
http://dx.doi.org/10.15388/NA.2016.4.4
Nonlinear Analysis: Modelling and Control, Vol. 21, No. 4, 477–497 ISSN 1392-5113

Stability and bifurcation analysis of Westwood+ TCP
congestion control model in mobile cloud computing
networks∗

Hongyan Yu, Songtao Guo, Fei Wang

College of Electronic and Information Engineering, Southwest University
Chongqing 400715, China
stguo@swu.edu.cn

Received: August 9, 2014 / Revised: January 21, 2015 / Published online: March 14, 2016

Abstract. In this paper, we first build up a Westwood+ TCP congestion control model with
communication delay in mobile cloud computing networks. We then study the dynamics of this
model by analyzing the distribution ranges of eigenvalues of its characteristic equation. Taking
communication delay as the bifurcation parameter, we derive the linear stability criteria depending
on communication delay. Furthermore, we study the direction of Hopf bifurcation as well as the
stability of periodic solution for the Westwood+ TCP congestion control model with communication
delay. We find that the Hopf bifurcation occurs when the communication delay passes a sequence
of critical values. The stability and direction of the Hopf bifurcation are determined by the normal
form theory and the center manifold theorem. Finally, numerical simulation is done to verify the
theoretical results.

Keywords: Hopf bifurcation, Westwood+ TCP, congestion control algorithm, stability, mobile
cloud computing.

1 Introduction

Mobile cloud computing combines wireless mobile access service and wired cloud com-
puting to improve the performance of mobile applications by offloading data processing
from mobile devices to servers. However, running mobile applications in the mobile cloud
computing networks requires both radio resources (e.g., wireless bandwidth) and com-
puting resources (e.g., CPU, memory and storage). These resources need to be efficiently
managed to maximize the utilization of the resources and thereby maximize the revenues
of the mobile cloud service providers. With the rapid increase of mobile devices and
applications, they compete for radio and computing resources being unaware of each other
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and the current state of resources. In this setting, congestion arises when the demand for
bandwidth exceeds the available link capacity. This will lead to performance degradation
in the network as packet losses increase and link utilization decreases. As a result, network
congestion control has become a main concern in mobile cloud computing networks.

In order to deal with congestion, Jacobson [16] proposed a classical transmission
control protocol (TCP), which is based on a sliding window mechanism and employs
an additive increase multiplicative decease (AIMD) algorithm in per Round Trip Time
(RTT). The whole congestion control system is a combination of the end-to-end TCP
congestion control mechanism at sources and the active queue management (AQM) mech-
anism at routers. The aim of AQM mechanism is to estimate congestion level at each
router before congestion occurs and provide feedback information to senders by either
dropping or marking packets. So far, many AQM algorithms, such as Random Early
Detection (RED) [7] and Random Early Marking (REM) [1], have been proposed.

Such a classical TCP model is appropriate for enabling end-to-end reliable communi-
cation over the Internet as well as avoiding network congestion and collapse. In the next
few years, the classical TCP model is a standard for ensuring end-to-end reliable delivery
of packets and is used by a large variety of applications. However, the classical TCP is
originally designed for wired low error rate networks, it assumes that all packet losses
are caused by network congestion. Unlike wired networks, in wireless networks, many of
packet losses are due to noisy and fading radio channel, which are often misinterpreted
as a symptom of congestion by the classical TCP scheme and thus cause an unnecessary
window reduction. Therefore, AIMD algorithms can ensure that network capacity is not
exceeded, but they cannot ensure fair sharing of capacity [18]. Moreover, they provide
a low throughput in the presence of losses not due to congestion, such as in the case of
radio links [2].

Recently, in order to improve the capability of classical TCP to track the available
bandwidth, Westwood TCP proposed by Mascolo et al. [23] substitutes the multiplicative
decrease with an adaptive decrease phase, that is, it follows an additive increase adap-
tive decrease (AIADD) congestion control algorithm and filters the stream of returning
acknowledgements (ACKs). However, Westwood TCP heavily depends on bandwidth es-
timation, and the original bandwidth estimation algorithm proposed in [23] does not work
properly in the presence of ACK compression [9]. In order to overcome such drawbacks,
a new bandwidth estimate algorithm, Westwood+ TCP, was proposed in [8]. The key idea
of Westwood+ TCP is to exploit the stream of return acknowledgment packets to esti-
mate the available bandwidth by the AIADD paradigm, which is extremely effective for
throughput improvements in mixed wired and wireless networks required by mobile cloud
computing. It motivates us to analyze the nonlinear dynamic behavior of the Westwood+
TCP in mobile cloud computing networks.

In general, a congestion control system may be considered as a complex nonlin-
ear feedback system with delay by reducing mathematical model of congestion control
system to a nonlinear delay differential equation (NDDE). Therefore, in recent years,
nonlinear dynamic behavior of congestion control system in communication network has
attracted much attention from researchers. In [24], Massoulie et al. studied the stability
of distributed congestion control with heterogeneous feedback delays. Furthermore, the
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fairness, delays and stability of end-to-end congestion control were analyzed in [17, 19].
Liu et al. proposed an exponential-RED algorithm and analyzed its stability for low- and
high-speed TCP protocols [22]. However, how does TCP/AQM system evolves when
the congestion control system loses its stability? This field also begins to draw much
attention from researchers [4, 5, 6, 10, 11, 12, 13, 14, 20, 21, 25, 26, 27, 28, 29, 32, 33].
In [27], Raina et al. found that if the local stability of TCP with drop tail is just lost,
the corresponding nonlinear system undergoes a supercritical Hopf bifurcation. In [29],
the delay induced Hopf bifurcation was studied in a simplified network congestion control
model. In [4, 5], Ding et al. analyzed Hopf bifurcation in a fluid flow model and a dual
model of Internet congestion control algorithm. Moreover, we studied stability and Hopf
bifurcation analysis in a novel congestion control model with communication delay and
heterogeneous delays in [10, 11, 14] and analyzed Hopf bifurcation in an exponential
RED algorithm with communication delay and heterogeneous delays in [12, 13]. Xu et
al. studied bifurcation analysis and control in exponential RED algorithm in [32]. More
recently, Dong et al. analyzed dynamics of a congestion control model in a wireless access
network [6]. Xiao et al. studied bifurcation control of internet congestion control model
via state feedback [30, 31].

Nevertheless, to the best of our knowledge, there are few papers to discuss the bifur-
cation of Westwood+ TCP congestion control algorithm, especially, with the communi-
cation delay consisting of wired communication delay and wireless delay. We consider
communication delay as an important factor that cannot be ignored, because it plays an
imperative role in improving network stability, fair bandwidth allocation and resource
utilization of high speed wired and wireless networks. Although Grieco et al. analyzed
the dynamics of Westwood+ TCP congestion control algorithm and provided the locally
asymptotically stable conditions of equilibrium points in [9], they did not consider the
effect of communication delay on Westwood+ TCP model. Motivated by the above dis-
cussions, we aim in this paper to study the stability and Hopf bifurcation of Westwood+
TCP congestion control algorithm in mobile cloud computing networks and provide the
conditions of Hopf bifurcation occurring.

In this paper, we will first build up a Westwood+ TCP model with communication
delay by analyzing its AIADD process, which is one of our main contributions. We then
move our attention to study nonlinear dynamic behavior of the proposed Westwood+ TCP
with communication delay, including its stability and Hopf bifurcation. During analyzing
dynamic behavior, we take the communication delay as the bifurcation parameter. The
reason is that complex dynamics of Westwood+ TCP congestion control system are often
related to wired and wireless communication delay. The presence of delay plays an impor-
tant role in the stability and performance of Westwood+ TCP congestion control system.
If the delay is beyond the range to guarantee a stable system, it will lead to instability and
degradation of system performance.

The rest of this paper is organized as follows. In Section 2, we introduce Westwood+
TCP congestion control model. In Section 3, we derive linear stability criteria of the
Westwood+ TCP model and the existence of Hopf bifurcation by analyzing the distri-
bution ranges of the corresponding characteristic equations of the linearized equation of
the proposed Westwood+ TCP model with communication delay. Section 4 is devoted
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to the direction and stability analysis of Hopf bifurcation based on the normal theory and
center manifold approach. Numerical simulations are given in Section 5. Finally, Section 6
concludes this paper.

2 Westwood+ TCP congestion control model with communication
delay

In this section, we will model the dynamics of the expected transmission rate of an
AIADD controlled Westwood+ TCP flow as a function of the segment loss probability,
the bandwidth estimate and the connection round trip time (RTT). We let p be the drop
probability of a segment, τR denotes the mean round trip time, T0 be a time constant,
τ represents communication delay, r(t) denotes the rate at which source transmits data at
time t, B̂ specifies the bandwidth estimation from the impulse response of a first-order
low-pass filter, and τRmin stands for the minimum round trip time, i.e., slow start threshold
to a value of bandwidth estimation (BWE) times.

In a Westwood+ TCP flow model [9], the congestion window is updated upon ACK
reception. The receiver transmits one ACK packet once receiving one data. Each time
the sender receives an ACK packet, it increases the congestion window W by 1/W .
Otherwise, once a segment is lost, the congestion window is set equal to B̂ × τRmin

.
Accordingly, the change in W is B̂ × τRmin −W . Thus, the variation of the congestion
window W is a discrete random variable with the following probability function:

p(∆W ) =

{
1− p when ∆W = 1/W,

p when ∆W = B̂ × τRmin −W.

We then obtain the expected increment of congestion window W per update step as
follows:

E(∆W ) =
1− p
W

+ (B̂ × τRmin
−W )p.

In mobile cloud computing networks, the communication delay including wired com-
munication delay and wireless delay exists widely due to the long-distance transmission
of wired network, the link unreliability and channel fading of wireless networks. By con-
sidering the effect of communication delay τ on the congestion window, it is not difficult
to obtain that the time between update steps is τR/W (t − τ), i.e., ∆t = τR/W (t − τ).
Thus, the expected change in the congestion window W per unit time is approximately
given by

dW

dt
=
W (t− τ)

τR

[
1− p
W (t)

+ p
(
B̂(t)× τRmin

−W (t)
)]
. (1)

In a bandwidth estimate model of Westwood+ TCP, we consider Westwood+ employs
a first order low pass filter with time constant T0. To take into account the loss probability,
we consider that the low-pass filter receives the rate [1 − p(r(t))]r(t) of ACK packets.
Therefore, the bandwidth estimate is the convolution of [1− p(r(t))]r(t) and h(t), where
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h(t) = e−t/τR/τR is the impulse response of a first-order low-pass filter:

B̂(t) =
{[
1− p

(
r(t)

)]
r(t)

}
× h(t)

=

t∫
0

[
1− p

(
r(θ)

)]
r(θ)h(t− θ) dθ. (2)

Note that p(r(t)) is a function of the sending rate r(t). In order to simplify the
calculation, we suppose that p(r(t)) = p is a constant. And by considering the effect
of communication delay τ on the bandwidth estimate, (2) can be rewritten as follows:

dB̂

dt
= − B̂(t− τ)

T0
+

1− p
T0

r(t− τ). (3)

By combining (1) and (3), Westwood+ TCP congestion control model with commu-
nication delay can be given by

dW

dt
=
W (t− τ)

τR

[
1− p
W (t)

+ p
(
B̂(t)× τRmin −W (t)

)]
,

dB̂

dt
= − B̂(t− τ)

T0
+

1− p
T0

r(t− τ).
(4)

3 Local stability and Hopf bifurcation analysis

In this section, we will analyze local stability and Hopf bifurcation of Westwood+ TCP
congestion control model with communication delay. Substituting for W (t) = τR× r(t),
model (4) can be described by

dr

dt
= r(t− τ)

[
1− p
τ2Rr(t)

+ p

(
B̂(t)

τRmin

τR
− r(t)

)]
,

dB̂

dt
= − B̂(t− τ)

T0
+

1− p
T0

r(t− τ).
(5)

Throughout this paper, we assume τ, τRmin
, τR > 0 and p are constants.

Let (r∗, B∗) be the non-zero equilibrium point of system (5), then we can obtain

r∗ =

√
(1− p)/p√

τR[τR − (1− p)τRmin
]
, B∗ = (1− p)r∗. (6)

Let x(t) = r(t) − r∗ an y(t) = B̂(t) − B∗. Linearizing system (5) around the
equilibrium point, by using (6), we can obtain

dx

dt
= ax(t) + by(t),

dy

dt
= cx(t− τ) + dy(t− τ),

(7)
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where a = r∗p[(1 − p)τRmin/τR − 2], b = r∗pτRminτR, c = (1 − p)/T0, d = −1/T0.
Then the characteristic equation of equation (7) can be given by

D(λ, τ) =

[
λ− a −b
−ce−λτ λ− de−λτ

]
= λ2 −

(
a+ de−λτ

)
λ+ (ad− bc)e−λτ = 0. (8)

It is well known that the trivial solution of the nonlinear DDE (5) is locally asymptot-
ically stable if all roots of the characteristic equation (8) satisfy Re(λ) < 0 (refer to [15]).
In the following, we will study the existence of Hopf bifurcation of equation (5). Then
we can obtain the following lemmas.

Lemma 1. Consider

D(λ, τ) = λ2 − aλ+
[
−dλ+ (ad− bc)

]
e−λτ . (9)

If τ = 0, then all zeros of D(λ, τ) have negative real parts.

Proof. When τ = 0, we have

D(λ, 0) = λ2 − (a+ d)λ+ (ad− bc).

Since r∗ > 0, 0 < p < 1, 0 <τRmin
< τR, T0 > 0, then 0 < 1−p < 1, 0 <τRmin

/τR < 1.
It is clear that a = r∗p[(1− p)τRmin

/τR − 2] < 0. Furthermore, we have

a+ d = r∗p

[
(1− p)τRmin

τR
− 2

]
+

(
− 1

T0

)
< 0.

Next, we prove that ad− bc > 0, which can be given by

ad− bc = r∗p

[
(1− p)τRmin

τR
− 2

](
− 1

T0

)
− r∗pτRmin

τR

(
1− p
T0

)
=

2r∗p[τR − τRmin
(1− p)]

τRT0
.

By equation (7), we know τR− τRmin
(1−p) > 0. Then we have ad− bc > 0. Therefore,

it is not difficult to obtain ∆ = (a + d)2 − 4(ad − bc) = (a − d)2 + 4bc > 0. We can
obtain that all zeros of D(λ, 0) have negative real parts. This completes the proof.

Lemma 2. When τ = τ0, equation (8) has a simple pair of purely imaginary roots ±iω0,
where

ω0 =

√
(d2 − a2) +

√
(d2 − a2)2 + 4(ad− bc)2

2
(10)

and

τ0 =
1

ω0

{
π + arctan

[
ω2
0d+ a(ad− bc)

bcω0

]}
. (11)
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Proof. We know that iω0, ω0 > 0, is a root of equation (8) if and only if iω0 satisfies

−ω2
0 − aiω0 +

[
−diω0 + (ad− bc)

]
e−iω0τ = 0.

Equating the real and imaginary parts of both sides, we get

(ad− bc) cos(ω0τ)− dω0 sin(ω0τ) = ω2
0 ,

dω0 cos(ω0τ) + (ad− bc) sin(ω0τ) = −aω0.
(12)

It follows from (12) that

ω4
0 +

(
a2 − d2

)
ω2
0 − (ad− bc)2 = 0. (13)

It is clear that equation (13) has a unique positive root ω2
0 .

Therefore, we have

ω0 =

√
(d2 − a2) +

√
(d2 − a2)2 + 4(ad− bc)2

2
,

and from equation (12) we also have

sinω0τ =
−ω3

0d− aω0(ad− bc)
ω2
0d

2 + (ad− bc)2
, cosω0τ =

−bcω2
0

ω2
0d

2 + (ad− bc)2
.

Then it follows that

τ0 =
1

ω0

{
π + arctan

[
ω2
0d+ a(ad− bc)

bcω0

]}
.

This completes the proof.

Next we show that λ = ±iω0 are simple roots of equation (8) when τ = τ0.
Differentiating the function

D(λ, τ) = λ2 − aλ+
[
−dλ+ (ad− bc)

]
e−λτ

with respect to λ, we can get

dD(λ, τ)

dλ
= 2λ− a− de−λτ − τ

[
−dλ+ (ad− bc)

]
e−λτ . (14)

Substituting λ = iω0 into equation (14), we can obtain

dD(iω0, τ)

dλ
=
[
−a− τω2

0 − d cosω0τ)
]
+ [2ω0 − aτω0 + d sinω0τ ]i 6= 0 (15)

when a < d. Similarly, we can get

dD(−iω0, τ0)

dλ
6= 0. (16)

Hence, λ = ±iω0 are simple roots of equation (8) when τ = τ0. Furthermore, according
to our previous work [11], we have the following lemmas.
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Lemma 3. When τ < τ0, all the roots of (8) have strictly negative real parts.

Lemma 4. When τ = τ0, except for the pair of purely imaginary roots ±iω0, all other
roots of equation (8) have strict negative real parts.

Lemma 5. Let λ(τ) = α(τ) + iω(τ) is the root of equation (8) satisfying α(τ0) = 0,
ω(τ0) = ω0. The following transversally condition holds:

dRe(λ(τ))

dτ

∣∣∣∣
τ=τ0

> 0. (17)

Proof. By equation (8), with respect to τ and applying the implicit function theorem, we
get

dλ(τ)

dτ
=

−λ[−dλ+ (ad− bc)]e−λτ

2λ− a+ [τ(dλ− (ad− bc))− d]e−λτ
,

then (
dλ(τ)

dτ

)−1
=

(2λ− a)eλτ + τ [dλ− (ad− bc)]− d
−λ[dλ− (ad− bc)]

.

Since λ(τ0) = iω0, hence, by equation (12), we can get(
dReλ(τ)

dτ

)−1∣∣∣∣
τ=τ0

=
(−ad+ 2bc)ω0 cosω0τ + [2dω2

0 + a(ad− bc)] sinω0τ + d2ω0

−ω0[d2ω2
0 + (ad− bc)2]

=
a[dω0 cosω0τ+(ad−bc) sinω0τ ]+2ω0[dω0 sinω0τ−(ad−bc) cosω0τ ]+d

2ω0

−ω0[d2ω2
0 + (ad− bc)2]

=
2ω2

0 − (d2 − a2)
d2ω2

0 + (ad− bc)2
. (18)

Since 2ω2
0 > (d2 − a2), then we have(

dReλ(τ)

dτ

)−1∣∣∣∣
τ=τ0

> 0.

This completes the proof.

Lemma 6. When τ > τ0, equation (8) has at least one root with strictly positive real
parts.

Proof. From Lemmas 4 and 5, by use of the lemma in [3], we can see that if τ > τ0,
equation (8) has at least one root with strictly positive real parts.

Based on Lemmas 1–6, we can obtain the following theorem about local stability and
hopf bifurcation of system (5) by applying Hopf bifurcation theory for delay differential
equation [15].
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Theorem 1. For system (5), the following results hold:

(i) When τ < τ0, the equilibrium point of system (5) is locally asymptotically stable.
(ii) When τ > τ0, the equilibrium point of system (5) is unstable.

(iii) When τ = τ0, system (5) occurs a Hopf bifurcation.

4 Direction and stability of Hopf bifurcation

In the previous section, we have obtained the condition for existence of Hopf bifurcation
in congestion control system of Westwood+ TCP with communication delay at τ = τ0. In
this section, we shall study the direction of Hopf bifurcation, i.e., make it clear whether the
bifurcating branch of periodic solution exists locally for τ > τ0 or τ < τ0, and stability
of bifurcation period solution of system (5) at τ = τ0 by employing the normal form
method and center manifold theorem introduced by Hassard et al. in [15]. More precisely,
we will compute the reduced system on the center manifold with the pair of conjugate
complex, purely imaginary solutions of the characteristic equation (5). By this reduction,
we can determine the Hopf bifurcation direction, i.e., to answer the question of whether
the bifurcation branch of periodic solution exists locally for supercritical bifurcation or
subcritical bifurcation.

The Taylor expansion of equation (5) about the equilibrium point is

dx

dt
= ax(t) + by(t) + a13x

2(t) + a14x(t− τ)x(t) + a15x(t− τ)y(t),

dy

dt
= cx(t− τ) + dy(t− τ),

(19)

where a = r∗p[(1 − p)τRmin
/τR − 2], b = r∗pτRmin

/τR, a13 = (1 − p)/(τ2Rr
∗2),

a14 = (p− 1)/(τ2Rr
∗2)− p, a15 = pτRmin

/τR, c = (1− p)/T0, d = −1/T0.
Let τ = τ0+µ, u(t) = (x(t), y(t))T and ut(θ) = u(t+θ) for θ ∈ [−τ, 0]. Then µ = 0

is the Hopf bifurcation value for equation (5). Denote Ck[−τ, 0] = {ϕ|ϕ : [−τ, 0] →
R2}. ϕ has kth-order continuous derivation. We can rewrite equation (19) as

du

dt
= Lµu+ F (ut, µ) (20)

with
Lµϕ = B1ϕ(0) +B2ϕ(−τ) (21)

and

F (ϕ, µ) =

(
a13ϕ

2
1(0) + a14ϕ1(−τ0)ϕ1(0) + a15ϕ1(−τ0)ϕ2(0)

0

)
, (22)

where B1 =
(
a b
0 0

)
and B2 =

(
0 0
c d

)
.

Then Lµ is one parameter family of bounded linear operator in C[−τ, 0]. By Reisz
representation theorem, there exists a 2× 2 matrix whose components are bounded vari-
ation functions

η(·, µ) : [−τ, 0]→ R2×2

Nonlinear Anal. Model. Control, 21(4):477–497
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for ϕ ∈ C[−τ, 0] such that

Lµϕ =

0∫
−τ

dη(θ, µ)ϕ(θ). (23)

In fact, we can choose
η(θ, µ) = B1δ(θ) +B2δ(θ + τ),

where δ(θ) is Dirac delta function. Next, for ϕ ∈ C[−τ, 0], we define

A(µ)ϕ =

{
dϕ/dθ, θ ∈ [−τ, 0),∫ 0

−τ dη(θ, µ)ϕ(θ) = Lµϕ, θ = 0,
(24)

and

R(µ)ϕ =

{
0, θ ∈ [−τ, 0),
F (ϕ, µ), θ = 0.

(25)

Since dut/dθ = dut/dt, (20) can be rewritten as

dut
dt

= A(µ)ut +R(µ)ut, (26)

which is an equation of the form we desired. For θ ∈ [−τ, 0), equation (26) is just the
trivial equation dut/dθ = dut/dt; for θ = 0, it is (20).

For ψ ∈ C[−τ, 0], the adjoint operator A∗ of A is defined as

A∗ψ =

{
−dψ(s)/ds, s ∈ (0, τ ],∫ 0

−τ dηT(t, 0)ψ(−t), s = 0.
(27)

For ψ ∈ C[−τ, 0] and ϕ ∈ C[−τ, 0], we define a bilinear form

〈ψ,ϕ〉 = ψ
T
(0)ϕ(0)−

0∫
θ=−τ

θ∫
ξ=0

ψ
T
(ξ − θ)

[
dη(θ)

]
ϕ(ξ) dξ, (28)

where η(θ) = η(θ, 0).
From the above analysis we know that ±iω0 are eigenvalues of A(0). Let q(θ) be

eigenvector of A(0) corresponding to iω0, then we have

A(0)q(θ) = iωq(θ).

Since±iω0 are eigenvalues ofA(0) and other eigenvalues have strictly negative real parts,
∓iω0 are the eigenvalues of A∗(0). Then we have the following lemma.
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Lemma 7. Let q(θ) = V eiω0θ be eigenvector of A associated with iω0, and q∗(θ) =
DV ∗eiω0θ be eigenvector of A∗ associated with −iω0. Then

〈q∗, q〉 = 1, 〈q∗, q〉 = 0, (29)

where
V = (1, ρ1)

T, V ∗ = (ρ2, 1)
T;

ρ1 =
iω0τR − r∗p[(1− p)τRmin − 2τR]

r∗pτRmin

,

ρ2 =
τR(p− 1)eiω0τ0

T0r ∗ p[(1− p)τRmin − 2τR] + iω0T0τR
;

D =
[
V ∗

T
V + τ0e

−iω0τ0V ∗
T
B2V

]−1
.

Proof. Since q(θ) is eigenvector of A corresponding to iω0, then we have

Aq(θ) = iω0q(θ). (30)

From (24) we can rewrite (30) as

dq(θ)

dθ
= iω0q(θ), θ ∈ [−τ, 0),

L(0)q(0) = iω0q(0), θ = 0.

(31)

Therefore, we can obtain

q(θ) = V eiω0θ, θ ∈ [−τ, 0], (32)

where V = (v1, v2)
T ∈ C2 is a constant vector. Based on (21) and (31), we have[

B1 − iω0I +B2e
−iω0τ0

]
V = 0,

where I is identity matrix. So, we can choose

V =

(
v1
v2

)
=

(
1

iω0τR−r∗p[(1−p)τRmin
−2τR]

r∗pτRmin

)
=

(
1

ρ1

)
. (33)

From (27) we can get

A∗ψ =

0∫
−τ

dηT(t, 0)ψ(−t) = BT
1 ψ(0) +BT

2 ψ(τ). (34)

Let
q∗(θ) = DV ∗eiω0θ, θ ∈ [0, τ ],

where D = (d1, d2)
T, V ∗ = (v∗1 , v

∗
2) ∈ C2 are constant vectors.

Nonlinear Anal. Model. Control, 21(4):477–497
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Similar to the proof of (30)–(33), we can obtain

V ∗ =

(
v∗1
v∗2

)
=

(
τR(p−1)eiω0τ0

T0r∗p[(1−p)τRmin
−2τR]+iω0T0τR

1

)
=

(
ρ2
1

)
.

Now, we can calculate 〈q∗, q〉 as follows:

〈q∗, q〉 = q∗
T
(0)q(0)−

0∫
−τ0

θ∫
ξ=0

q∗
T
(ξ − θ)

[
dη(θ)

]
q(ξ) dξ

= D

[
V ∗

T
V −

0∫
−τ0

θ∫
ξ=0

V ∗
T
e−iω0(ξ−θ)

[
dη(θ)

]
V eiω0ξ dξ

]

= D

[
V ∗

T
V −

0∫
−τ0

θ∫
ξ=0

V ∗
T[

dη(θ)
]
θeiω0θV

]

= D
[
V ∗

T
V + τ0e

−iω0τ0V ∗
T
B2V

]
.

Thus, when D = [V ∗
T
V + τ0e

−iω0τ0V ∗
T
B2V ]−1, we can get 〈q∗, q〉 = 1.

On the other hand, since 〈ψ,Aϕ〉 = 〈A∗ψ,ϕ〉, we have

−iω0〈q∗, q〉 = 〈q∗, Aq〉 = 〈A∗q∗, q〉 = 〈−iω0q
∗, q〉 = iω0〈q∗, q〉.

Therefore, 〈q∗, q〉 = 0. This completes the proof.

In the remainder of this section, by using the same notion as in Hassard et al. [15], we
first compute the coordinates to describe the center manifold center C0 at µ = 0, which
is locally invariant, attracting two dimensional manifolds in C0. Let ut be a solution of
equation (19) when µ = 0.

Define

z(t) = 〈q∗, ut〉,
W (t, θ) = ut − zq − z q = ut − 2Re

{
z(t)q(θ)

}
.

(35)

On the center manifold C0, we have

W (t, θ) =
(
z(t), z(t), θ

)
,

where

W (z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02

z2

2
+ · · · , (36)

z and z are local coordinates of center manifold C0 in the direction of q∗ and q∗. Note
that W is real if ut is real. We only consider real solutions. From (36) we get

〈q∗,W 〉 = 〈q∗, ut − zq − zq〉
= 〈q∗, ut〉 − z(t)〈q∗, q〉 − z(t)〈q∗, q〉 = 0.
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For a solution ut ∈ C0 of (26), from (24) to (27), since µ = 0, we have

dz(t)

dt
=

〈
q∗,

dut
dt

〉
=
〈
q∗, A(0)ut +R(0)ut

〉
= 〈A∗q∗, ut〉+ q∗

T
(0)F (ut, 0)

= iω0z(t) + q∗
T
(0)f0(z, z).

We rewrite in abbreviates form as

dz(t)

dt
= iω0z(t) + g(z, z), (37)

where

g(z, z) = q∗
T
(0)f0(z, z)

= q∗
T
(0)F

(
W (z, z, θ) + 2Re

{
z(t)q(t)

}
, 0
)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (38)

By (26) and (38), we have

Ẇ = u̇t − żq − ż q

= Aut +Rut − iω0zq − q∗
T
(0)f0(z, z)q + iω0z q − q∗T (0)f0(z, z)q

= Aut +Rut −Azq −Az q − 2Re
{
q∗

T
(0)f0(z, z)q

}
= AW +Rut − 2Re

{
q∗

T
(0)f0(z, z)q

}
=

{
AW − 2Re{q∗T(0)f0(z, z)q}, θ ∈ [−τ, 0),
AW − 2Re{q∗T(0)f0(z, z)q}+ f0(z, z), θ = 0.

It can be rewritten as
Ẇ = AW +H(z, z, θ), (39)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02

z2

2
+ · · · . (40)

On the other hand, on C0,
Ẇ =Wz ż +Wz ż. (41)

Substituting (35) and (37) into (41) and comparing the coefficients of the above equa-
tion with those of equation (39), we get

H20(θ) = −(A− i2ω0)W20(θ),

H11(θ) = −AW11(θ),

H02(θ) = −(A+ i2ω0)W02(θ).

(42)
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Since ut = u(t+ θ) =W (z, z, θ) + zq + z q, we have

ut =

(
x(t+ θ)
y(t+ θ)

)
=

(
W (1)(z, z, θ)
W (2)(z, z, θ)

)
+ z

(
1
ρ1

)
eiω0θ + z

(
1
ρ1

)
e−iω0θ.

Therefore, we can obtain

x(t+ θ) =W (1)(z, z, θ) + zeiω0θ + ze−iω0θ

= zeiω0θ + ze−iω0θ +W
(1)
20

z2

2
+W

(1)
11 zz +W

(1)
02

z2

2
+ · · ·

and
y(t+ θ) =W (2)(z, z, θ) + zρ1e

iω0θ + z ρ1e
−iω0θ

= zρ1e
iω0θ + z ρ1e

−iω0θ +W
(2)
20

z2

2
+W

(2)
11 zz +W

(2)
02

z2

2
+ · · · .

It is clear that

ϕ1(0) = z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ · · · ,

ϕ1(−τ0) = ze−iω0τ0+zeiω0τ0+W
(1)
20 (−τ0)

z2

2
+W

(1)
11 (−τ0)zz+W (1)

02 (−τ0)
z2

2
+· · · ,

ϕ2(0) = zρ1 + z ρ1 +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz +W

(2)
02 (0)

z2

2
+ · · · ,

ϕ2
1(0) = z2 + 2zz + z2 +

[
2W

(1)
11 (0) +W

(1)
20 (0)

]
z2z + · · · ,

ϕ1(−τ0)ϕ1(0)

= e−iω0τ0z2 +
(
eiω0τ0 + e−iω0τ0

)
zz + eiω0τ0z2

+

[
W

(1)
11 (−τ0) +

W
(1)
20 (−τ0)

2
+
W

(1)
20 (0)

2
eiω0τ0 +W

(1)
11 (0)e−iω0τ0

]
z2z + · · · ,

ϕ1(−τ0)ϕ2(0)

= ρ1e
−iω0τ0z2 +

(
ρ1e

iω0τ0 + ρ1e
−iω0τ0

)
zz + ρ1e

iω0τ0z2

+

[
W

(2)
11 (0)e−iω0τ0+

W
(2)
20 (0)

2
eiω0τ0+

W
(1)
20 (−τ0)

2
ρ1+W

(1)
11 (−τ0)ρ1

]
z2z+· · · .

It follows that

f0(z, z) =

(
a13ϕ

2
1(0) + a14ϕ1(−τ0)ϕ1(0) + a15ϕ1(−τ0)ϕ2(0)

0

)
=

(
K1z

2 +K2zz +K3z
2 +K4z

2z
0

)
,
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where

K1 = a13 + a14e
−iω0τ0 + a15ρ1e

−iω0τ0 ,

K2 = 2a13 + a14
(
eiω0τ0 + e−iω0τ0

)
+ a15

(
ρ1e

iω0τ0 + ρ1e
−iω0τ0

)
,

K3 = a13 + a14e
iω0τ0 + a15ρ1e

iω0τ0 ,

K4 = a13
[
2W

(1)
11 (0) +W

(1)
20 (0)

]
+ a14

[
W

(1)
11 (−τ0) +

W
(1)
20 (−τ0)

2
+
W

(1)
20 (0)

2
eiω0τ0 +W

(1)
11 (0)e−iω0τ0

]
+ a15

[
W

(2)
11 (0)e−iω0τ0 +

W
(2)
20 (0)

2
eiω0τ0 +

W
(1)
11 (−τ0)

2
ρ1 +W

(1)
11 (−τ0)ρ1

]
.

Since q∗(0) = D(ρ2, 1)
T, we have

g(z, z) = q∗
T
(0)f0(z, z) = D(ρ2, 1)f0(z, z)

= D(ρ2, 1)

(
K1z

2 +K2zz +K3z
2 +K4z

2z
0

)
= D

[
K1ρ2z

2 +K2ρ2zz +K3ρ2 z
2 +K4ρ2z

2z
]
.

Comparing the coefficients of the above equation with those in (38), we have

g20 = 2DK1ρ2, g11 = DK2ρ2,

g02 = 2DK3ρ2, g21 = 2DK4ρ2.
(43)

We still need to compute W20(θ) and W11(θ) for θ ∈ [−τ0, 0) for expression of g21.
Indeed, we have

H(z, z, θ) = −2Re
{
q∗

T
(0)f0(z, z)q(θ)

}
= −2Re

{
g(z, z)q(θ)

}
= −g(z, z)q(θ)− g(z, z)q(θ)

= −
(
g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

)
q(θ)

−
(
g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

)
q(θ).

Comparing the coefficients of the above equation with those in (40), it is clear that

H20(θ) = −g20q(θ)− g02q(θ),
H11(θ) = −g11q(θ)− g11q(θ).

It follows from (25) and (42) that

Ẇ20(θ) = AW20(θ) = i2ω0W20(θ)−H20(θ)

= i2ω0W20(θ) + g20q(θ) + g02q(θ)

= i2ω0W20(θ) + g20q(0)e
iω0θ + g02q(0)e

−iω0θ.
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Solving for W20(θ), we can obtain

W20(θ) =
ig20
ω0

q(0)eiω0θ +
ig02
3ω0

q(0)e−iω0θ + E1e
2iω0θ. (44)

By a similar way, we get

W11(θ) = −
ig11
ω0

q(0)eiω0θ +
ig02
3ω0

q(0)e−iω0θ + E2,

where E1, E2 are both two dimensional vectors and can be determined by setting θ = 0
in H(z, z, θ). In fact, we have

H(z, z, 0) = −2Re
{
q∗

T
(0)f0(z, z)q(θ) + f0(z, z)

}
= −

(
g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

)
q(θ)

−
(
g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

)
q(θ)

+

(
K1z

2 +K2zz +K3z
2 +K4z

2z
0

)
.

Comparing the coefficients of the above equation with those in (40), it follows that

H20(0) = −g20q(0)− g02q(0) +
(
K1

0

)
,

H11(0) = −g11q(0)− g11q(0) +
(
K2

0

)
.

(45)

By the definition of A and equations (25), (42), we can get

0∫
−τ0

dη(θ)W20(θ) = AW20(0) = i2ω0W20(0)−H20(0),

0∫
−τ0

dη(θ)W11(θ) = AW11(0) = −H11(0).

Notice that(
iω0I −

0∫
−τ0

eiω0θ dη(θ)

)
q(0) = 0,

(
−iω0I −

0∫
−τ0

e−iω0θ dη(θ)

)
q(0) = 0.

Thus, we can obtain (
2iω0I −

0∫
−τ0

e2iω0θ dη(θ)

)
E1 =

(
K1

0

)
.
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Similarly, we have ( 0∫
−τ0

dη(θ)

)
E2 = −

(
K2

0

)
,

where E1 = (E
(1)
1 , E

(2)
1 )T, E2 = (E

(1)
2 , E(2)

2 )T.
Hence, it follows that(

i2ω0 − a −b
−ce−2iω0τ0 i2ω0 − de−2iω0τ0

)(
E

(1)
1

E
(2)
1

)
=

(
K1

0

)
(46)

and (
a b
c d

)(
E

(1)
2

E
(2)
2

)
= −

(
K2

0

)
. (47)

From (46) and (47) we can obtain

E
(1)
1 =

K1(i2ω0 − de−i2ω0τ0)

−4ω2
0 − 2iaω0 − 2idω0e−2iω0τ0 + (ad− bc)e−2iω0τ0

,

E
(2)
1 =

K1ce
−2iω0τ0

−4ω2
0 − 2iaω0 − 2idω0e−2iω0τ0 + (ad− bc)e−2iω0τ0

,

and

E
(1)
2 =

−K2d

ad− bc
, E

(2)
2 =

K2c

ad− bc
.

Based on the above analysis, we can see that each gij in (43) is determined by parameters
and delays in (5). Thus, we can compute the following quantities:

C1(0) =
i

2ω0

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21
2
,

µ2 = −Re{C1(0)}
Reλ′(0)

, β2 = 2Re
{
C1(0)

}
,

T2 = − Im{C1(0)}+ µ2 Imλ′(0)

ω0
,

(48)

which determine the quantities of bifurcation period solutions in the center manifold at
the critical values τ0.

By the result of Hassard et al. [15], we have the following theorem.

Theorem 2. In (48), the following results hold:

(i) The sign of µ2 determines the directions of the Hopf bifurcation: if µ2 > 0
(µ2 < 0), then the Hopf bifurcation is supercritical (subcritical).

(ii) The sign of β2 determines the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if β2 < 0 (β2 > 0).

(iii) The sign of T2 determines the period of the bifurcating periodic solutions: the
period increase (decreases) if T2 > 0 (T2 < 0).
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5 Numerical simulations

In this section, we use the formulas obtained in Sections 3 and 4 to verify the existence
of the Hopf bifurcation and calculate the Hopf bifurcation value and the direction of the
Hopf bifurcation of system (5) with p = 0.2, τR = 1, τmin = 0.3, T0 = 2.

By (6) and (7), we can obtain r∗ = 2.2942, B∗ = 1.8353, a = −0.8075, b = 0.1376,
c = 0.4, d = −0.5. Based on (15) and (16), we have ω0 = 0.4488, τ0 = 3.6435.
These calculations show that the system equilibrium (r∗, B∗) is asymptotically stable
when τ < τ0 (see Figs. 1–3, τ = 3.6 < τ0 = 3.6435).

When τ passes through the critical value τ0 = 3.6435, (r∗, B∗) loses its stability and
a Hopf bifurcation occurs, i.e., a family of periodic solution bifurcates out from (r∗, B∗)
as shown in Figs. 4–6. From Theorem 2 the bifurcation periodic solutions are unstable
since β2 = 0.0021 > 0, the Hopf bifurcation is subcritical since µ2 = −0.0194 < 0.
Since T2 = −0.0243 < 0, the period of the bifurcating periodic solutions decrease as
τ decreases.
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Figure 1. Waveform plot of t−r(t) with τ = 3.6.
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Figure 2. Waveform plot of t−B̂(t) with τ = 3.6.
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Figure 3. Phase plot of r(t − 3.6) − B̂(t) with
τ = 3.6.
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Figure 4. Waveform plot of t−r(t) with τ = 3.645.
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Figure 5. Waveform plot of t−B̂(t) with τ = 3.645.
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Figure 6. Phase plot of r(t−3.645)− B̂(t−3.645)
with τ = 3.645.

6 Conclusions

In this paper, we first model a Westwood+ TCP with communication delay in mobile
cloud computing networks. By analyzing the distribution of the roots of the corresponding
characteristic equation, we have obtained some sufficient conditions for the stability of
Westwood+ TCP with communication delay. Using communication delay as the bifurca-
tion parameter, we have shown that a Hopf bifurcation occurs when this parameter passes
through a critical value, i.e., a family of periodic orbits bifurcates from the equilibrium.
The direction of Hopf bifurcation and the stability of the bifurcating periodic orbits are
also discussed by using the center manifold theorem and the normal form theory. Simu-
lation results have verified and demonstrated the correctness of the theoretical results.
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