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Abstract. In this paper, we investigate the existence of at least three positive solutions to a singular
boundary value problem of Caputo’s fractional differential equations with a boundary condition
involving values at infinite number of points. Firstly, we establish Green’s function and its
properties. Then the existence of multiple positive solutions is obtained by Avery–Peterson’s fixed
point theorem. Finally, an example is given to demonstrate the application of our main results.
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1 Introduction

In this paper, we consider the following infinite-point fractional differential equations
boundary value problem:

cDα
0+u(t) + f

(
t, u(t), u′(t)

)
= 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =

∞∑
j=1

ηju(ξj),
(1)
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where 2 < α 6 3, ηj > 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j =
1, 2 . . . ), 0 < ∆ = 1 −

∑∞
j=1 ηjξj , f(t, x, y) may be singular at t = 0, and cDα

0+ is
the standard Caputo derivative. The existence of multiple positive solutions is obtained
for the boundary value problem under certain conditions. To our knowledge, this is the
first attempt to investigate the boundary value problem of Caputo’s fractional differential
equations with a boundary condition involving values at infinite number of points. In this
paper, we will study the existence of positive solutions to BVP (1), where x ∈ C2[0, 1]
is said to be a positive solution of BVP (1) if and only if x satisfies (1) and x(t) > 0,
x′(t) > 0 for any t ∈ (0, 1].

Recently, boundary value problems for nonlinear fractional differential equations have
attracted great research efforts worldwide, as they arise from the study of many important
problems in various discipline areas such as fluid flows, electrical networks, rheology,
biology and chemical physics. In practical applications, it is important to establish the
conditions for the existence of positive solutions. Hence, many authors have investigated
the existence of positive solutions for various fractional equation boundary value prob-
lems, and for details, the reader is referred to [2,3,4,5,10,11,12,14,15,16,20,21,22,24]
and the references therein. For some basic fixed point theorems, readers can refer to [6,8].
In [23], the author considered the following fractional differential equation:

Dα
0+u(t) + g(t)f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(i)(1) =

∞∑
i=1

αju(ξj),

where 2 < α, n − 1 < α 6 n, i ∈ [1, n − 2] is a fixed integer, αj > 0, 0 < ξ1 <
ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j = 1, 2, . . . ), f is allowed to have singularities with
respect to both time and space variables. Various theorems were then established for the
existence and multiplicity of positive solutions. In [17], the author discussed the existence
and multiplicity of positive solutions of the following problem:

Dα
0+u(t) = a(t)f

(
t, u(t)

)
, t ∈ (0, 1),

u(0) = u′(0) = 0, u(1) =

m∑
i=1

βiu(ξi),

where 2 < α 6 3,m > 1 is integer, βi > 0 for 1 6 i 6 m, 0 < ξ1 < ξ2 < · · · < ξm < 1,∑m
i=1 βiξ

α−1
i < 1, a(t) ∈ L[0, 1] is non-negative and not identically zero on any compact

subset of (0, 1), f : [0, 1]× [0,+∞)→ [0,+∞) is continuous and Dα
0+ is the Riemann–

Liouville differential fractional derivative of order α. Some results on the existence and
multiplicity of positive solutions were obtained by the fixed point theorem. In [9], the
authors investigated the existence of multiple positive solutions of the following fractional
differential equation boundary value problem:

cDα
0+u(t) + f

(
t, u(t), u′(t), . . . , u(i)(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(i−1)(0) = u(i+1)(0) = · · · = u(n−1)(0) = 0,

u(i)(1) = 0,
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where n− 1 < α 6 n, n > 2, α− i > 1, i ∈ N , 0 6 i 6 n− 1, f(t, x0, x1, . . . , xi) may
be singular at t = 0 and cDα

0+ is the standard Caputo derivative. The authors obtained the
existence result of at least three positive solutions for a two-point boundary value problem,
in which the nonlinear terms contain derivatives up to order i by using Avery–Peterson’s
fixed point theorem.

Motivated by the results above, in this paper, we investigate the existence of positive
solutions for a class of singular fractional differential equations subject to infinite-point
boundary conditions. Compared with previous work in the field, our work presented in
this paper has several new features. Firstly, values at infinite points are involved in the
boundary conditions of the boundary value problem (1). Secondly, our study is on singular
nonlinear differential boundary value problems, that is, f(t, u, v) is allowed to be singular
at t = 0. Thirdly, the nonlinear term involves the first order derivative. Fourthly, the main
tool used in this paper is Avery–Peterson’s fixed point theorem.

2 Preliminaries and lemmas

For the convenience of the reader, we first present some basic definitions and lemmas,
which are to be used in the proof of our results and can also be found in the recent literature
such as [18,19]. Firstly, we letE = C1[0, 1] be the Banach space with the maximum norm

‖u‖ = max
{
‖u‖0, ‖u′‖0

}
,

where ‖u‖0 = maxt∈[0,1] |u(t)|, ‖u′‖0 = maxt∈[0,1] |u′(t)|. We also list below a condi-
tion to be used later in the paper.

(H0) f : (0, 1] × R+ × R+ → R+, and there exists a constant 0 < σ < 1 such that
tσf(t, x0, x1) is continuous on [0, 1]× R+ × R+, in which R+ = [0,+∞).

Definition 1. (See [18, 19].) The Riemann–Liouville fractional integral of order α > 0
of a function y : (0,∞)→ R1 = (−∞,+∞) is given by

Iα0+y(t) =
1

Γ(α)

t∫
0

(t− s)α−1y(s) ds,

provided the right-hand side is pointwise defined on (0,∞).

Definition 2. (See [18,19].) The Riemann–Liouville fractional derivative of order α > 0
of a continuous function y : (0,∞)→ R1 is given by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

y(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0,∞).
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Definition 3. (See [18,19].) The Caputo fractional derivative of order α > 0 of a function
y : (0,∞)→ R1 is given by

cDα
0+y(t) =

1

Γ(n− α)

t∫
0

y(n)(s)

(t− s)α−n+1
ds,

where α is fractional number, n = [α] + 1, provided that the right-hand side is pointwise
defined on (0,∞).

Lemma 1. (See [18, 19].) Assume that u ∈ Cn[0, 1], then

Iα0+
cDα

0+u(t) = u(t)− C1 − C2t− · · · − Cntn−1,

where n is the least integer greater than or equal to α, Ci ∈ R1 (i = 1, 2, . . . , n).

Lemma 2. (See [7, Thm. 1.2.7].) Let H ⊂ C1[J,E], then H is a relatively compact set if
and only if :

(a) H ′ is equicontinuous and H ′(t) is a relatively compact set for any t ∈ J on E;
(b) There exists t0 ∈ J such that H(t0) is a relatively compact set on E.

Lemma 3. Given y ∈ C(0, 1) ∩ L1[0, 1], then the solution of the BVP

cDα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =

∞∑
j=1

ηju(ξj)
(2)

can be expressed by

u(t) =

1∫
0

G(t, s)y(s) ds, t ∈ [0, 1], (3)

where

G(t, s) =
1

∆Γ(α)

{
tP (s)(1− s)α−2 −∆(t− s)α−1, 0 6 s 6 t 6 1,

tP (s)(1− s)α−2, 0 6 t 6 s 6 1,
(4)

in which

P (s) = α− 1−
∑
s6ξj

ηj

(
ξj − s
1− s

)α−1
(1− s), ∆ = 1−

∞∑
j=1

ηjξj ,

and, obviously, G(t, s) is continuous on [0, 1]× [0, 1].

Proof. By means of Lemma 1, we can reduce (2) to an equivalent integral equation

u(t) = −Iα0+y(t) + C1 + C2t+ C3t
2
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for C1, C2, C3 ∈ R. Consequently, we get

u′(t) = −Iα−10+ y(t) + C2 + 2C3t,

u′′(t) = −Iα−20+ y(t) + 2C3.

From u(0) = u′′(0) = 0, u′(1) =
∑∞
j=1 ηju(ξj) we have C1 = C3 = 0, but C2 6= 0,

and thus,
u(t) = C2t− Iα0+y(t).

On the other hand, u′(1) =
∑∞
j=1 ηju(ξj), and so combining with

u′(1) = C2 − Iα−10+ y(1),

we get

C2 =

1∫
0

(1−s)α−2

Γ(α−1)(1−
∑∞
j=1 ηjξj)

y(s) ds−
∞∑
j=1

ηj

ξj∫
0

(ξj−s)α−1

Γ(α)(1−
∑∞
j=1 ηjξj)

y(s) ds

=

1∫
0

(1−s)α−2P (s)

Γ(α)∆
y(s) ds,

where

P (s) = α− 1−
∑
s6ξj

ηj

(
ξj−s
1−s

)α−1
(1− s) and ∆ = 1−

∞∑
j=1

ηjξj .

Hence,

u(t) = C2t− Iα0+y(t)

= −
t∫

0

∆(t− s)α−1

Γ(α)∆
y(s) ds+

1∫
0

(1− s)α−2tP (s)

Γ(α)∆
y(s) ds.

Therefore,

G(t, s) =
1

∆Γ(α)

{
tP (s)(1− s)α−2 −∆(t− s)α−1, 0 6 s 6 t 6 1,

tP (s)(1− s)α−2, 0 6 t 6 s 6 1,

and

∂G(t, s)

∂t
=

1

∆Γ(α)

{
P (s)(1− s)α−2 −∆(α− 1)(t− s)α−2, 0 6 s 6 t 6 1,

P (s)(1− s)α−2, 0 6 t 6 s 6 1.
(5)

It is easy to check that G(t, s) and ∂G(t, s)/∂t are uniformly continuous on [0, 1] ×
[0, 1].
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Lemma 4. Take a, b ∈ (0, 1) with a < b such that a > bα−1, (α− 1)bα−2 < 1, then we
have

0 6 G(t, s) 6 (α− 1)g(s), t, s ∈ [0, 1];

G(t, s) > ρg(s), t ∈ [a, b], s ∈ [0, 1];

0 6
∂G(t, s)

∂t
6 (α− 1)g(s), t, s ∈ [0, 1];

∂G(t, s)

∂t
> ρg(s), t ∈ [a, b], s ∈ [0, 1],

where

g(s) =
(1− s)α−2

Γ(α)∆
,

0 < ρ1 = ∆
(
a− bα−1

)
6 1, 0 < ρ2 = ∆

(
1− (α− 1)bα−2

)
6 1,

then

0 < ρ = min{ρ1, ρ2} 6 1.

Proof. By direct calculation, we get P ′(s) > 0, s ∈ [0, 1], and so P (s) is nondecreasing
with respect to s. For s ∈ [0, 1], we get

P (s) = α− 1−
∑
s6ξj

ηj

(
ξj − s
1− s

)α−1
(1− s)

> P (0) = α− 1−
∞∑
j=1

ηjξ
α−1
j > 1−

∞∑
j=1

ηjξj = ∆,

and, obviously,

P (s) = α− 1−
∑
s6ξj

ηj

(
ξj − s
1− s

)α−1
(1− s) 6 α− 1, s ∈ [0, 1].

Hence, for t, s ∈ [0, 1], we have

G(t, s) 6
tP (s)(1− s)α−2

Γ(α)∆
6
P (s)(1− s)α−2

Γ(α)∆
6 (α− 1)g(s),

∂G(t, s)

∂t
6
P (s)(1− s)α−2

Γ(α)∆
6 (α− 1)g(s).

Furthermore, for 0 6 s 6 t 6 1, we get

G(t, s) =
tP (s)(1− s)α−2 −∆(t− s)α−1

∆Γ(α)

=
tP (s)(1− s)α−2 −∆(t− s)α−2(t− s)

∆Γ(α)
> 0,
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and, obviously, for 0 6 t 6 s 6 1, we get

G(t, s) > 0.

On the other hand, for 0 6 s 6 t 6 1, we have

∂G(t, s)

∂t
=
P (s)(1− s)α−2 −∆(α− 1)(t− s)α−2

∆Γ(α)

>
P (0)(1− s)α−2 −∆(α− 1)(t− s)α−2

∆Γ(α)

>
(α− 1−

∑∞
j=1 ηjξ

α−1
j )(1− s)α−2 −∆(α− 1)(t− s)α−2

∆Γ(α)

>
((α− 1−

∑∞
j=1 ηjξ

α−1
j )−∆(α− 1))(1− s)α−2

∆Γ(α)

=
((α− 1)

∑∞
j=1 ηjξj −

∑∞
j=1 ηjξ

α−1
j )(1− s)α−2

∆Γ(α)
> 0,

and for 0 6 t 6 s 6 1, ∂G(t, s)/∂t > 0 obviously holds.
For t ∈ [a, b], s ∈ [0, 1], we get

G(t, s) =
tP (s)(1− s)α−2 −∆(t− s)α−1

∆Γ(α)

>
aP (s)(1− s)α−2 −∆(b− bs)α−1

∆Γ(α)

>
(P (s)a−∆bα−1)(1− s)α−2

∆Γ(α)

>
∆(a− bα−1)(1− s)α−2

∆Γ(α)
= ρ1g(s),

and for t ∈ [a, b], s ∈ [0, 1], we have

∂G(t, s)

∂t
=
P (s)(1− s)α−2 −∆(α− 1)(t− s)α−2

∆Γ(α)

>
P (s)(1− s)α−2 −∆(α− 1)(b− bs)α−2

∆Γ(α)

>
(P (s)−∆(α− 1)bα−2)(1− s)α−2

∆Γ(α)

>
∆(1− (α− 1)bα−2)(1− s)α−2

∆Γ(α)
= ρ2g(s).

Therefore, the proof of Lemma 4 is completed.

Nonlinear Anal. Model. Control, 21(5):635–650



642 L. Guo et al.

Now we define a cone P on C1[0, 1] and an operator A : P → C1[0, 1] as follows:

P =
{
u ∈ C1[0, 1], u(t) > 0, u′(t) > 0, t ∈ [0, 1], min

t∈[a,b]
u(j)(t) > γ‖u‖, j = 0, 1

}
,

where 0 < γ = ρ/(α−1) < 1 (0 < ρ 6 1 < α−1), a and b are the same as in Lemma 4,
and

Au(t) =

1∫
0

G(t, s)f
(
s, u(s), u′(s)

)
ds, u ∈ P.

Problems (1) has a positive solution if and only if u is a fixed point of A in P .

Lemma 5. The operator A : P → C1[0, 1] is continuous.

Proof. First, for u ∈ P , by the continuity of G(t, s), sσf(s, u(s), u′(s)), and the integra-
bility of s−σ ,

Au(t) =

1∫
0

G(t, s)f
(
s, u(s), u′(s)

)
ds, u ∈ P,

is well defined on P . It thus follows from the uniform continuity ofG(t, s) in [0, 1]×[0, 1]
and

∣∣Au(t2)−Au(t1)
∣∣ 6 1∫

0

∣∣G(t2, s)−G(t1, s)
∣∣s−σsσf(s, u(s), u′(s)

)
ds

that Au ∈ C[0, 1], u ∈ P . Furthermore, by the uniform continuity of ∂G(t, s)/∂t for
t, s ∈ [0, 1], we get

(Au)′(t) =

1∫
0

∂G(t, s)

∂t
f
(
s, u(s), u′(s)

)
ds ∈ C[0, 1].

Let un, u ∈ P , un → u in C1[0, 1]. Since ∂jG(t, s)/∂tj (j = 0, 1) is uniformly
continuous, there exists M > 0 such that∣∣∣∣∂jG(t, s)

∂tj

∣∣∣∣ 6M, t, s ∈ [0, 1], j = 0, 1.

On the other hand, since un → u in C1[0, 1], there exists A > 0 such that ‖un‖ 6 A
(n = 1, 2, . . . ), and then ‖u‖ 6 A. Furthermore, sσf(s, x0, x1) is continuous on [0, 1]×
R+ × R+, so sσf(s, x0, x1) is uniformly continuous on [0, 1] × [0, A] × [0, A]. Hence,
for any ε > 0, there exists δ > 0 such that, for any s1, s2 ∈ [0, 1], x10, x

2
0, x

1
1, x

2
1 ∈ [0, A],

|s1 − s2| < δ, |x10 − x20| < δ, |x11 − x21| < δ, we have∣∣sσ1f(s1, x10, x11)− sσ2f(s2, x20, x21)∣∣ < ε. (6)
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By ‖un − u‖ → 0, for the above δ > 0, there exists N such that, for all n > N , we have∣∣un(t)− u(t)
∣∣, ∣∣u′n(t)− u′(t)

∣∣ 6 ‖un − u‖ < δ ∀t ∈ [0, 1].

Hence, for any t ∈ [0, 1], n > N , by (6), we have∣∣tσf(t, un(t), u′n(t)
)
− tσf

(
t, u(t), u′(t)

)∣∣ < ε. (7)

Thus, for n > N , t ∈ [0, 1], by (7), we have∣∣(Aun)(t)− (Au)(t)
∣∣

=

∣∣∣∣∣
1∫

0

G(t, s)f
(
s, un(s), u′n(s)

)
ds−

1∫
0

G(t, s)f
(
s, u(s), u′(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

G(t, s)s−σ
(
sσf

(
s, un(s), u′n(s)

)
− sσf

(
s, u(s), u′(s)

))
ds

∣∣∣∣∣
6M

1∫
0

s−σ
(
sσf

(
s, un(s), u′n(s)

)
− sσf

(
s, u(s), u′(s)

))
ds

6Mε

1∫
0

s−σ ds

and ∣∣(Aun)′(t)− (Au)′(t)
∣∣

=

∣∣∣∣∣
1∫

0

∂G(t, s)

∂t
f
(
s, un(s), u′n(s)

)
ds−

1∫
0

∂G(t, s)

∂t
f
(
s, u(s), u′(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
1∫

0

∂G(t, s)

∂t
s−σ

(
sσf

(
s, un(s), u′n(s)

)
− sσf

(
s, u(s), u′(s)

))
ds

∣∣∣∣∣
6M

1∫
0

s−σ
(
sσf

(
s, un(s), u′n(s)

)
− sσf

(
s, u(s), u′(s)

))
ds

6Mε

1∫
0

s−σ ds,

and hence, we get ‖Aun − Au‖0 → 0, ‖(Aun)′ − (Au)′‖0 → 0 (n → ∞). That is,
‖Aun −Au‖ → 0(n→∞), namely, A is continuous in the space C1[0, 1].
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Lemma 6. A : P → P is completely continuous.

Proof. From Lemma 4 we have (Au)(j)(t) > 0 (j = 0, 1), t ∈ [0, 1] and

max
t∈[0,1]

(Au)(j)(t) = max
t∈[0,1]

1∫
0

∂jG(t, s)

∂tj
f
(
s, u(s), u′(s)

)
ds

6

1∫
0

max
t∈[0,1]

∂jG(t, s)

∂tj
f
(
s, u(s), u′(s)

)
ds

6

1∫
0

(α− 1)g(s)f
(
s, u(s), u′(s)

)
ds, j = 0, 1,

so ‖Au‖0, ‖(Au)′‖0 6
∫ 1

0
(α− 1)g(s)f(s, u(s), u′(s)) ds. Consequently,

‖Au‖ = max
{
‖Au‖0,

∥∥(Au)′
∥∥
0

}
6

1∫
0

(α− 1)g(s)f
(
s, u(s), u′(s)

)
ds.

On the other hand, for all u ∈ P , t ∈ [a, b], by Lemma 4, we have

(Au)(j)(t) =

1∫
0

∂jG(t, s)

∂tj
f
(
s, u(s), u′(s)

)
ds

>

1∫
0

ρj+1g(s)f
(
s, u(s), u′(s)

)
ds

> ρj+1

1∫
0

∂(j)G(t, s)

∂tj
f
(
s, u(s), u′(s)

)
ds

>
ρj+1

α− 1

1∫
0

(α− 1)g(s)f
(
s, u(s), u′(s)

)
ds

>
ρj+1

α− 1
‖Au‖ > ρ

α− 1
‖Au‖ = γ‖Au‖, j = 0, 1.

Thus, A(P ) ⊂ P .
Next, we will prove that AV is relatively compact in C1[0, 1] for bounded V ⊂ P .

Since V is bounded, there exists D > 0 such that, for any u ∈ V , ‖u‖ 6 D, and by
the continuity of tσf(t, x0, x1) on [0, 1] × [0, D] × [0, D], there exists C > 0 such that
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|sσf(s, u(s), u′(s))| 6 C for s ∈ [0, 1], u ∈ V . Hence, for t ∈ [0, 1], u ∈ V , we have

∣∣Au(t)
∣∣ =

1∫
0

G(t, s)f
(
s, u(s), u′(s)

)
ds =

1∫
0

G(t, s)s−σsσf
(
s, u(s), u′(s)

)
ds

6 C

1∫
0

(α− 1)g(s)s−σ ds =
CB1

Γ(α− 1)∆
,

where B1 =
∫ 1

0
(1− s)α−2s−σ ds. Similarly, we can derive∣∣(Au)′(t)

∣∣ 6 CB1

Γ(α− 1)∆
, t ∈ [0, 1], u ∈ V,

which shows that AV is bounded in C1[0, 1]. Next, we will verify that (AV )′ is equicon-
tinuous. Let t1, t2 ∈ [0, 1], t1 < t2, u ∈ V , we get

∣∣(Au)′(t2)− (Au)′(t1)
∣∣ =

∣∣∣∣∣
1∫

0

P (s)(1− s)α−2

Γ(α)∆
f
(
s, u(s), u′(s)

)
ds.

−
t2∫
0

(α− 1)(t2 − s)α−2

Γ(α)
f
(
s, u(s), u′(s)

)
ds

−
1∫

0

P (s)(1− s)α−2

Γ(α)∆
f
(
s, u(s), u′(s)

)
ds

+

t1∫
0

(α− 1)(t1 − s)α−2

Γ(α)
f
(
s, u(s), u′(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(α− 1)∆

t2∫
0

(t2 − s)α−2s−σsσf
(
s, u(s), u′(s)

)
ds

− 1

Γ(α− 1)∆

t1∫
0

(t1 − s)α−2s−σsσf
(
s, u(s), u′(s)

)
ds

∣∣∣∣∣
6

C

Γ(α− 1)∆

[ t2∫
0

(t2 − s)α−2s−σ ds−
t1∫
0

(t1 − s)α−2s−σ ds

]
.

Furthermore,
t∫

0

(t− s)α−2s−σ ds = tα−σ−1
1∫

0

(1− s)α−2s−σ ds.
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Thus, we obtain∣∣(Au)′(t2)− (Au)′(t1)
∣∣ 6 CB1

Γ(α)∆

(
tα−1−σ2 − tα−1−σ1

)
for all u ∈ V . From above and the uniform continuity of tα−1−σ on [0, 1] and together
with Lemma 2, we can derive that AV is relatively compact in C1[0, 1], and so we get
that A : P → P is completely continuous.

Definition 4. The map α is said to be a non-negative continuous concave functional on P ,
provided α : P → R+ is continuous and

α
(
tx+ (1− t)y

)
> α(x) + (1− t)α(y)

for all x, y ∈ P , t ∈ [0, 1].

Definition 5. The map β is said to be a non-negative continuous convex functional on P ,
provided β : P → R+ is continuous and

β
(
tx+ (1− t)y

)
6 β(x) + (1− t)β(y)

for all x, y ∈ P , t ∈ [0, 1].

3 Main result

Let ϕ, θ be non-negative continuous convex functionals on P , φ be a non-negative con-
tinuous concave functional on P , and ψ be a non-negative continuous functional on P .
Then, for non-negative numbers e, c, d, h, we define the following convex sets:

P (ϕ, h) =
{
x ∈ P

∣∣ ϕ(x) < h
}
,

P (ϕ, φ, c, h) =
{
x ∈ P

∣∣ φ(x) > c, ϕ(x) 6 h
}
,

P (ϕ, θ, φ, c, d, h) =
{
x ∈ P

∣∣ c 6 φ(x), θ(x) 6 d, ϕ(x) 6 h
}
,

R(ϕ,ψ, e, h) =
{
x ∈ P

∣∣ e 6 ψ(x), ϕ(x) 6 h
}
.

We will apply the following fixed point theorem of Avery and Peterson to solve
problem (1).

Lemma 7. (See [1, 13].) Let P be a cone of E, ϕ and θ be non-negative continuous
convex functionals on P , φ be a non-negative continuous concave functional on P , and
ψ be a non-negative continuous functional on P , ψ(µx) 6 µψ(x) for 0 6 µ 6 1 such
that, for some positive numbers L and h,

φ(x) 6 ψ(x) and ‖x‖ 6 Lϕ(x)

for all x ∈ P (ϕ, h). Let
A : P (ϕ, h)→ P (ϕ, h)

is completely continuous, and there exist positive numbers e, c, d with e < c such that the
following conditions are satisfied:
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(S1) {x ∈ P (ϕ, θ, φ, c, d, h): φ(x) > c} 6= φ and φ(Ax) > c for x ∈ P (ϕ, θ, φ,
c, d, h);

(S2) φ(Ax) > c for x ∈ P (ϕ, φ, c, h) and θ(Ax) > d;
(S3) 0 6∈ R(ϕ,ψ, e, h) and ψ(Ax) < e for x ∈ R(ϕ,ψ, e, h) with ψ(x) = e.

Then A has at least three fixed points x1, x2, x3 such that

ϕ(xi) 6 h, i = 1, 2, 3,

and

c < φ(x1), e < ψ(x2), φ(x2) < c, ψ(x3) < e.

Let the convex functions ψ(u) = θ(u) = ϕ(u) = ‖u‖ on P , and define a concave
function φ(u) = min{mint∈[a,b] |u(t)|,mint∈[a,b] |u′(t)|}, where a, b are the same as in
Lemma 4.

Theorem 1. Assume that there exist positive numbers e, c, d, hwith c > e, d > max{1/ρ,
e1−a/2}c, h > rc/(ρQ) and h > d such that:

(H3) tσf(t, x, y)) < h/r for (t, x, y) ∈ [0, 1]× [0, h]2;
(H4) f(t, x, y) > c/(ρQ) for (t, x, y) ∈ [a, b]× [c, d]2;
(H5) tσf(t, x, y) < e/r for (t, x, y) ∈ [0, 1]×[0, e]2, where r = (α−1)

∫ 1

0
g(s)s−σds,

Q =
∫ b
a
g(s) ds.

Then problem (1) has at least three fixed points u1, u2, u3 satisfying

‖ui‖ 6 h, i = 1, 2, 3,

and

c < min
{

min
t∈[a,b]

∣∣u1(t)
∣∣, min
t∈[a,b]

∣∣u′1(t)
∣∣}, e < ‖u2‖,

min
{

min
t∈[a,b]

∣∣u2(t)
∣∣, min
t∈[a,b]

∣∣u′2(t)
∣∣} < c, ‖u3‖ < e.

Proof. Let u ∈ P (ϕ, h). By condition (H3), we get

‖Au‖0 = max
t∈[0,1]

∣∣Au(t)
∣∣ 6 (α− 1)

1∫
0

g(s)s−σsσf
(
s, u(s), u′(s)

)
ds 6 h,

‖(Au)′‖0 = max
t∈[0,1]

∣∣∣∣∂(Au)(t)

∂t

∣∣∣∣ 6 (α− 1)

1∫
0

g(s)s−σsσf
(
s, u(s), u′(s)

)
ds 6 h.

Consequently, we obtain ϕ(Au) = ‖Au‖ 6 h. This, together with Lemmas 5 and 6,
means that A : P (ϕ, h)→ P (ϕ, h) is completely continuous.
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Take u(t) = cet−0.5a, t ∈ [0, 1]. By simple calculation, we have that u ∈ P , ‖u‖ < d,
and φ(u) > c and so {

u ∈ P (ϕ, θ, φ, c, d, h): c < φ(u)
}
6= ∅.

For u ∈ P (ϕ, θ, φ, c, d, h), by (H4), we get

φ(Au) = min
{

min
t∈[a,b]

∣∣Au(t)
∣∣, min
t∈[a,b]

∣∣(Au)′(t)
∣∣}

> ρ

1∫
0

g(s)f
(
s, u(s), u′(s)

)
ds >

b∫
a

ρg(s)
c

ρQ
ds = b,

which shows that condition (S1) is satisfied.
Take u ∈ P (ϕ, φ, c, h) and ‖Au‖ > d. Since Au ∈ P , we obtain

φ(Au) = min
{

min
t∈[a,b]

∣∣Au(t)
∣∣, min
t∈[a,b]

∣∣(Au)′(t)
∣∣} > ρ‖Au‖ > ρd > c,

which implies that condition (S2) holds.
Next, we will verify that condition (S3) holds. Forψ(0) = 0, we have 0 ∈ R(ϕ,ψ, e, h).

Let u ∈ R(ϕ,ψ, e, h) and ψ(u) = ‖u‖ = e, by (H5), we get

‖Au‖0 = max
t∈[0,1]

∣∣Au(t)
∣∣ 6 1∫

0

(α− 1)g(s)s−σsσf
(
s, u(s), u′(s)

)
ds

<
e(α− 1)

r

1∫
0

g(s)s−σ ds 6 e,

and ∥∥(Au)′
∥∥
0

= max
t∈[0,1]

∣∣∣∣∂(Au)(t)

∂t

∣∣∣∣ 6
1∫

0

(α− 1)g(s)s−σsσf
(
s, u(s), u′(s)

)
ds

<
e(α− 1)

r

1∫
0

g(s)s−σ ds 6 e.

Consequently, we have ψ(Au) = ‖Au‖ < e. Thus, condition (S3) holds.
By Lemma 7, we get that (1) has at least three positive solutions u1, u2, u3 satisfying

‖ui‖ 6 h, i = 1, 2, 3,

and
c < min

{
min
t∈[a,b]

∣∣u1(t)
∣∣, min
t∈[a,b]

∣∣u′1(t)
∣∣}, e < ‖u2‖,

min
{

min
t∈[a,b]

∣∣u2(t)
∣∣, min
t∈[a,b]

∣∣u′2(t)
∣∣} < c, ‖u3‖ < e.
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4 An example

Consider the following infinite-point boundary value problem:

cD
5/2
0+ u(t) + f

(
t, u(t), u′(t)

)
= 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′′(1) =

∞∑
j=1

1

2j2
u

(
1

j2

)
,

(8)

where

f(t, x, y) =


(x2 + y2)/(2

√
πt), (t, x, y) ∈ (0, 1]× [0, 1/2]× [0, 1/2],

499( 6
√
x+ 6
√
y)/(2

√
πt), (t, x, y) ∈ (0, 1]× [1, 20]× [1, 20],

499/(2
√
πt), (t, x, y) ∈ (0, 1]× [100,∞)× [100,∞).

Obviously,
√
tf(t, x, y) is continuous in [0, 1]×R+×R+, and

√
tf(t, x, y) 6 499·3/

√
π

for (t, x, y) ∈ [0, 1]× R+ × R+.
For Theorem 1, we take α = 2.5, σ = 0.5, a = 0.3, b = 0.4, ηj = 1/(2j2), ξj =

1/j2, ∆ = 1 − Σ∞j=1ηjξj ≈ 0.4589, g(s) = (1 − s)α−2/(Γ(α)∆) = 2(1 − s)1/2/
√
π,

r =
∫ 1

0
g(s)s−σ ds =

√
π, L =

∫ b
a
g(s) ds = 2(0.73/2 − 0.63/2)/3,

ρ1 = ∆
(
a− bα−1

)
≈ 0.0216,

ρ2 = ∆
(
1− (α− 1)bα−2

)
≈ 0.0235,

and as ρ1 < ρ2, ρ = ρ1.
Let e = 0.5, f = 1, g = 20, d = 500. By direct calculation, we get that the conditions

of Theorem 1 are satisfied. So, the BVP (8) has at least three positive solutions u1, u2, u3
satisfying

ui 6 500, i = 1, 2, 3,

and 1 < φ(u1), 0.5 < ‖u2‖, φ(u2) < 1, ‖u3‖ < 0.5.
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