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Abstract. Using a measure of non-compactness argument, we study in this paper the existence of
solutions for a class of functional equations involving a fractional integral with respect to another
function. Some examples are presented to illustrate the obtained results.
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1 Introduction and preliminaries

In this paper, we are concerned with the existence of solutions to the nonlinear integral
equation

y(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
a

h′(τ)u(t, τ, y(c1(τ)), y(c2(τ)), . . . , y(cn(τ)))

(h(t)− h(τ))1−α
dτ, (1)

where α ∈ (0, 1), 0 6 a < T , f, g : [a, T ] × R → R, µ, ν, ci : [a, T ] → [a, T ],
i = 1, . . . , n, u : [a, T ] × [a, T ] × Rn → R, and h : [a, T ] → R. Equation (1) can be
written in the form

y(t) = f
(
t, y
(
µ(t)

))
+ Γ(α)g

(
t, y
(
ν(t)

))
Iαa+,h

(
u
(
t, ·, y

(
c1(·)

)
, . . . , y

(
cn(·)v)

))
(t), t ∈ [a, T ],
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An existence result for a class of nonlinear integral equations of fractional orders 717

where Iαa+,h is the fractional integral of order α with respect to the function h defined by
(see [16])

Iαa+,hψ(t) =
1

Γ(α)

t∫
a

h′(τ)

(h(t)− h(τ))1−α
ψ(τ) dτ, t ∈ [a, T ].

In the case h(τ) = τ , Eq. (1) models some problems related to queuing theory and biology
(see [12]).

Using a measure of non-compactness argument, we provide sufficient conditions for
the existence of at least one solution to Eq. (1). Such technique was used by many authors
to establish existence results for various classes of integral equations. For more details,
we refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15] and the references therein. To the best
of our knowledge, integral equations of type (1) were not considered before.

At first, let us recall some definitions and preliminaries about the concept of measure
of non-compactness.

Let E be a Banach space with respect to a given norm ‖·‖. Let P(E) be the set of
all nonempty bounded subsets of E. We say that σ : P(E) → [0,∞) is a measure of
non-compactness (see [1]) if the following properties hold:

(P1) For all M ∈ P(E), we have

σ(M) = 0 =⇒ M is precompact;

(P2) For every pair (M1,M2) ∈ P(E)× P(E), we have

M1 ⊆M2 =⇒ σ(M1) 6 σ(M2);

(P3) For every M ∈ P(E),

σ(M) = σ(M) = σ(coM),

where coM denotes the closed convex hull of M ;
(P4) For every pair (M1,M2) ∈ P(E)× P(E) and η ∈ (0, 1), we have

σ
(
ηM1 + (1− η)M2

)
6 ησ(M1) + (1− η)σ(M2);

(P5) If {Mn} is a sequence of closed and decreasing (w.r.t ⊆) sets in P(E) such that
σ(Mn)→ 0 as n→∞, then M∞ :=

⋂∞
n=1Mn is nonempty and compact.

Our main tool in this paper is the Darbo’s theorem (see [1]).

Lemma 1. Let H be a nonempty, bounded, closed and convex subset of the Banach
space E. Let T : H → H be a continuous mapping such that

σ(TW) 6 Kσ(W), W ⊆ H,

where K ∈ (0, 1) is a constant. Then T has at least one fixed point.
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Let us fix some notations that will be used throw this paper. We denote byC([a, T ];R)
the set of real continuous functions defined in [a, T ]. Such set is a Banach space with
respect to the norm

‖z‖ = max
{∣∣z(t)∣∣: t ∈ [a, T ]

}
, z ∈ C

(
[a, T ];R

)
.

We denote by P(C([a, T ];R)) the set of all nonempty bounded subsets of C([a, T ];R).
LetW ∈ P(C([a, T ];R)). For w ∈ W and ρ > 0, set

ω(w, ρ) = sup
{∣∣w(t)− w(s)

∣∣: t, s ∈ [a, T ], |t− s| 6 ρ
}
.

We define the mapping Ω : P(C([a, T ];R))× [0,∞)→ [0,∞) by

Ω(W, ρ) = sup
{
ω(w, ρ): w ∈ W

}
, (W, ρ) ∈ P

(
C
(
[a, T ];R

))
× [0,∞).

It was proved in [5] that the mapping σ : P(C([a, T ];R))→ [0,∞) defined by

σ(W) = lim
ρ→0+

Ω(W, ρ), W ∈ P
(
C
(
[a, T ];R

))
,

is a measure of non-compactness in the Banach space C([a, T ];R).

2 Main result

We consider the following assumptions:

(H1) The functions
µ, ν, ci : [a, T ]→ [a, T ], i = 1, . . . , n,

are continuous;
(H2) There exist nonnegative constants L and p such that∣∣µ(t)− µ(s)

∣∣ 6 L|t− s|p, (t, s) ∈ [a, T ]× [a, T ];

(H3) There exist nonnegative constants D and q such that∣∣ν(t)− ν(s)
∣∣ 6 D|t− s|q, (t, s) ∈ [a, T ]× [a, T ];

(H4) The function f : [a, T ]× R→ R is continuous and satisfies∣∣f(t, u)− f(t, v)
∣∣ 6 λ|u− v|

for all (t, u, v) ∈ [a, T ]× R2, where λ is a nonnegative constant;
(H5) The function g : [a, T ]× R→ R is continuous and satisfies∣∣g(t, u)− g(t, v)

∣∣ 6 θ|u− v|

for all (t, u, v) ∈ [a, T ]× R2, where θ is a nonnegative constant;
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(H6) The function u : [a, T ]× [a, T ]× Rn → R is continuous and satisfies∣∣u(t, τ, x1, x2, . . . , xn)
∣∣ 6 ϕ

(
max

i=1,...,n
|xi|
)

for all (t, τ, x1, x2, . . . , xn) ∈ [a, T ]× [a, T ]×Rn, where ϕ : [0,∞)→ [0,∞)
is nondecreasing;

(H7) The function h : [a, T ]→ R is C1 and nondecreasing;
(H8) There exists r0 > 0 such that

λr0 +M + (θr0 +N)
ϕ(r0)

α

(
h(T )− h(a)

)α
< r0,

where
M = max

{∣∣f(t, 0)
∣∣: t ∈ [a, T ]

}
and N = max

{∣∣g(t, 0)
∣∣: t ∈ [a, T ]

}
.

Our main result is the following.

Theorem 1. Under assumptions (H1)–(H8), Eq. (1) has at least one solution y∗ ∈
C([a, T ];R). Moreover, such solution satisfies

‖y∗‖ 6 r0.

Proof. For any y ∈ C([a, T ];R), let

(Ty)(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
a

h′(τ)u(t, τ, y(c1(τ)), y(c2(τ)), . . . , y(cn(τ)))

(h(t)− h(τ))1−α
dτ

for all t ∈ [a, T ]. We claim that

TC
(
[a, T ];R

)
⊆ C

(
[a, T ];R

)
. (2)

To prove our claim, we have just to justify that the function

γ : t ∈ [a, T ] 7→ γ(t) =

t∫
a

h′(τ)u(t, τ, y(c1(τ)), y(c2(τ)), . . . , y(cn(τ)))

(h(t)− h(τ))1−α
dτ

is continuous in [a, T ]. Let {tn} be a sequence in [a, T ] such that {tn} converges to
a certain t ∈ [a, T ]. Without restriction of the generality, we may assume that tn > t for
n large enough. We have

∣∣γ(tn)− γ(t)
∣∣ =

∣∣∣∣∣
tn∫
a

h′(τ)U(tn, τ)

(h(tn)− h(τ))1−α
dτ −

t∫
a

h′(τ)U(t, τ)

(h(t)− h(τ))1−α
dτ

∣∣∣∣∣,
Nonlinear Anal. Model. Control, 21(5):716–729



720 R.P. Agarwal, B. Samet

where

U(tn, τ) = u
(
tn, τ, y

(
c1(τ)

)
, y
(
c2(τ)

)
, . . . , y

(
cn(τ)

))
,

U(t, τ) = u
(
t, τ, y

(
c1(τ)

)
, y
(
c2(τ)

)
, . . . , y

(
cn(τ)

))
.

Therefore,

∣∣γ(tn)− γ(t)
∣∣ 6 ∣∣∣∣∣

t∫
a

(
h′(τ)U(tn, τ)

(h(tn)− h(τ))1−α
− h′(τ)U(t, τ)

(h(t)− h(τ))1−α

)
dτ

∣∣∣∣∣
+

∣∣∣∣∣
tn∫
t

h′(τ)U(tn, τ)

(h(tn)− h(τ))1−α
dτ

∣∣∣∣∣
6

∣∣∣∣∣
t∫
a

h′(τ)

(h(t)− h(τ))1−α
(
U(tn, τ)− U(t, τ)

)
dτ

∣∣∣∣∣
+

∣∣∣∣∣
t∫
a

(
h′(τ)U(tn, τ)

(h(tn)− h(τ))1−α
− h′(τ)U(tn, τ)

(h(t)− h(τ))1−α

)
dτ

∣∣∣∣∣
+

tn∫
t

h′(τ)|U(tn, τ)|
(h(tn)− h(τ))1−α

dτ

:= An +Bn + Cn.

A simple application of the Dominated Convergence Theorem, yields

lim
n→∞

An = 0.

On the other hand, we have

Bn 6 ϕ
(
‖y‖
) t∫
a

(
h′(τ)

(h(t)− h(τ))1−α
− h′(τ)

(h(tn)− h(τ))1−α

)
dτ

=
ϕ(‖y‖)
α

((
h(t)− h(a)

)α
+
(
h(tn)− h(t)

)α − (h(tn)− h(a)
)α)

.

Passing to the limit as n→∞, we get

lim
n→∞

Bn = 0.

Finally,

Cn 6 ϕ
(
‖y‖
) tn∫
t

h′(τ)

(h(tn)− h(τ))1−α
dτ =

ϕ(‖y‖)
α

(
h(tn)− h(t)

)α
.

Passing to the limit as n→∞, we obtain

lim
n→∞

Cn = 0.
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As consequence, we have
lim
n→∞

∣∣γ(tn)− γ(t)
∣∣ = 0,

which proves (2). Then

T : C
(
[a, T ];R

)
→ C

(
[a, T ];R

)
is well-defined.

For r > 0, set
B(0, r) =

{
y ∈ C

(
[a, T ];R

)
: ‖y‖ 6 r

}
.

Let y ∈ B(0, r) for some r > 0. For all t ∈ [a, T ], we have∣∣(Ty)(t)
∣∣ 6 ∣∣f(t, y(µ(t)

))
− f(t, 0)

∣∣+
∣∣f(t, 0)

∣∣
+
(∣∣g(t, y(ν(t)

))
− g(t, 0)

∣∣+
∣∣g(t, 0)

∣∣)
×

t∫
a

h′(τ)|u(t, τ, y(c1(τ)), y(c2(τ)), . . . , y(cn(τ)))|
(h(t)− h(τ))1−α

dτ

6 λ
∣∣y(µ(t)

)∣∣+
∣∣f(t, 0)

∣∣
+
(
θ
∣∣y(ν(t)

)∣∣+
∣∣g(t, 0)

∣∣) t∫
a

h′(τ)ϕ(maxi=1,...,n |y(ci(τ))|)
(h(t)− h(τ))1−α

dτ

6 λ‖y‖+M +
(
θ‖y‖+N

)ϕ(‖y‖)
α

(
h(t)− h(a)

)α
6 λr +M + (θr +N)

ϕ(r)

α

(
h(T )− h(a)

)α
.

Taking r = r0, from (H8), we obtain ‖Ty‖ 6 r0. As consequence, we get

T
(
B(0, r0)

)
⊆ B(0, r0)

and T : B(0, r0)→ B(0, r0) is well-defined.
Now, we claim that T is a continuous operator in B(0, r0). In order to prove our

claim, take y, z ∈ B(0, r0) and ε > 0 such that

‖y − z‖ 6 ε.

For all t ∈ [a, T ], we have∣∣(Ty)(t)− (Tz)(t)
∣∣

6
∣∣f(t, y(µ(t)

))
− f

(
t, z
(
µ(t)

))∣∣
+
∣∣g(t, y(ν(t)

))
− g
(
t, z
(
ν(t)

))∣∣ t∫
a

h′(τ)|u(t, τ, y(c1(τ)), . . . , y(cn(τ)))|
(h(t)− h(τ))1−α

dτ

+
(∣∣g(t, z(ν(t)

))
− g(t, 0)

∣∣+
∣∣g(t, 0)

∣∣) t∫
a

h′(τ)(|V (t, τ)−W (t, τ)|)
(h(t)− h(τ))1−α

dτ,

Nonlinear Anal. Model. Control, 21(5):716–729
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where

V (t, τ) = u
(
t, τ, y

(
c1(τ)

)
, . . . , y

(
cn(τ)

))
,

W (t, τ) = u
(
t, τ, z

(
c1(τ)

)
, . . . , z

(
cn(τ)

))
.

Using the considered assumptions, for all t ∈ [a, T ], we obtain∣∣(Ty)(t)− (Tz)(t)
∣∣

6 λ
∣∣y(µ(t)

)
− z
(
µ(t)

)∣∣
+ θ
∣∣y(ν(t)

)
− z
(
ν(t)

)∣∣ϕ( max
i=1,...,n

∣∣y(ci(τ)
)∣∣) t∫

a

h′(τ)

(h(t)− h(τ))1−α
dτ

+
(
θ
∣∣z(ν(t)

)∣∣+N
)
ωε

t∫
a

h′(τ)

(h(t)− h(τ))1−α
dτ

6 λ‖y − z‖+
θ‖y − z‖ϕ(‖y‖)

α

(
h(t)− h(a)

)α
+

(θ‖z‖+N)ωε
α

(
h(t)− h(a)

)α
6 λε+

(
h(T )− h(a)

)α(θεϕ(r0) + (θr0 +N)ωε
α

)
,

where

ωε = sup
{∣∣u(t, τ, u1, . . . , un)− u(t, τ, v1, . . . , vn)

∣∣: t, τ ∈ [a, T ],

ui, vi ∈ [−r0, r0], |ui − vi| 6 ε, i = 1, . . . , n
}
.

Note that from the uniform continuity of the function u in [a, T ]× [a, T ]× [−r0, r0]n we
observe easily that limε→0+ ωε = 0. Then

‖Ty − Tz‖ 6 λε+
(
h(T )− h(a)

)α(θεϕ(r0) + (θr0 +N)ωε
α

)
.

Passing to the limit as ε→ 0+, we deduce the continuity of the operator T in B(0, r0).
Let W be a nonempty subset of B(0, r0). Let ρ > 0 be fixed, z ∈ W and t1, t2 ∈

[a, T ] be such that |t1 − t2| 6 ρ. Without restriction of the generality, we may assume
t1 > t2. We have∣∣(Tz)(t1)− (Tz)(t2)

∣∣
6
∣∣f(t1, z(µ(t1)

))
− f

(
t1, z

(
µ(t2)

))∣∣+
∣∣f(t1, z(µ(t2)

))
− f

(
t2, z

(
µ(t2)

))∣∣
+
(∣∣g(t1, z(ν(t1)

))
− g
(
t1, z

(
ν(t2)

))∣∣+
∣∣g(t1, z(ν(t2)

))
− g
(
t2, z

(
ν(t2)

))∣∣)
×

t1∫
a

h′(τ)|u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))|
(h(t1)− h(τ))1−α

dτ

+
(∣∣g(t2, z(ν(t2)

))
− g(t2, 0)

∣∣+
∣∣g(t2, 0)

∣∣)
http://www.mii.lt/NA
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×

( t1∫
a

h′(τ)u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t1)− h(τ))1−α
dτ

−
t2∫
a

h′(τ)u(t2, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t2)− h(τ))1−α
dτ

)
.

Using the considered assumptions, we obtain∣∣(Tz)(t1)− (Tz)(t2)
∣∣

6 λ
∣∣z(µ(t1)

)
− z
(
µ(t2)

)∣∣+ ωf (ρ) +
(
θ
∣∣z(ν(t1)

)
− z
(
ν(t2)

)∣∣+ ωg(ρ)
)

× ϕ(maxi=1,...,n |z(ci(τ))|)
α

(
h(T )− h(a)

)α
+
(
θ
∣∣z(ν(t2)

)∣∣+N
)

×

( t1∫
a

h′(τ)u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t1)− h(τ))1−α
dτ

−
t2∫
a

h′(τ)u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t1)− h(τ))1−α
dτ

+

t2∫
a

∣∣∣∣h′(τ)u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t1)− h(τ))1−α

− h′(τ)u(t1, τ, z(c1(τ)), . . . , z(cn(τ)))

(h(t2)− h(τ))1−α

∣∣∣∣∣dτ
+

t2∫
a

h′(τ)

(h(t2)− h(τ))1−α
∣∣u(t1, τ, z(c1(τ)

)
, . . . , z

(
cn(τ)

))
− u
(
t2, τ, z

(
c1(τ)

)
, . . . , z

(
cn(τ)

))∣∣ dτ)

6 λω1(ρ) + ωf (ρ) +
(
θω2(ρ) + ωg(ρ)

)ϕ(r0)

α

(
h(T )− h(a)

)α
+ (θr0 +N)

(
ϕ(r0)

α

(
h(t1)− h(t2)

)α
+
ϕ(r0)

α

((
h(t2)− h(a)

)α
+
(
h(t1)− h(t2)

)α − (h(t1)− h(a)
)α)

+
ω3(ρ)

α

(
h(t2)− h(a)

)α)
6 λω1(ρ) + ωf (ρ) +

(
θω2(ρ) + ωg(ρ)

)ϕ(r0)

α

(
h(T )− h(a)

)α
+ (θr0 +N)

(
2ϕ(r0)

α
ω(h, ρ) +

ω3(ρ)

α

(
h(T )− h(a)

)α)
,

Nonlinear Anal. Model. Control, 21(5):716–729
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where

ω1(ρ) = sup
{∣∣z(µ(t)

)
− z
(
µ(s)

)∣∣: t, s ∈ [a, T ], |t− s| 6 ρ
}
,

ω2(ρ) = sup
{∣∣z(ν(t)

)
− z
(
ν(s)

)∣∣: t, s ∈ [a, T ], |t− s| 6 ρ
}
,

ωf (ρ) = sup
{∣∣f(t, u)− f(s, u)

∣∣: t, s ∈ [a, T ], |t− s| 6 ρ, u ∈ [−r0, r0]
}
,

ωg(ρ) = sup
{∣∣g(t, u)− g(s, u)

∣∣: t, s ∈ [a, T ], |t− s| 6 ρ, u ∈ [−r0, r0]
}
,

ω3(ρ) = sup
{∣∣u(t1, s, u1, . . . , un)− u(t2, s, u1, . . . , un)

∣∣: t1, t2, s ∈ [0, T ],

|t1 − t2| 6 ρ, ui ∈ [−r0, r0], i = 1, . . . , n
}
.

Observe that

ω1(ρ) 6 sup
{∣∣z(t)− z(s)∣∣: t, s ∈ [a, T ], |t− s| 6 Lρp

}
= ω

(
z, Lρp

)
.

Similarly,

ω2(ρ) 6 sup
{∣∣z(t)− z(s)∣∣: t, s ∈ [a, T ], |t− s| 6 Dρq

}
= ω

(
z,Dρq

)
.

Note also that
lim
ρ→0+

ωf (ρ) = lim
ρ→0+

ωg(ρ) = lim
ρ→0+

ω3(ρ) = 0.

Therefore,

Ω(TW, ρ) 6 λΩ
(
W, Lρp

)
+ ωf (ρ)

+
(
θΩ
(
W, Dρq

)
+ ωg(ρ)

)ϕ(r0)

α

(
h(T )− h(a)

)α
+ (θr0 +N)

(
2ϕ(r0)

α
ω(h, ρ) +

ω3(ρ)

α

(
h(T )− h(a)

)α)
.

Passing to the limit as ρ→ 0+, we get

σ(TW) 6

(
λ+ θ

ϕ(r0)

α

(
h(T )− h(a)

)α)
σ(W).

Then we proved that for any nonempty subsetW of B(0, r0), we have

σ(TW) 6 Kσ(W),

where

K = λ+ θ
ϕ(r0)

α

(
h(T )− h(a)

)α
.

Note that from (H8) we have K < 1. Applying Darbo’s theorem (see Lemma 1), we
deduce that the operator T has at least one fixed point y∗ ∈ B(0, r0), which is a solution
to Eq. (1).
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3 Particular cases and examples

3.1 A functional equation involving the Riemann–Liouville fractional integral

Take
h(t) = t, t ∈ [a, T ],

in Eq. (1), we obtain the functional equation

y(t) = f
(
t, y
(
µ(t)

))
+ Γ(α)g

(
t, y
(
ν(t)

))
Iαa+
(
u
(
t, ·, y

(
c1(·)

)
, . . . , y

(
cn(·)

)))
(t), (3)

where Iαa+ is the Riemann–Liouville fractional integral defined by (see [16])

Iαa+ψ(t) =
1

Γ(α)

t∫
a

ψ(τ)

(t− τ)1−α
dτ, t ∈ [a, T ].

We can rewrite Eq. (3) in the form

y(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
a

u(t, τ, y(c1(τ)), . . . , y(cn(τ)))

(t− τ)1−α
dτ.

Then from Theorem 1 we deduce the following existence result.

Corollary 1. Suppose that assumptions (H1)–(H6) are satisfied. Suppose also that there
is some r0 > 0 such that

λr0 +M + (θr0 +N)
ϕ(r0)

α
(T − a)α < r0.

Then Eq. (3) has at least one solution y∗ ∈ C([a, T ];R). Moreover, such solution satisfies

‖y∗‖ 6 r0.

We present the following example to illustrate the above result.

Example 1. We consider the integral equation

y(t) =
2y(t2)

5
+

1 + t

8
+
y(cos t) + t2

36

t∫
0

ln(1 + |y(τ)|)
(1 + t+ τ)

√
t− τ

dτ. (4)

Setting

f(t, x) =
1 + t

8
+

2u

5
, g(t, x) =

u+ t2

36
, (t, x) ∈ [0, 1]× R,

u(t, s, x) =
ln(1 + |x|)
1 + t+ s

, (t, s, x) ∈ [0, 1]× [0, 1]× R,

µ(t) = t2, ν(t) = cos t, c1(t) = t, t ∈ [0, 1], α =
1

2
,
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we can rewrite Eq. (4) in the form

y(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
0

u(t, τ, y(c1(τ)))

(t− τ)1−α
dτ, t ∈ [0, 1].

For all t, s ∈ [0, 1], we have∣∣µ(t)− µ(s)
∣∣ =

∣∣t2 − s2∣∣ = |t+ s||t− s| 6 2|t− s|.

Then assumption (H2) is satisfied with

L = 2 and p = 1.

For all t, s ∈ [0, 1], we have∣∣ν(t)− ν(s)
∣∣ = | cos t− cos s| 6 |t− s|.

Then assumption (H3) is satisfied with

D = q = 1.

For all (t, u, v) ∈ [0, 1]× R2, we have∣∣f(t, u)− f(t, v)
∣∣ 6 2

5
|u− v|.

Then assumption (H4) is satisfied with

λ =
2

5
.

For all (t, u, v) ∈ [0, 1]× R2, we have∣∣g(t, u)− g(t, v)
∣∣ 6 1

36
|u− v|.

Then assumption (H5) is satisfied with

θ =
1

36
.

For all (t, s, x) ∈ [0, 1]× [0, 1]× R, we have∣∣u(t, s, x)
∣∣ 6 ln

(
1 + |x|

)
= ϕ

(
|x|
)
,

where
ϕ(r) = ln(1 + r), r > 0.

Then assumption (H6) is also satisfied. Note that in this case, we have

M =
1

4
and N =

1

36
.
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Let r0 = 1. We have

λr0 +M + (θr0 +N)
ϕ(r0)

α
(T − a)α =

2

5
+

1

4
+

1

9
ln 2 ≈ 0.727 < r0 = 1.

Applying Corollary 1, we obtain the existence of at least one solution y∗ ∈ C([0, 1];R)
to Eq. (4) such that

‖y∗‖ 6 1.

3.2 A functional equation involving the Hadamard fractional integral

Taking
h(t) = ln t, t ∈ [a, T ], 0 < a < T,

in Eq. (1), we obtain the functional equation

y(t) = f
(
t, y
(
µ(t)

))
+ Γ(α)g

(
t, y
(
ν(t)

))
Jαa+

(
u
(
t, ·, y

(
c1(·)

)
, . . . , y

(
cn(·)

)))
(t), (5)

where Jαa+ is the Hadamard fractional integral defined by (see [16])

Jαa+ψ(t) =
1

Γ(α)

t∫
a

(
ln
t

τ

)α−1
ψ(τ)

τ
dτ.

We can rewrite Eq. (5) in the form

y(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
a

(
ln
t

τ

)α−1
u(t, τ, y(c1(τ)), . . . , y(cn(τ)))

τ
dτ.

From Theorem 1 we deduce the following result.

Corollary 2. Suppose that assumptions (H1)–(H6) are satisfied. Suppose also that there
exists some r0 > 0 such that

λr0 +M + (θr0 +N)
ϕ(r0)

α

(
ln
T

a

)α
< r0.

Then Eq. (5) has at least one solution y∗ ∈ C([a, T ];R). Moreover, we have

‖y∗‖ 6 r0.

We present the following example to illustrate the above result.
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Example 2. Let us consider the integral equation

y(t) =
t

32
+
y(t)

8
+

(
t2

64
+
y(t)

16

) t∫
1

(
ln
t

τ

)−1/2
y(τ)

τ
dτ (6)

for all t ∈ [1, 2]. Setting

f(t, x) =
t

32
+
x

8
, g(t, x) =

t2

64
+

x

16
, (t, x) ∈ [1, 2]× R,

u(t, s, x) = x, (t, s, x) ∈ [1, 2]× [1, 2]× R,

µ(t) = ν(t) = c1(t) = t, t ∈ [1, 2], α =
1

2
,

we can rewrite Eq. (6) in the form

y(t) = f
(
t, y
(
µ(t)

))
+ g
(
t, y
(
ν(t)

)) t∫
1

(
ln
t

τ

)−1/2
u(t, τ, y(τ))

τ
dτ.

For all (t, u, v) ∈ [1, 2]× R2, we have∣∣f(t, u)− f(t, v)
∣∣ 6 1

8
|u− v|.

Then condition (H4) is satisfied with

λ =
1

8
.

For all (t, u, v) ∈ [1, 2]× R2, we have∣∣g(t, u)− g(t, v)
∣∣ 6 1

16
|u− v|.

Then condition (H5) is satisfied with

θ =
1

16
.

It is clear that assumption (H6) is satisfied with

ϕ(r) = r, r > 0.

Note that in this case, we have

M = N =
1

16
.

On the other hand, for r0 = 1, we have

λr0 +M + (θr0 +N)
ϕ(r0)

α

(
ln
T

a

)α
=

1

8
+

1

16
+

1

4

√
ln 2

≈ 0.3956 < 1 = r0.

By Corollary 2, Eq. (6) admits at least one solution y∗ ∈ C([1, 2];R) such that

‖y∗‖ 6 1.
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4. J. Banaś, Measures of noncompactness in the study of solutions of nonlinear differential and
integral equations, Cent. Eur. J. Math., 10(6):2003–2011, 2012.
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6. J. Banaś, R. Rzepka, An application of a measure of noncompactness in the study of asymptotic
stability, Appl. Math. Lett., 16(1):1–6, 2003.

7. M. Benchohra, D. Seba, Integral equations of fractional order with multiple time delays in
Banach spaces, Electron. J. Differ. Equ., 2012:65, 2012.
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