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Abstract. This paper addresses the problem of adaptive output-feedback control for more general
class of stochastic time-varying delay nonlinear systems with unknown control coefficients
and perturbations. By using Lyapunov–Krasovskii functional, backstepping and tuning function
technique, a novel adaptive neural network (NN) output-feedback controller is constructed with
fewer learning parameters. The designed controller guarantees that all the signals in the closed-loop
system are 4-moment (or mean square) semi-globally uniformly ultimately bounded (SGUUB).
Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control
scheme.

Keywords: stochastic nonlinear system, output-feedback control, time-varying delays, neural
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1 Introduction

In order to obtain global stability, some restrictions such as matching conditions, extended
matching conditions or growth conditions are often imposed on system nonlinearities. To
handle the above restrictions, neural networks (NNs) are gradually into people’s vision
due to their ability to adaptively compensate for nonlinear functions. In the past two
decades, based on the theoretical results of stochastic stability in [6, 7, 11] and NNs
in [14, 16, 23], radial basis function neural network (RBF NN) approximation approach
has been successfully used for various classes of stochastic nonlinear systems, see [1, 8,
12, 13, 15, 17, 27] and the references therein.
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It is well known that time-delays are frequently encountered in control systems. Re-
cent years have witnessed some developments of stochastic nonlinear time-delay systems
based on backstepping, NNs and other design technique, see [2, 3, 4, 5, 9, 10, 18, 20, 21,
22, 24, 25, 26] and [28]. In [3], the decentralized output-feedback control was considered
by applying NNs. [18] and [28] proposed the adaptive NN control scheme for stochastic
nonlinear systems with constant time-delays. However, in [28], the constant time-delays
only appeared in the drift terms. In [4] and [5], the authors further investigated stochastic
nonlinear systems with time-varying delays, but the diffusion terms still did not contain
time-delays. Subsequently, the output-feedback control problems were presented in [2]
and [10] for stochastic nonlinear systems with time-varying delays existing both in the
drift and diffusion terms, but the considered time-delays only depended on measurable
output. Later, for more general classes of stochastic nonlinear systems with time-varying
delays depending on unmeasurable states, NN tracking problems were solved in [24, 26].
However, output-feedback control is still an open problem for this kind of systems.

The lasted reference [25] solved the adaptive NN output-feedback control problem
for a class of stochastic time-varying delay nonlinear systems without considering per-
turbations. In addition, [25] required the delay-depended drift and diffusion terms to be
bounded by two known functions. Then, one may ask the following interesting problems:

How to relax the conditions on time-varying delay-depended drift and diffusion terms
by NN? Under the weaker conditions, how to design an adaptive output-feedback
controller for a class of stochastic nonlinear time-delay systems with both unknown
control directions and perturbations?

This paper focuses on solving the above problems. The main contributions are listed
as follows: (i) Compared with [25], by utilizing a novel RBF NN approximation approach
and introducing a proper linear transformation, the restrictions on system nonlinearities
are much weaker and the design procedure is simpler. In addition, the tuning function
approach is used to overcome the problem of over-parameterization generated by the
unknown perturbations. (ii) An adaptive NN output-feedback controller is constructed
for more general class of stochastic time-varying delay nonlinear systems. It should be
pointed out that the knowledge of NN nodes and weights is not necessary to be prior
known and the proposed control scheme can ensure all the signals in the closed-loop
system to be 4-moment (or mean square) semi-globally uniformly ultimately bounded
(SGUUB).

The remainder of this paper is organized as follows. Section 2 begins with the math-
ematical preliminaries. Section 3 states the main problem. The design and analysis of
the controller are presented in Sections 4 and 5, respectively. In Section 6, a simulation
example is given. Section 7 concludes the paper. The necessary proof is provided in
Appendix.

2 Mathematical preliminaries

In this paper, the following notations are to be used. R+ denotes the set of all the non-
negative real numbers; Rn denotes the n-dimensional Euclidean space. Ci denotes the
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family of all the functions with continuous ith partial derivations; C2,1(Rn×[−d,∞),R+)
denotes the family of all non-negative functions V (x, t) on Rn × [−d,∞), which are
C2 in x and C1 in t. C([−d, 0];Rn) denotes the space of continuous Rn-valued func-
tions on [−d, 0] endowed with the norm ‖·‖ defined by ‖f‖ = supx∈[−d,0] |f(x)| for
f ∈ C([−d, 0],Rn); CbF0

([−d, 0],Rn) denotes the family of all F0-measurable bounded
C([−d, 0];Rn)-valued random variables ξ = {ξ(θ): −d 6 θ 6 0}. XT denotes the
transpose of a given vector or matrix X , Tr{X} denotes its trace when X is square. ‖X‖
is the Euclidean norm of a vector X or its inducted matrix norm. λmin(·) and λmax(·)
denote the smallest and largest eigenvalues of a square matrix, respectively. To simply the
procedure, we sometimes denote X(t) by X for any variable X(t).

Consider the following stochastic nonlinear time-delay system:

dx(t) = f
(
t, x(t), x

(
t− d(t)

))
dt+ g

(
t, x(t), x

(
t− d(t)

))
dω ∀t > 0 (1)

with initial data {x(θ): −d 6 θ 6 0} = ξ ∈ CbF0
([−d, 0],Rn), where d(t) : R+ → [0, d]

is a Borel measurable function; ω is an r-dimensional standard wiener process defined
on a probability space {Ω,F ,P} with Ω being a sample space, F being a σ-field and
P being the probability measure. f : R+×Rn×Rn → Rn and g : R+×Rn×Rn → Rn×r
are locally Lipschitz with f(0, 0, t) ≡ 0 and g(0, 0, t) ≡ 0. For any given V (x(t), t) ∈
C2,1, together with stochastic system (1), the differential operator L is defined as

LV =
∂V

∂t
+
∂V

∂x
f +

1

2
Tr

{
gT
∂2V

∂x2
g

}
. (2)

Definition 1. Let p > 1, consider stochastic nonlinear time-delay system (1), the solution
{x(t), t > 0} with initial condition ξ ∈ S0 (S0 is some compact set containing the
origin) is said to be p-moment semi-globally uniformly ultimately bounded if there exists
a constant d such that E{‖x(t, ξ)‖p} 6 d for all t > T holds for some T > 0.

In the sequel, radial basis function neural network (RBF NN) will be applied to
estimate the unknown nonlinear functions. It has been proven in [23] that by choosing
sufficiently large node number, for any unknown continuous function f(x) over a compact
set Sx ⊂ Rq , there is a RBF NN W ∗TS(x) such that for an expected level of accuracy ε
(0 < ε < 1), it holds

f(x) = W ∗TS(x) + δ(x),
∣∣δ(x)

∣∣ 6 ε, (3)

where δ(x) is the approximation error, and S(x) = [s1(x), . . . , sN (x)]T is the known
function vector with N > 1 being the RBF NN node number. For 1 6 i 6 N , the basis
functions si(x) are chosen as si(x) = exp[−(x− bi)T(x− bi)/ς2], where ς is the width
of the function, bi = [bi1, . . . , bin]T is the center of the receptive field. W ∗ is the ideal
constant weight vector with the formW ∗ = arg minW∈RN {supx∈Sx

|f(x)−WTS(x)|},
where arg min is the value of variable W when the objective function supx∈Sx

|f(x) −
WTS(x)| is minimum with W = [w1, . . . , wN ]T being the weight vector.

Lemma 1 [Young’s inequality]. For all (x, y) ∈ R2, xy 6 εpp−1|x|p + (qεq)−1|y|q
holds, where ε > 0, p, q > 1, and (p− 1)(q − 1) = 1.
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Lemma 2. (See [19].) For any smooth function f(x), x ∈ Rn, there exists a smooth
function f̄(x) such that f(x)− f(0) = (

∫ 1

0
∂f(λ)/∂λ|λ=αx dα)x = xf̄(x).

3 Problem description

In this paper, we consider a class of stochastic nonlinear systems in the following form:

dηi = hiηi+1 dt+ φi
(
t, η(t), η

(
t− d(t)

))
dt+ θTi ψi(y) dt

+ ϕi
(
t, η(t), η

(
t− d(t)

))
dω, i = 1, . . . , n− 1,

dηn = hnudt+ φn
(
t, η(t), η

(
t− d(t)

))
dt+ θTnψn(y) dt

+ ϕn
(
t, η(t), η

(
t− d(t)

))
dω,

y = η1,

(4)

where η = [η1, . . . , ηn]T ∈ Rn is the system state vector and η(t−d(t)) = [η1(t−d(t)),
. . . , ηn(t − d(t))]T is the time-delay state variable, u ∈ R and y ∈ R are control
input and system output, respectively, η2, . . . , ηn are unmeasurable state variables, control
coefficients h1, . . . , hn are unknown constants. d(t) : R+ → [0, d] is time-varying delay.
ω is an r-dimensional standard wiener process. For i = 1, . . . , n, φi : R+×Rn×Rn → R
and ϕi : R+ × Rn × Rn → Rr are unknown smooth functions with φi(t, 0, 0) = 0 and
ϕi(t, 0, 0) = 0. For i = 1, 2, . . . , n, θi ∈ Rmi are unknown constant system parameters
and ψi : R→ Rmi are known smooth vector-valued functions.

The control objective of the paper is to construct an adaptive NN output-feedback
controller for system (4) such that all the signals in the closed-loop system are 4-moment
(or mean-square) SGUUB. To realise this objective, we need the following assumptions.

Assumption 1. The nonzero control coefficients h1, . . . , hn are of known signs and
satisfy h 6 |hi| 6 h̄ (i = 1, . . . , n), where h and h̄ are known positive constants denoting
the low and upper bounds of h1, . . . , hn, respectively.

Defining h = h1 · · ·hn/hn and using Assumption 1, it is easy to find a constant
hM > 1 such that

1 6 |h| 6 hM , hn = h× · · · × h︸ ︷︷ ︸
n

. (5)

Assumption 2. The time-varying delay d(t) in system (4) satisfies ḋ(t) 6 γ < 1 for
a given constant γ.

Assumption 3. For 1 6 i 6 n, the nonlinear functions φi and ϕi satisfy the following
inequalities:∥∥φi(t, η(t), η

(
t− d(t)

))∥∥ 6 φi1
(∥∥η(t)

∥∥)+ φi2
(∥∥η(t− d(t)

)∥∥),∥∥ϕi(t, η(t), η
(
t− d(t)

))∥∥ 6 ϕi1
(∥∥η(t)

∥∥)+ ϕi2
(∥∥η(t− d(t)

)∥∥), (6)

where φi1(·) and ϕi1(·) are unknown nonnegative smooth functions, φi2(·) and ϕi2(·) are
unknown class-K∞ functions.
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Remark 1. For system (4) without perturbations θTi ψi(y), in the similar references [2,
10], the functions φi and ϕi only appear in the forms of φi(t, y(t), y(t − d(t))) and
ϕi(t, y(t), y(t − d(t))). In [25], the functions fi and hi may contain unmeasured state
variables. However, the bounds of the time-delay functions should only contain y(t) and
y(t−d(t)). [24] and [26] relaxed the bound functions to contain state variables and solved
the tracking problems. For system (4) with perturbations θTi ψi(y), this paper handles
the output-feedback control problems by allowing the bound functions φij(·) and ϕij(·)
(i = 1, . . . , n, j = 1, 2) to be both unknown and contain state variables.

4 Output-feedback controller design

The design procedure of output-feedback controller is divided into two parts. Firstly,
by introducing an equivalent linear state transformation to lump the control coefficients
into one, RBF NN is used to estimate the unknown nonlinear functions and the tuning
function method is utilized to avoid over-parameterization. Then, an adaptive output-
feedback controller is designed to guarantee all the signals in the closed-loop system
to be 4-moment (or mean-square) SGUUB.

4.1 Full-order observer design

To make system (4) more feasible, we introduce a linear state transformation

xi =
hn

hi · · ·hn
ηi, i = 1, . . . , n. (7)

Then, system (4) is changed into the following equivalent system:

dxi = xi+1 dt+ fi
(
t, x(t), x

(
t− d(t)

))
dt+ΘT

i ψi(y) dt

+ gi
(
t, x(t), x

(
t− d(t)

))
dω, i = 1, . . . , n− 1,

dxn = hnudt+ fn
(
t, x(t), x

(
t− d(t)

))
dt+ΘT

nψn(y) dt

+ gn
(
t, x(t), x

(
t− d(t)

))
dω,

y = hx1,

(8)

where x = [x1, . . . , xn]T, x(t − d(t)) = [x1(t − d(t)), . . . , xn(t − d(t))]T, fj(·) =
hn(hj · · ·hn)−1φj(·), gj(·) = hn(hj · · ·hn)−1ϕj(·) and Θj = hn(hj · · ·hn)−1θj (j =
1, . . . , n). According to Assumption 3 and (7), for i = 1, . . . , n, there must exist unknown
nonnegative smooth functions fi1, gi1 and class-K∞ unknown functions fi2, gi2 such that∥∥fi(t, x(t), x

(
t− d(t)

))∥∥ 6 fi1
(∥∥x(t)

∥∥)+ fi2
(∥∥x(t− d(t)

)∥∥),∥∥gi(t, x(t), x
(
t− d(t)

))∥∥ 6 gi1
(∥∥x(t)

∥∥)+ gi2
(∥∥x(t− d(t)

)∥∥). (9)

We now turn to design an adaptive output-feedback controller for (8). Since η2, . . . , ηn
are unmeasured and the unknown control coefficients exist in (7), all the states x1, . . . , xn
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are unavailable, the following full-order observer is needed

˙̂xi = x̂i+1 + bi(x1 − x̂1), i = 1, . . . , n− 1,

˙̂xn = hnu+ bn(x1 − x̂1),
(10)

where b1, . . . , bn are constants satisfying

ATP + PA 6 −I, A =


−b1 1 0 . . . 0
−b2 0 1 . . . 0

...
...

...
...

...
−bn−1 0 . . . 0 1
−bn 0 0 . . . 0

 , (11)

and P is a certain symmetric and positive definite matrix. Define the observer error x̃ =
x− x̂ with x̃ = [x̃1, . . . , x̃n]T. By (8), (10) and (11), one has

dx̃ = Ax̃ dt+ f
(
t, x(t), x

(
t− d(t)

))
dt

+ΘTψ(y) dt+ g
(
t, x(t), x

(
t− d(t)

))
dω, (12)

where f(·) = [f1(·), . . . , fn(·)]T, Θ = diag[Θ1, . . . , Θn], ψ(·) = [ψ1, . . . , ψn]T and
g(·) = [g1(·), . . . , gn(·)]T.

Consider V0 = (1/2)(x̃TPx̃)2, in view of (2), (11), (12) and Lemmas 1, 2, one can
get

LV0 6 −λmin(P )‖x̃‖4 + 2x̃TPx̃x̃TPf +
3

2
‖x̃‖4 +

1

2
‖P‖8r4Θ‖ψ̄‖4y4

+ Tr
{
gT
(
2Px̃x̃TP + x̃TPx̃P

)
g
}
, (13)

where rΘ > 0 is an unknown number satisfying ‖Θ‖ 6 rΘ. For (13), by Lemma 1, (9),
(a1 + · · ·+ an)2 6 n

∑n
i=1 a

2
i and (a+ b)4 6 8(a4 + b4), one has

2x̃TPx̃x̃TPf

6
3

2
‖P‖8/3‖x̃‖4 +

1

2
‖f‖4

6
3

2
‖P‖8/3‖x̃‖4 + 4n

n∑
i=1

(
f4i1
(
‖x‖
)

+ f4i2
(∥∥x(t− d(t

))∥∥)), (14)

Tr
{
gT
(
2Px̃x̃TP + x̃TPx̃P

)
g
}

6 3n
√
n‖P‖2‖x̃‖2‖g‖2

6
9n3

2
‖P‖4‖x̃‖4 + 4n

n∑
i=1

(
g4i1
(
‖x‖
)

+ g4i2
(∥∥x(t− d(t)

)∥∥)). (15)

Substituting (14) and (15) into (13) leads to

LV0 6 −c0‖x̃‖4 + π‖ψ̄‖4y4 + 4n

n∑
i=1

(
f4i1 + g4i1

)
+∆0d

(∥∥x(t− d(t)
)∥∥), (16)
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where c0 = λmin(P )−(3/2)‖P‖8/3−(9n3/2)‖P‖4,∆0d(·) = 4n
∑n
i=1(f4i2(·)+g4i2(·)),

π =
1

2
max

{
‖P‖8r4Θ,

3h
4/3
M

2%4/3

}
, (17)

and % > 0 is an arbitrary design constant.

4.2 Backstepping controller design

The entire system can be rewritten as

dx̃ = Ax̃dt+ f(·) dt+ΘTψ(y) dt+ g(·) dω,

dy = h(x̂2 + x̃2) dt+ hf1(·) dt+ θT1 ψ1(y) dt+ hg1(·) dω,

dx̂i = (x̂i+1 + bix̃1) dt, i = 1, . . . , n− 1,

dx̂n = (hnu+ bnx̃1) dt.

(18)

Introduce the coordinate transformation

z1 = y, zi = x̂i − αi(z̄i, x̂2, θ̂, ϑ̂), i = 2, . . . , n, (19)

and define new statesX1 = (x, z1)T andXi = (x̃1, x, z̄i)
T, where α2, . . . , αn are virtual

control laws to be designed later and z̄i = [z1, . . . , zi]
T. In the sequel, we will design an

adaptive output-feedback controller by n steps.

Step 1. Choose the 2nd Lyapunov–Krasovskii function candidate as

V1 = V0 +
1

4
z41 + VQ +

1

2Γ1
θ̃2 + ϑ̃TΓ−12 ϑ̃, (20)

where VQ = (1 − γ)−1
∫ t
t−d(t)Π(‖x(s)‖) ds, Π will be designed later, Γ1 > 0 is

a constant, Γ2 = ΓT
2 > 0 is adaptive gain matrix, θ̂ is the estimate of θ and ϑ̂ is the

estimate of ϑ, θ̃ = θ− θ̂ and ϑ̃ = ϑ− ϑ̂ are estimation errors of θ and ϑ, respectively, and

θ = max
{
Ni‖W ∗i ‖2, Ni0‖W ∗i0‖2, i = 0, . . . , n

}
, ϑ =

[
π, h, θT1

]T
, (21)

Using (2), (16), (18), ˙̃
θ = − ˙̂

θ and ˙̃
ϑ = − ˙̂

ϑ, one can get

LV1 6 −c0‖x̃‖4 + π‖ψ̄‖4y4 +∆0d(·) + z31
(
hx̂2 + hx̃2 + hf1 + θT1 ψ1

)
+

3

2
h2z21g1g

T
1 −

1

Γ1
θ̃

˙̂
θ − ϑ̃TΓ−12

˙̂
ϑ+ f0

(
‖x‖
)
− 1− ḋ(t)

1− γ
Π(·), (22)

where f0(‖x‖) = 4n
∑n
i=1(f4i1(‖x‖) + g4i1(‖x‖)) + (1− γ)−1Π(‖x‖).

In the following, the estimates for terms of (22) are given. From (3), for any given
0 < ε10 < 1, 0 < ε0 < 1, there exist W ∗T10 S10, W ∗T0 S0 such that

f0
(
‖x‖
)

= W ∗T0 S0

(
‖x‖
)

+ δ0
(
‖x‖
)
,
∣∣δ0(‖x‖)∣∣ 6 ε0,

g211
(
‖x‖
)

= W ∗T10 S10

(
‖x‖
)

+ δ10
(
‖x‖
)
,
∣∣δ10(‖x‖)∣∣ 6 ε10,

(23)
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where x ∈ Sx and Sx is the compact set through which the state trajectories may travel.
According to ‖W ∗T0 ‖2‖S0‖2 6 ‖W ∗T0 ‖2N0 6 θ, ‖W ∗T10 ‖2‖S10‖2 6 ‖W ∗T10 ‖2N10 6 θ,
(5), (9), (23) and Lemma 1, one obtains

hz31f1 6 hz31
(
f11(

∥∥x‖)+ f12
(∥∥x(t− d(t)

)∥∥))
6 hz31f11

(
‖x‖
)

+
3

4
z41 +

h4M
4
f412
(∥∥x(t− d(t)

)∥∥), (24)

f0
(
‖x‖
)
6 %20 +

√
1 + θ2

2%20
+

ε20
2%20

, (25)

3

2
h2z21g1g

T
1 6 3h2Mz

2
1

(
g211
(
‖x‖
)

+ g212
(∥∥x(t− d(t)

)∥∥))
6 3h2Mz

2
1

(
W ∗T10 S10 + δ10

)
+ 3h2Mz

2
1g

2
12

(∥∥x(t− d(t)
)∥∥)

6
3

2%211
z41θ +

3

2
h4M%

2
11 + 3z41 +

3

2
h4Mε

2
10 +

3

2
h4Mg

4
12

(∥∥x(·)
∥∥), (26)

where %0 > 0 and %11 > 0 are design constants. Furthermore, from Lemma 1, the
definition of ϑ and (17), it can be verified that

π‖ψ̄‖4y4 + hz31 x̃2 + z31θ
T
1 ψ1(y)

6 π‖ψ̄‖4y4 +
%4

4
‖x̃2‖4 +

3h
4/3
M

4%4/3
z41 + z31θ

T
1 ψ1(y) 6

%4

4
‖x̃‖4 + z31ϑ

TΨ1(y), (27)

where % is a positive constant and Ψ1(y) = [(‖ψ̄‖4 + 1)y, 0, yTψ̄T
1 (y)]T. By Assump-

tion 2, (19) and substituting (24)–(27) into (22), one yields

LV1 6 −c1‖x̃‖4 + hz31(z2 + α2) + z31 f̄1(X1)− 3

4
z41 +

3

2%211
z41θ

+ z31ϑ
TΨ1(y) +

3

2
h4M%

2
11 +∆0 +

3

2
h4Mε

2
10 +∆1d

(∥∥x(t− d(t)
)∥∥)

−Π
(∥∥x(t− d(t)

)∥∥)− 1

Γ1
θ̃

˙̂
θ − ϑ̃TΓ−12

˙̂
ϑ, (28)

where c1 = c0 − %4/4, f̄1 = hf11(‖x‖) + (9/2)z1, ∆0 = %20 +
√

1 + θ2/(2%20) +
ε20/(2%

2
0) and ∆1d(‖x(t−d(t))‖) = ∆0d(‖x(t−d(t))‖) + (h4M/4)f412(‖x(t−d(t))‖) +

(3/2)h4Mg
4
12(‖x(t− d(t))‖).

Define a nonlinear function β1(X1)=−k1z1−f̄1, from (3), for any given 0<ε1< 1,
there exists W ∗T1 S1(X1) such that

β1(X1) = W ∗T1 S1(X1) + δ1(X1),
∣∣δ1(X1)

∣∣ 6 ε1, (29)

where k1 is a positive number, and X1 ∈ SX1
= {X1 | X1 ∈ Sx}. With the use of (21),

‖W ∗T1 ‖2‖S1‖2 6 ‖W ∗T1 ‖2N1 6 θ holds, together with Lemma 1 and (29) leads to

− z31β1 6
1

2ε21
z61θ +

1

2
ε21 +

3

4
z41 +

1

4
ε41, (30)
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where ε1 > 0 is a constant. Substituting f̄1 = −β1−k1z1 and (30) into (28), and choosing
the first virtual control law

α2 = − sgnh

(
3

2%211
z1θ̂ +

1

2ε21
z31 θ̂ + ϑ̂TΨ1(y)

)
, (31)

one obtains

LV1 6 −c1‖x̃‖4 + hz31z2 − k1z41 −
θ̃

Γ1
(

˙̂
θ − τ1)− ϑ̃TΓ−12 (

˙̂
ϑ− σ1)

+∆1d

(∥∥x(t− d(t)
)∥∥)−Π(∥∥x(t− d(t)

)∥∥)+∆1, (32)

where τ1 = 3Γ1(2%211)−1z41+Γ1(2ε21)−1z61 , σ1 = z31Γ2Ψ1 and∆1 = ∆0+(3/2)h4M%
2
11+

(3/2)h4Mε
2
10 + (1/2)ε21 + (1/4)ε41.

Step i (2 6 i 6 n− 1). At this step, we state the result in Proposition 1.

Proposition 1. For the Lyapunov function candidate Vi = V0+(1/4)
∑i
j=1 z

4
j +(1/2)×

Γ1θ̃
2 + ϑ̃TΓ−12 ϑ̃+VQ, there exists the ith virtual control law αi+1 in the following form:

αi+1 = −
(

3

2%2i1
ziθ̂ +

1

2ε2i
z3i θ̂ + ϑ̂TΨi(·)

)
(33)

such that

LVi 6 −ci‖x̃‖4 + hz31z2 +

i∑
j=2

z3j zj+1 −
i∑

j=1

kjz
4
j +∆i − ϑ̃TΓ−12 (

˙̂
ϑ− σi)

− θ̃

Γ1
(

˙̂
θ − τi) +∆id

(∥∥x(t− d(t)
)∥∥)−Π(∥∥x(t− d(t)

)∥∥), (34)

where Ψi = [(1+(∂αi/∂y)2)2/3zi, −(∂αi/∂y)x̂2, −(∂αi/∂y)yTψ̄T
1 ]T, %i1 > 0, εi > 0

are design constants, ci = ci−1 − %4/4, τi = τi−1 + 3Γ1(2%2i1)−1z4i + Γ1(2ε2i )
−1z6i ,

σi = σi−1 + z3i Γ2Ψi, ∆id = ∆i−1,d + (h8M/4)(∂2αi/∂y
2)4g812(‖x(t − d(t))‖) +

(3/2)h4M (∂αi/∂y)4g412(‖x(t− d(t))‖) and ∆i = ∆i−1 + (3/2)h4M%
2
i1 + (3/2)h4Mε

2
i0 +

(1/2)ε2i + (1/4)ε4i .

Proof. See the Appendix.

According to the recursive steps, at step n, choosing the Lyapunov function

Vn =
1

2

(
x̃TPx̃

)2
+

1

4

n∑
i=1

z4i +
1

2Γ1
θ̃2 +

1

2
ϑ̃TΓ−12 ϑ̃+ VQ, (35)

and constructing the adaptive control law as

u = −h−n
(

3

2%2n1
znθ̂ +

1

2ε2n
z3nθ̂ + ϑ̂TΨn(·)

)
, (36)

˙̂
θ =

n∑
i=1

3Γ1

2%2i1
z4i +

n∑
i=1

Γ1

2ε2i
z6i − θ̂,

˙̂
ϑ =

n∑
i=1

z3i Γ2Ψi − ϑ̂, (37)
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yield

LVn 6 −cn‖x̃‖4 −
n∑
i=1

kiz
4
i + hz31z2 +

n∑
i=2

z3i zi+1 +
1

Γ1
θ̃θ̂ + ϑ̃TΓ−12 ϑ̂

+∆nd

(∥∥x(t− d(t)
)∥∥)−Π(∥∥x(t− d(t)

)∥∥)+∆n, (38)

where Ψn(·)=[(1+(∂αn/∂y)2)2/3zn,−(∂αn/∂y)x̂n,−(∂αn/∂y)yTψ̄T
1 (y)]T, %n1 > 0,

εn > 0 are design constants, cn=c0−n%4/4,∆nd = ∆1d+(h8M/4)
∑n
i=2(∂2αi/∂y

2)4×
g812(‖x(t − d(t))‖) + (3/2)h4M

∑n
i=2(∂αi/∂y)4g412(‖x(t − d(t))‖) and ∆n = ∆0 +∑n

i=1(3%2i1/2 + 3ε2i0/2)h4M + (1/2)
∑n
i=1 ε

2
i + (1/4)

∑n
i=1 ε

4
i .

5 Stability analysis

We now state the main theorem in this paper.

Theorem 1. For stochastic nonlinear system (4) satisfying Assumptions 1–3, the adaptive
control laws (31), (33) and (36), (37) guarantee that all the signals in the closed-loop
system (4), (7), (10), (19), (31), (33) and (36), (37) are 4-moment (or mean square) semi-
globally uniformly ultimately bounded (SGUUB). The bounds of zi, θ̃ and ϑ̃ remain in

Ω1 :=

{
zi

∣∣∣ n∑
i=1

E|zi|4 6 4(1 + δ)
a2
a1

}
, (39)

Ω2 :=

{
θ̃
∣∣∣ E|θ̃|2 6 2Γ1(1 + δ)

a2
a1

}
, (40)

Ω3 :=

{
ϑ̃
∣∣∣ E‖ϑ̃‖2 6

1

λmin(Γ−12 )
(1 + δ)

a2
a1

}
, (41)

where δ, a1 and a2 are positive design constants.

Proof. Firstly, we estimate the terms on the right-hand side of (38). In terms of Lemma 1
and (5), one obtains

hz31z2 6
3

4
z41 +

h4M
4
z42 , z3i zi+1 6

3

4
z4i +

h4M
4
z4i+1, θ̃θ̂ 6 −1

2
θ̃2 +

1

2
θ2,

ϑ̃TΓ−12 (ϑ̃− ϑ̃) 6 −1

2
ϑ̃TΓ−12 ϑ̃+

1

2
λmax

(
Γ−12

)
‖ϑ‖2.

(42)

Substituting (42) into (38) and choosing Π(·) = ∆nd(·), we have

LVn 6 −cn‖x̃‖4 −
n∑
i=1

kiz
4
i +

3

4

n∑
i=1

z4i +
h4M
4

n∑
i=2

z4i −
1

2Γ1
θ̃2

− 1

2
ϑ̃TΓ−12 ϑ̃+∆n +

1

2Γ
θ2 +

1

2
λmax

(
Γ−12

)
‖ϑ‖2. (43)

Furthermore, from (35), it holds

Vn − VQ 6
1

2
‖x̃‖4λ2max(P ) +

1

4

n∑
i=1

z4i +
1

2Γ
θ̃2 +

1

2
ϑ̃TΓ−12 ϑ̃. (44)
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Choosing ā1 = min{2cn/λ2max(P ), 4(ki − (3 + h4M )/4), 1}, a2 = ∆n + θ2/(2Γ ) +
(1/2)λmax(Γ−12 )‖ϑ‖2, and using (43)–(44), one has LVn 6 −ā1(Vn − VQ) + a2. Then,
there must exist a positive constant a1 such that

LVn 6 −a1Vn + a2. (45)

Multiplying (45) by ea1t and taking expectations on both sides, one gets

d

dt

(
ea1tE(Vn)

)
6 a2ea1t. (46)

Integrating (46) on [0, t] yields E(Vn(t)) 6 e−a1tVn(0) + a2/a1 for all t > 0. Hence,
there exists T = max{0, (1/a1) ln(a1Vn(0)/(δa2))} for some small δ > 0 such that
E(Vn(t)) 6 (1 + δ)a2/a1 for all t > T . Using (35), we obtain

E
(
‖x̃‖4

)
6

2

λmin(P )
E
(
Vn(t)

)
6

2

λmin(P )
(1 + δ)

a2
a1
,

n∑
i=1

E|zi|4 6 4E
(
Vn(t)

)
6 4(1 + δ)

a2
a1
,

E|θ̃|2 6 2Γ1E
(
Vn(t)

)
6 2Γ1(1 + δ)

a2
a1
,

E‖ϑ̃‖2 6
1

λmin(Γ−12 )
E
(
Vn(t)

)
6

1

λmin(Γ−12 )
(1 + δ)

a2
a1
.

Thus, from Definition 1, ‖x̃‖ and zi are 4-moment SGUUB, θ̃ and ϑ̃ are mean square
SGUUB and (39)–(41) hold. Furthermore, from x̃ = x− x̂, (7) and (19), η is 4-moment
SGUUB, i.e. all the signals in the closed-loop system (4), (7), (10), (19), (31), (33) and
(36), (37) are 4-moment (or mean square) SGUUB.

Remark 2. We give a further explanation on how to design parameters. By choosing
larger NN nodes N , the approximation error ε in (3) can be reduced, which may improve
the approximation accuracy. Furthermore, smaller ε0, . . . , εn, %i1, εi0, εi together with
larger cn, ki (i = 1, . . . , n) will reduce a2/a1, which leads to smaller converging re-
gion. Hence, one can reduce the bounded compact sets Ω1, Ω2 and Ω3 by appropriately
regulating the parameters.

6 A simulation example

Consider the following stochastic nonlinear time-delay system:

dη1 = h1η2 dt+
(
η21 − 10η2

)
dt+ θT1 ψ1(y) dt

+ η21
(
t− d(t)

)
η2
(
t− d(t)

)
dω,

dη2 = h2udt+ η31 cos
(
η2
(
t− d(t)

))
dt+ θT2 ψ2(y) dt

+ η1 sin
(
η2
(
t− d(t)

))
dω,

y = η1,

(47)
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where h1 and h2 are unknown with known signs and satisfying 0.8 = h 6 |hi| 6 h̄ = 2
(i = 1, 2), d(t) = 0.2(1+sin(t)) is time-varying delay, ψ1(y) = y2 and ψ2(y) = y. From
Lemma 2, one can get that ψ(y) = [y2, y]T and ψ̄(y) = [y, 1]T. Thus, Assumptions 1–3
hold with γ = 0.2.

By exactly following the design procedure in Section 4, we construct the controller as

x1 =
h2

h1h2
η1, x2 =

h2

h2
η2,

˙̂x1 = x̂2 + b1(x1 − x̂1), ˙̂x2 = hnu+ b2(x1 − x̂1),

z1 = y, z2 = x̂2 − α2,

α2 = − sgnh

(
3

2%211
z1θ̂ +

1

2ε21
z31 θ̂ + ϑ̂TΨ1(y)

)
,

u = −h−2
(

3

2%221
z2θ̂ +

1

2ε22
z32 θ̂ + ϑ̂TΨ2(·)

)
,

˙̂
θ =

2∑
i=1

3Γ1

2%2i1
z4i +

2∑
i=1

Γ1

2ε2i
z6i − θ̂,

˙̂
ϑ =

2∑
i=1

z3i Γ2Ψi − ϑ̂,

(48)

where %11, ε1, %21, ε2, Γ1 > 0 are constants, Γ2 is a gain matrix, Ψ1(y) = [(1+‖ψ̄‖4)y, 0,
ψ1(y)]T and Ψ2(·) = [(1 + (∂α2/∂y)2)2/3z2,−(∂α2/∂y)x̂2,−(∂α2/∂y)ψT

1 (y)]T.
In the simulation, the design parameters are chosen as θ1 = 1, θ2 = 1, %11 = 0.5,

ε1 = 0.5, %21 = 0.5, ε2 = 0.5, b1 = 1, b2 = 1, Γ1 = 100, Γ2 = I . To get the
simulation results, we choose h1 = 1.2 and h2 = 1, then h = h1h2/h

2 = −1.875. The
initial states are chosen as η1(0) = 0, η2(0) = 0.5, x̂1(0) = 0, x̂2(0) = 0, θ̂(0) = 0,
ϑ(0) = [5, 7.5,−1.5]T. Figure 1 shows the effectiveness of the control scheme.
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Figure 1. The responses of the closed-loop system (47)–(48).
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7 Conclusions

This paper solves the adaptive NN output-feedback control problem for a class of stochas-
tic time-delay nonlinear systems with unknown control coefficients and perturbations.
By using RBF NN, tuning function approach and backstepping technique, the proposed
control scheme requires fewer parameters and guarantees all the signals in the closed-loop
system to be 4-moment(or mean-square) SGUUB. An important issue under investigation
is how to extend the design scheme to high-order stochastic nonlinear time-delay systems.

Appendix: Proof of Proposition 1

We will prove it by induction. Assume that for the Lyapunov function candidate Vi−1 =
V0 + (1/4)

∑i−1
j=1 z

4
j + (2Γ1)−1θ̃2 + ϑ̃TΓ−12 ϑ̃+VQ, there exist a series of virtual control

laws

αj+1 = −
(

3

2%2j1
ziθ̂ +

1

2ε2j
z3i θ̂ + ϑ̂TΨi(·)

)
, j = 2, . . . , i− 1, (49)

such that

LVi−1 6 −ci−1‖x̃‖4 + hz31z2 +

i−1∑
j=2

z3j zj+1 −
i−1∑
j=1

kjz
4
j

+∆i−1 − ϑ̃TΓ−12 (
˙̂
ϑ− σi−1)− θ̃

Γ1
(

˙̂
θ − τi−1)

+∆i−1,d
(∥∥x(t− d(t)

)∥∥)−Π(∥∥x(t− d(t)
)∥∥), (50)

where Ψj(·) = [(1 + (∂αj/∂y)2)2/3zj ,−(∂αj/∂y)x̂2,−(∂αj/∂y)yTψ̄T
1 (y)]T, ci−1,

%j1, εj > 0 are constants, τi−1 =
∑i−1
j=1(3Γ1(2%2j1)−1z4j + Γ1(2ε2j )

−1z6j ), σi−1 =∑i−1
j=1 z

3
jΓ2Ψj ,∆i−1,d = ∆1d+(h8M/4)

∑i−1
j=2((∂2αj/∂y

2)4g812(‖x(t−d(t))‖)+(3/2)×
h4M

∑i−1
j=2(∂αj/∂y)4g412(‖x(t−d(t))‖) and∆i−1 = ∆0+

∑j−1
j=1(3%2j1/2+3ε2j0/2)h4M+

(1/2)
∑i−1
j=1 ε

2
j + (1/4)

∑i−1
j=1 ε

4
j . In the sequel, we prove (50) still holds at step i.

From (18), (19) and (49), one has

dzi =

(
x̂i+1 + Fi −

∂αi
∂y

(
hx̂2 + hx̃2 + θT1 ψ1

)
− 1

2

∂2αi
∂y2

h2g1g
T
1

)
dt

+ h
∂αi
∂y

g1 dω, (51)

where F = bix̃1 −
∑i−1
j=2(∂αi/∂x̂j)(x̂j+1 + bj x̃1)− (∂αi/∂θ̂)

˙̂
θ − (∂αi/∂ϑ̂)

˙̂
ϑ. Apply-

ing (2), (50), (51) and Vi = Vi−1 + (1/4)z4i leads to

LVi 6 LVi−1 + z3i

(
x̂i+1 + Fi −

∂αi
∂y

(
hx̂2 + hx̃2 + θT1 ψ1(y)

)
− 1

2

∂2αi
∂y2

h2g1g
T
1

)
+

3

2
h2z2i

(
∂αi
∂y

)2

g1g
T
1 . (52)

Nonlinear Anal. Model. Control, 21(4):515–530



528 H.-F. Min, N. Duan

Now, we start to estimate the right-hand side terms of (52). Considering Lemma 1, (3),
(5), (9) and (21), one gets

−1

2
z3i
∂2αi
∂y2

h2g1g
T
1

6 z3i
∂2αi
∂y2

h2M
(
g211
(
‖x‖) + g212

(∥∥x(t− d(t)
)∥∥))

6 z3i
∂2αi
∂y2

h2Mg
2
11(‖x‖) +

3

4
z4i +

h8M
4

(
∂2αi
∂y2

)4

g812
(∥∥x(t− d(t)

)∥∥), (53)

3

2
h2z2i

(
∂αi
∂y

)2

g1g
T
1

6 3h2z2i

(
∂αi
∂y

)2(
g211
(
‖x‖
)

+ g212
(∥∥x(t− d(t)

)∥∥))
6 3h2Mz

2
i

(
W ∗Ti0 Si0 + δi0

)
+ 3h2Mz

2
i

(
∂αi
∂y

)2

g212
(∥∥x(t− d(t)

)∥∥)
6

3

2%2i1
z4i θ +

3h4M
2

%2i1 + 3z4i +
3

2
h4Mε

2
i0

+
3

2
h4M

(
∂αi
∂y

)4

g412
(∥∥x(t− d(t)

)∥∥), (54)

where %i1 > 0 is a design constant, (∂αi/∂y)2g211(‖x‖) = W ∗Ti0 Si0 + δi0, δi0 6 εi0 and
‖W ∗Ti0 ‖2‖Si0‖2 6 ‖W ∗Ti0 ‖2Ni0 6 θ. Furthermore, from Lemma 1, the definition of ϑ
and (17), it holds

−∂αi
∂y

hx̂2z
3
i −

∂αi
∂y

hx̃2z
3
i −

∂αi
∂y

θT1 ψ1(y)z3i

6 −∂αi
∂y

hx̂2z
3
i +

%4

4
‖x̃‖4 +

3h
4/3
M

4%4

(
1 +

(
∂αi
∂y

)2)2/3

z4i −
∂αi
∂y

θT1 ψ1(y)z3i

6
%4

4
‖x̃‖4 + z3i ϑ

TΨi(·). (55)

Substituting (53)–(55) into (52) and using (19) yields

LVi 6 −ci‖x̃‖4 + hz31z2 + z3i f̄i −
3

4
z3i + z3i αi+1 +

i∑
j=2

z3j zj+1 −
i−1∑
j=1

kjz
4
j

− θ̃

Γ1
(

˙̂
θ − τi−1)− ϑ̃TΓ−12 (

˙̂
ϑ− σi−1) +∆i−1 +∆i,d

(∥∥x(t− d(t)
)∥∥)

−Π
(∥∥x(t− d(t)

)∥∥)+ z3i ϑ
TΨi(·) +

3h4M
2

%2i1 +
3

2
h4Mε

2
i0, (56)

where ci = ci−1 − %4/4, f̄i = Fi + (∂2αi/∂y
2)h2Mg

2
11(‖x‖) + (9/2)zi and ∆id =

∆i−1,d+(h8M/4)(∂2αi/∂y
2)4g812(‖x(t−d(t))‖)+(3/2)h4M (∂αi/∂y)4g412(‖x(t−d(t))‖).
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Define a nonlinear function βi(Xi) = −kizi− f̄i, from (3), for any given 0 < εi < 1,
there existsW ∗Ti Si(Xi) such that βi(Xi) = W ∗Ti Si(Xi)+δ1(Xi), |δ1(Xi)| 6 εi, where
ki is a positive number, and Xi ∈ SXi

= {Xi | Xi ∈ Sx}. With the use of (21),
‖W ∗Ti ‖2‖Si‖2 6 ‖W ∗Ti ‖2Ni 6 θ holds, together with Lemma 1, one gets

− z3i βi 6
1

2ε2i
z6i θ +

1

2
ε2i +

3

4
z4i +

1

4
ε4i , (57)

where εi > 0 is a constant. Substituting f̄i = −βi−kizi and (57) into (56), and choosing
the ith virtual control law as (33) yield (34). The proof is completed.
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