+C) < xy(B)+ xy(C), where B+ C ={z+y,x € B,y C};

) xy(BUC) =max{xy(B), xv(C)};

i) xv(AB) = [[Allxy (B) for any X € R;

(vii) If the map Q : D(Q) C 'Y — Z is Lipschitz continuous with constant k, then
xz(@QB) < kxy(B) for any bounded subset B C D(Q), where Z is a Banach
space;

(viii) If {Wn}ig is a decreasing sequence of bounded closed nonempty subset of Y
and lim,, oo Xy (W) = 0, then N}>5 is nonempty and compaclyi

Definition 3. Let X and Y be Banach spaces, and @, ¥ be the Meas
ness (MNC) in X and Y, respectively. If for any continuous functioflg, :
and any O C D(f), Z[f(O)] = #(O) implies that O is relatively c
called (@, ¥)-condensing map.

Theorem 1. (See [2].) Let ¥ be a MNC on a Banach space X. Q ve (U, W)-condensing
operator. If f maps a nonempty, convex, closed swlset M of tiie Banach space X into
itself, then f has atleast one fixed point in M

Definition 4. The set given by R(f) = {«(@
reachable set of system (1) for some 7" > 0.
linear control system (2).

: x is'a mild solution of (1)} is called
e reachable set of the corresponding

Definition 5. System (1) is said e approximately controllable if R(f) is dense in X.
The corresponding linear gystem is afyproxithately controllable if R(0) is dense in X.

Lemma 3. (See [26].) Let e Hilbert space, and X1, X closed subspaces such that
X = X1 + Xs. Thén there ex bounded linear operator P : X — X5 such that
foreachz € X, v = Pz € Xy and ||z1|| = min{|ly|: y € X1, (1 — Q)(y) =
(1 - Q)(x)}, whelg Q dendgs the orthogonal projection on Xs.
We state th onding linear control system
2" (t) = Az(t) + Bu(t), teJ,
z(0) =20, 2/(0) =zt

2

Lemma 4. (See [13].) Under the assumption that h : [0, a] — X is an integrable function
such that

2" (t) = Azx(t) + h(t), teJ,
z(0) =2, 2/(0) = &

and h is a function continuously differentiable,

/ Clt — )h(s) ds = S()h(0) + / S(t — $)h'(s) ds.
0 0

Nonlinear Anal. Model. Control, 21(6):751-769
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3 Main result

We define mild solution of problem (1) as follows:

Definition 6. An F;-adapted process x : (—o0, a] — X is a mild solution of problem (1)
if 2o = ¢, 2/(0) = Ya(-) € C'(J, L2(£2, X)), the functions f(s, (s z.)), G(s,2) and
g(s,x) are integrable, and for ¢ € [0, a], the following integral equation is satisfied:

z(t) = C(t)p(0) + S(t) [¢ + 9(0, /Ct—s (s,z5)ds
0
+ [ St =s)[f(s,2p(s.0.)) + Bul(s)] ds + [ S(t —s) dw (s).
/* /*

To prove our result, we always assume p : JJ xB — (— is a contnuous function.

The following hypotheses are used:

(Hy) The function t — ¢, is continuous from Rigp™) P): p(s,) < 0} into
‘B, and there exists a continuous bounde ction J? : R(p~) — (0,00) such
that || ¢¢[ls < J?(t)||¢]|s for everfygt € R(p

(Hy) f:J xB — X satisfies the foll

(i) For every = : (—o0,a] — B and z|; € PC, the function
fe): J = &i ngly urable for every ¢» € B and f(-,t) is
continuous for a.

nction ay : J — [0,+00) and a monotone
function 7y : [0,4+00) — (0, +00) such that
| f(t®)]| < af (lv]|) forall t € J and v € B.

(Hg) The function&iﬁes the following conditions:
i Imost aidt € J, the function G(¢,-) : B — L (K, X) is continuous.

z € ‘B, the function G(-,z) : J — Lg(K,X) is strongly F;-
ble.

(i) exists integrable function o : J — [0, 00) and a monotone contin-
uous nondecreasing function Y¢ : [0, 00) — (0, 00) such that
G2y, < aa®Ta(I213)-

(Hg) g:J x*B — X satisfies the following:

(i) For every = : (—o00,a] — X, 9 € B and z|; € PC, the function
g(-,¢) : J — X is strongly measurable for every ¢ € B and g(-,¢) is
continuous for a.e. t € J.

(ii) There exists an integrable function c, : J — [0,+00) and a monotone
continuous nondecreasing function 7, : [0, +00) — (0, 4+00) such that
lg(t,v)|| < ag(t)Yy(JJv]|es) forallt € J and v € B.
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(H;) There exists a function H : [0,00) x [0,00) — [0,00), which is locally in-
tegrable in t. H is a continuous, monotone, nondecreasing in second variable,
also H(t,0) = 0 and

E(|[f(tm1) — F(t,mo)|) + B(| Gt m1) — Gt ms)|)
< H(t,E(|mi —ma?)),
E(||g(t.m1) — g(t, ma)[|*) < H(t,E(||m1 — ma|?))
forallt € [0,a] and my,mo € Ly(£2, F, X).

r
(Hy) lim inf ﬂ =0, Y =max{T,,%c, s}
T—>00 T
Lemma 5. (See [2].) Let m be a nonnegative, continuous function, a 0 such that

m(t) < QK/H(s,m(s)) ds, te )

then m has no nonzero nonnegative solution.

In this section, y : (—o0,a] — X is th
C(t)p(0) + S(t)(v» + ¢g(0,¢)) on J. Clearl
Ellylla = supo<i<a {Elly(D)]], :

defined by yo = ¢ and y(t) =
3 < KoE|ylo + MoE| ¢, where

Proof. Let S(a) be & space = {x € C(J, L2(£2; X)): 2(0) = 0} endowed with
the norm of uniform coffyergence. = € Cj is identified with its extension to (—oo, a] by
assuming x(6) = §for 6

Let I': S( (a) be the map defined by

t

[t = 9gtsmmdst [t 81670 ds
0 0

+ [ S(t—s)G(s,zs) dW (s),
/

where Tgp = ¢ and T = x + y on J. It is easy to see that
1Te]|s < KaE”y”a + K El[z][4, ”fp(&fs) B < KGEH?JHG + K El[z][4.

Thus, I" is well defined and has values in S(a). Also, by axioms of phase space, the
Lebesgue-dominated convergence theorem and conditions (Hy), (Hg), (Hg) it can be
shown that I is continuous.

Nonlinear Anal. Model. Control, 21(6):751-769
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Step 1. We prove that there exists k > 0 such that I'(By) C By, where By, = {z €
S(a): E|z|* < k}. In fact, if we assume that the assertion is false, then for k > 0, there
exist 7y € By and t € (0,a] such that k < ||E(Izx(t))||%

EHFIk(tk>H2

< 3{E

+E

t

/C’(t —8)g(s, T, )ds

0
t

+ E
2
/ S(t— $)G(s, Tx,) AW (S) }
0
< 3{Na/(ag(s)Tg(||ﬂs||%)) ds + ]Va/af(s)Tf(Hﬂp | %) ds
0

0

2 t

/ S(t — 8) (5, T pgomy) ds

0

2

t

+NTr /EHG H ds
3{Na/Tg (c+ KZk) / NaT) (c+ K2k) af()d
0
+ NTr(Q % }
Hence, \
2k 2
1<3 s lim nf C+K +N/ )ds lim 1nfw
hme k—o0 k
N 2
+ NTr(Q) | a(s)ds lim inf M)
k— o0 k
0
Na+ N / L T(7)
<3(Na+Na+NTr(Q)) a(s)ds lim inf —=, 3)
T—00 T

0

where o = max{ag, oy, ag}. Thus, (3) is a contradiction to hypothesis (H;). Hence,
F(Bk) C Byg.

Step 2. We prove that I is a condensing map on any bounded subset of the space
C(J, L2(£2; X)). Let O be a bounded subset of C(J, Lo(§2; X)). Let M0, a] be the
partially ordered linear space of all real monotone nondecreasing functions on [0, a], and
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we define a Measure of Noncompactness (MNC), ¥ : C(J, La(£2; X)) — [0, a] by

[Z(0)] () = x:[O4],
where x; is the Hausdorff MNC in C(J, L2($2; X)) and Oy = {x; = x|, v € O} C
C([0,t], L2(£2; X)). If ¥(O) < ¥(I'O), then it is proved that ¥(O) = 0. Since the
function ¢ — [¥(0)](t) is nondecreasing and bounded, so for all € > 0, it has only a finite
number of jumps of magnitude greater than e. The disjoint §; neighborhoods of the points
corresponding to these jumps are removed from [0, a]. Using points §;, j = 1,2,...,m,
divide the remaining part into intervals on which the oscillations of ¥ (O) is less than e.
These points /3; are surrounded by disjoint J» neighborhoods. Now consider the family

o = {og, k = 1,...,1} of all functions continuous with probability one such that oy
coincides with an arbitrary element of [(¥(O))(/3;) + 1] net of the set Ogon the segment
oj = [Bj—1+02,B8; — d2], 5 = 1,...,m, and linear on the complem! egments.

Suppose p € (I'O);. This implies p = "o for some 0 € O an

112
[Jo— o HC([O,t],LQ(Q;X)) < [(#(0))

where 0}’ is some element of [(Z(0))(8;) + €] net of the set

implies that for s € o,
E|lo(s) — ok(s)H2 <E sup E|lo(s ok(s)H2
Bj—1+02<s<B
<

< HO — o HZC([O,t HO — o HQC([O,t],Lz(Q;X))
<[( 4 2c]
Then
EOithH(FO) (I'd ||2

- 8) (f(87 Op(s,os) + yp(s,ys)) - f(sa Okp(s,oks) + yp(s,ys))) ds

)

+E

/S(t — 5)(Gls,00 + ys) — (s, 0n, +1s)) AW(S)
0

t

< 3{Na/EHg(s,os +s) = g(s, 08, +yo)||"ds
0
t

~ 2
+ Na / E||£(5:0p(s,00) T Yn(s.(5) = F (55 0k 0 oy + Ynswisn) || ds
0

Nonlinear Anal. Model. Control, 21(6):751-769
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+NTr<Q>/E|IG(s,os +y5) — G(s, 08, +ys>1|2d8}
0

t t
3{Na/H(s7E||os —0k5||2) ds—i—ﬁa/H(s,EHop(s,o(s)) _Okp(s,ok(s» |2) ds
0 0

t

+NT(Q) [ H(s,Elos

O/ , . 2)ds}

<3K§{Na/H(s,E||o(s) —ok(s)Hz) ds—i—ﬁa/H(&EHo(s) — s)||2) ds
0 0

+CT/H(5,E||0(S) - ok(s)Hz) ds}

mZ/HsEu ~ o))

s s.
Together with LemiMta 5,&\81 ¥(0O) = 0. Similarly, we can prove that I" is

continuous. The MNC ossess all requ1red propertles The operator I is condensing.
1itis lied that there exist a mild solution to problem (1).

mild solution follows from Lemma 5. Let mq,mo € C(J, Lo(£2;
son of I'. Then it follows that

E sup [m; —
0<s<t

{

2

t
/ t—S 8 , Mg +ys) —9(37m23 +ys)) ds
0
t
t—s

(85 M1 p(s,mr ) F Yp(siwe)) = F(8M2p(5,m,,) + yﬂ(s,ys))) ds
2}

http://www.mii.lt/NA
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t
< 3{NG/E||9(S, My +ys) = g(s,ma, +ys)| ds
0
t

~ 2
+Na / E||£(5, 111 p(s.m1 (5)) + Yo(sw() = (525,00 () + Yp(ss)) ||~ ds
0

+ NTe(Q) / E[|G(s,mas +ys) — G(s,ma, + ys>|}2ds}
0

¢ t
< 3{N/H(S,E||mls—m25||2) ds + Na/H(s,EHmlp(symls)—m s,mzs)Hz) ds

+ NTr(Q /H s, E[lmi, — ma,||?) ds

3K2{N/H S E||m1 m2 /& S E||m1 m2 H )
+CT/H(5,E||m1( “ma(s)|[?) ds
0

< / H(s,E||m;<s>— $)|*)

Thus, from Lemma 5 it M4{ows that ||, — m2||20(J Lo(2:x)) = 0. Hence, my =my [

studied as an extenSion of co-author N. Sukavanam’s method in [26]. Assume that f, g,
G satisfy the following conditions:

(C1) The function f,g : J x B — X are continuous. For all ¢ € J and for all
21,22 € La(J;B), there exists constants L, Ly > 0 such that

| £(t,21) = f(t, 22)|| < Lyllz1 — 22|,
Hg(t,zl) —g(t, 22 H < Lgllz1 — 2o

(C2) The function G : J x B — Lg(K, X) is Lipschitz continuous with constant
L¢g > 0 such that

HG(t,Zl) — G(t,ZQ)H < LG”Zl — ZQ”%.

Nonlinear Anal. Model. Control, 21(6):751-769
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Also, y : (—o00,a] — X is the function defined by yo = ¢ and y(t) = C(¢)¢(0) +
S(t)(z + 9(0,¢) on J. Clearly, [[yslls < KoEllylla + MoEl|¢llw, where [[ylla =

suPo<i<a Y (@)]-
The operators A; : Lo(J, X) — X, 4 = 1,2, and A3 : La(J, X) — Co(J, La(£2,
(Lg(K,X)))) are defined as

Ayz(t) /St—s s)ds, Az (t) /Ct—s

a

Asa(t) = / St — $)a(s) AW (s).

0

Clearly, A; are bounded linear operators. We set 91; ker i) Ay, Ag, A3)
and 91 = ker(A). Let Cy(J, X) denote the space consi of contintuous functions
x : J — X such that 2(0) = 0 endowed with the nor of Ziform convergence. Let
JlLQ(J,X)%Co(J,X),Z—l,Q,&Hng .QLQ KX))

maps defined as follows:

t

Jiz(t) = S(t —5) C(t — s)x(s)ds,
ng(t)
So, Jiz(a) = ), 1,2. xed ¢ € Bandz € C(J, X) such that 2(0) = ¢(0),
wedeﬁnemapng ,X) — L2(J,X) by F(2)(t) = f(t,z + ) and g(2)(t) =
g(t,ze + z). WeQQlso d maps G(z)(t) = G(t,z + x¢). Here x:(0) = x(t + 6)
fort + 6 > 0f :qﬁ(t 0) fort+6 < 0; 2(0) = 2(t+6) fort +60 > 0 and
z(0) =0 0. Clearly, F, g, G are continuous maps. We also assume that
L3(J, X) = (B),i=1,2,and Ly(J, Ly(Up, X)) = N3 + R(B). We denote P,

1 = 1,2, 3, the map associated to this decomposition and constructs Xo = I;,7 = 1,2, 3,
and X1 = R(B). Also, set ¢; = || P;||*. We introduce the space

7 = {Z € C()(J,X)Z z = Jl(nl) — JQ(TL2) +J3(n3), n; €N, 1= 1,2,3},
and we define the map I'. : Z — Cj by
I.=JioPioF—JsoPyog+JsoP30G.

Lemma 6. If hypothesis (Hy)-(Hg) and conditions (C1)~(C2) hold for f, g, G and
aK,(ctNLy 4+ ca2NLy) < V2, then T has a fixed point.
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Proof. For 21,22 € Z, let Af(s) = f(s,2 (0,52(9) + Zp(s,a(s)) = F(8: 255 100 T+

xp(s,z(s)))’ Ag(s) = g(s,zf + 1‘3) - 9(5 + 1'5) and AG( ) G(S,Zg + 1'5) -
G(s, 2z} + ) forall 0 < t < a, then

E| (2" - 1.2 @)
B{E

E /S(t —5)[Ps(AG)](s)ds
0

2
+E

)

< 3{1% [ lP@n]@]ds+ Na [ B [pia0)
0

0

t 2

/C(t ) [PQ(Ag)] (s)ds

0

(t—s) [Pl (Af)] (s)ds

t

+ NTr(Q) /EH [Ps(AG)](s)]| ds

0
t
3{Nac1/E||Af||2+Nac2/ 2L NTr(Q E||AG||2ds}
0 0
Now
JE SR
) )
2
= / E| S’%wﬁ%(s,x(s))) — [ (8, 2p(5,21(s)) F To(s.msn) || ds

2osm2(6) — (st (ol A5 < L / 122 = 22 ds
0
< al2K2|2? — 2|7 ds.

Similarly, we find for g, G,

a a

[ B as = [Blyte. 2 ) —o(o1 + )

0 0

a
o A E R s v B
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a a

JEIacIas = [EG(s. 22+ 2) - Olon st o) s
0

0
a
< I / |22 — 213 ds < a2 K222 — 21| ds.
0

So,
(1= = D= )| < be2> = 2|7,

where b = 3aK§(01]\7aLfc + caNaL} + N Tr(Q)csL¢). Repeating this, we get

n 2 n 1 (ba)" 2 1
[(rm2? = m2t) (1), < 9(n—1)/(2n) [E
Asab < 1and 2("=D/(n) 5 /2 as n — oo, the map "™ traction for sufficiently
large n, and therefore, " has a fixed point. O

Theorem 3. Assume that the associated linear trol system (2) is approximately
controllable on J = [0,a]. Let the spa 2([0,aMX) = 9 + R(B), i = 1,2,
Ly(J,Lo(K,X)) = N3 + R(B) and condiglg of the Preceding lemma hold, then the
semilinear control system with state-depen is approximately controllable on J.

Proof. Assume z(-) to be the ny ion and | -) to be an admissible control function
= ¢(0) and 2'(0) = ¥ + ¢(0,¢). Let z
a® z(a) = A1(Py(P(2)) — As(Pa(g(2))) +
split the functions F'(z), g(z) with respect to the
(B).i = 1,2, and Ly(J, Lo (K, X)) = M5 + R(B)

¢ =F(z) - (z)), g2 =9g(z) — P2 (g(z)), g3 = G(2) — Pg(G(Z)).

(t) = 2(t) + z(t) fort € Jand yo = ¢. So, z(a) = y(a). Thus,
by the properties and z,
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As CH(J,Ly(2,U)) is dense in L7 (J,U), we can choose a sequence v2 € C(J,
Ly(£2,U)) and a sequence v.,v3 € L (J,U) such that Bvl — ¢ and Bv2 — ¢o

n» - n
as n — oo. By Lemma 4 we get

t
() = [ 80— 5)(F (5.3 on) — Bobls) + Bu(s)) ds
0
t
~ [ = 5) ols02) = B (9) ds+ COAO) + S(0)(w - 9(0,0)
0
t
+ / S(t—s)(G(s,yY) — Bua(s)) dW (s)
0
t
= /S(t - S)f(57 yZ(s,y(s))) ds
0
/ d
+ / S(t—s) (—Bv}t(s) — B4v2(s) sBuv3 + Bu(s)) ds
0
t
—/Ct—s (s,y2) ds + C( S(t) (w+ g(0,9))
0
t
—I—/S (t—1s) ,ys
0
Hence, by Definition 5 the last expression we conclude that y” is the mild solution of

the following equaion:

B( D~ 0~ Vi) + ) )
=

z(0)=¢ €B, 2/(0)
Hence, y™(a) € R(a, f,9,G,d,1). Since the solution map is generally continuous,
y" — yasn — oo. Thus, y(a) € R(q, f,g,G,d,v). Therefore, Ro(a, d(0),v +

g(0,9)) C Rla,f,g,G,¢,v), which means R(a, f,g,G, $,v) is dense in X. Thus,
system (1) is controllable. O

Remark 1. (See [15].) The condition L2([0,a], X) = N; + R(B), i = 1,2, implies
Ly([0,a], X) = M; + R(B), i = 1,2, which in turn implies the approximate controlla-
bility of the linear control system (2).
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4 Example
In this section, we discuss a concrete partial differential equation applying the abstract

results of this paper. In this application, 9B is the phase space Cy x L?(h, X), see [19].
Consider the second-order neutral differential equation

at< // (t—s,m,8)u sn)dnd8>

—oo 0
0%u(t, /
=2 8(52 £ _1-_[0 a(t — s)u(s — pr(t)p2(|Ju(t)]]),€) ds + Bo(t,€) o

+ 8<t7/QQ(s)y(t - 875) d8> aﬁ(t)v te [0,@], 5 )

0
w(t,0) =u(t,7) =0, te]lo0,al,
u(t7§):¢(t7£)? Tg(), Ogggﬂ.’

where ¢ € Cy x L?(h, X), 0 < t; < -- N t,, < @By defining the maps p, g, F :
[0,a] x B = X
0 = 0
- / bs. v,€) © = [ a9
system (4) can be tr forme system(l) Assume that the functions p; : R— [0, 00),
a : R — R are piecew ontlnu
(a) The functi b ), Ob(s,n,&) /O are measurable, b(s,n, 7)=>b(s,n,0)=0,
and
0 1/2
Ly (/// < 835:’5)) dndsd§> ,i:0,1}<<>o
0 —oo

(b) The function F' : R x R — R is continuous, and there is continuous function u
0
such that [~ pu(s)?/h(s)ds < oo and ||F(t,&)| < u(s)|€].

(¢) The functions a? € C([0, 00); R), and

0 j 9 1/2
‘Z = /Mds < 00, i:1727"'7n7j:172‘
h(s)
oo

Moreover, g(t, -) is bounded linear operators.
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Hence, by assumptions (a)—(c) and Theorem 2 it is ensured that problem (4) has
a unique mild solution.

Now we check the approximate controllability of (4). Fory € D(A), y = >_>° (v,
Gn)pn and Ay = — > n*(y,n)¢,, where ¢,(x) = /2/msinnz, 0 < = < m,
n = 1,2,3..., is the eigenfunction corresponding to the eigenvalue )\, = —n? of
the operator A. ¢, is an orthonormal base. A will generate the operators S(t), C(t)
such that S(t)y = >_.7 (sin(nt)/n){y, dn)dn, n = 1,2,..., forall y € X, and the
operator C(t)y = Y o2 | cos(nt)(y, pn)pn.n =1,2,..., forall y € X. Let the infinite
dimensional control space be defined as U = {u: u = Y o0, U, D neopu? < 00}
with norm [|ul| = (3°07, u2)'/2. Thus, U is a Hilbert space.

Let B : U — X be defined as Bu = 2ugy + 300, Uy, for u =
The bounded linear operator B : L2([0,7];U) — L2([0,T]; X) is define
Bu(t).

Leta € N C Ly(0,7;X), N is the null space of I'. Also,
Therefore,

00:2 UnPpn € U.

T
/S(T —s)a(s)ds = 0. (5)
0

This implies that

Thus, for hq, ho 6‘ 0,7T) exists a; € {sins}t, ag € {sin4s}* such that
hy — 2hy = a1 — 2Nlet us = ho — ag, then hy = a1 + 2us, hy = as + us.
Also, let u,, = h,, % = 3, ..,and a,, = 0,n = 3,4,.... Thus, we see that Lemma 3
is satisfied as PU =D 0 U@y Yoo ul < oofand B : U — X: Bu =

2ua 1 + The approximate controllability is deduced from Theorem 3.

Conclusion. We prove existence and uniqueness of the system by assuming simple growth
conditions on the operators and Hausdorff measure of noncompactness. Our method to
prove approximate controllability, removes the need to assume the invertibility of a con-
trollability operator used by authors in [5], which fails to exist in infinite dimensional
spaces if the associated semigroup is compact. Our approach also removes the need
to check the invertibility of the controllability Gramian operator and associated limit
condition used by the authors in [24], which are practically difficult to verify and apply.

However, the case when the operator A is nondense in the Hilbert space X is still not
widely investigated. If the nondense case is similarly studied by using integrated semi-
groups, then the choice of operator A is not limited to only dense operators. Therefore,
a large class of stochastic partial differential equations belonging to this prototype of

Nonlinear Anal. Model. Control, 21(6):751-769
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neutral functional differential equations can be studied. We considered the white noise as
a Wiener process, but this work can be extended to incorporate other disturbances in the
form of Poisson processes, etc.

Acknowledgment. The authors would like to express sincere gratitude to the reviewer
for his valuable suggestions. The first author would like to thank Ministry of Human
Resource and Development for their funding.
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