
http://dx.doi.org/10.15388/NA.2016.3.3
Nonlinear Analysis: Modelling and Control, Vol. 21, No. 3, 325–344 ISSN 1392-5113

Stability of a mathematical model of tumor-induced
angiogenesis∗

Dan Lia,b, Wanbiao Maa, Songbai Guoa

aDepartment of Applied Mathematics,
School of Mathematics and Physics,
University of Science and Technology Beijing,
Beijing, 100083, China
wanbiao_ma@ustb.edu.cn
bFundamental Department, Tianjin College,
University of Science and Technology Beijing,
Tianjin, 301830, China

Received: July 7, 2014 / Revised: May 28, 2015 / Published online: January 25, 2016

Abstract. A model consisting of three differential equations to simulate the interactions between
cancer cells, the angiogenic factors and endothelial progenitor cells in tumor growth is developed.
Firstly, the global existence, nonnegativity and boundedness of the solutions are discussed.
Secondly, by analyzing the corresponding characteristic equations, the local stability of three
boundary equilibria and the angiogenesis equilibrium of the model is discussed, respectively.
We further consider global asymptotic stability of the boundary equilibria and the angiogenesis
equilibrium by using the well-known Liapunov–LaSalle invariance principal. Finally, some
numerical simulations are given to support the theoretical results.
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1 Introduction

Cancer progression occurs first through the generation and growth of a single tumor in
a specific site. Over time, the tumor progresses to higher degrees of malignancy and
spreads to other organs by a process known as metastasis [2, 7]. Metastasis spread is
the predominant cause of cancer-induced death.

Once tumor cells have settled at a site, they often remain dormancy and grow up
to about 2 mm in a diameter and then remaining at that size. Within the mass of the
tumor, cell replication is balanced by programmed cell death. Unfortunately, tumors
do not tend to stay in this state but progress to a mode of accelerated growth, to the
detriment of the surrounding tissue. This abnormally high growth rate soon outpaces the
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supply of oxygen and nutrients from the host’s vasculature [8]. Consequent changes in
the cells of the tumor lead to the release of diffusible proteins (angiogenic factors) from
the tumor or its immediate vicinity. These proteins spread through the surrounding tissue,
forming attachments with structures (receptors) that protrude from the cells of nearby
blood vessels. The attachment initiates a cascade of processes leading to the formation of
blood vessel sprouts. This is tumor-induced angiogenesis [20,24]. The new blood vessels
supply nutrients, oxygen and access to routes by which tumor cells may travel to other
sites within the host (metastasize). As the tumor vasculature is a key element of the tumor
stroma, angiogenesis is the target of many cancer therapies.

Consequently, new blood supply is formed and the tumor can progress. There are two
basic ways in which angiogenesis can occur. (i) First, it is believed that the angiogenic
promoters induce existing and differentiated endothelial cells [3, 19], which make up the
current blood supply, to divide and form new blood vessels [11,13]. (ii) The second mech-
anism is that the recruitment of endothelial cells by promoters. The most critical growth
factor associated with angiogenesis, in particular tumor angiogenesis, is arguably vascular
endothelial growth factors (VEGF). Recently, many studies have found evidence that this
might be a prominent mechanism by which new blood supply is formed for tumors [31].

The determination that tumor growth was dependent on angiogenesis, made in 1971
by Folkman [9], led to the hope that disruption of angiogenesis could form the basis for
effective cancer treatments. Since then the study of tumor-induced angiogenesis and anti-
angiogenesis has grown into a huge area of biological and medical research.

A schematic diagram describing the process of tumor angiogenesis is shown in Fig. 1
[16], which can be divided into four different stages. A small, dormant tumor (stage 1)
can depend on the nature of the tumor and its microenvironment, make the angiogenic
switch to ensure exponential growth. The tumor secretes angiogenic growth factors to
activate endothelial cells of surrounding vessels (stage 2). Upon activation, these en-
dothelial cells start to migrate and proliferate toward the tumor. Only one endothelial
cell starts an angiogenic sprout and develops into an endothelial tip cell migrating along
the extracellular matrix (ECM) and guiding the following so-called stalk endothelial cells
(stage 3) [1, 12]. Finally, the growing tumor is connected to the vasculature (stage 4). In
addition to growth and proliferation, the tumor can metastasize. Malignant tumor cells,
by invading of the vessels, ECM degradation, attachment, and homing to target sites can
form distal metastases [4].

In recent decades, an abundance of biological research has focused on tumor-induced
angiogenesis in the hope that treatments targeted at the vasculature may result in a sta-
bilisation or regression of the disease: a tantalizing prospect. The complex and fascinat-
ing process of angiogenesis has also attracted the interest of researchers in the field of
mathematical biology, a discipline that is, for mathematics, relatively new. The challenge
in mathematical biology is to produce a model that captures the essential elements and
critical dependencies of a biological system. Such a model may ultimately be used as
a predictive tool. In order to affect the angiogenic process, an anti-angiogenic agent
is introduced in many treatments [9, 10, 15, 21, 22]. It happens that anti-angiogenic is
particularly efficient for slow growing solid tumors [1]. In [23], an ODE model that
does not consider an angiogenesis promoter factors compartment is investigated, in [31],
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Figure 1. The sequential steps during tumor angiogenesis.

a model, which describes the growth of a single angiogenic tumor is investigated, and
then generalize this model to include multiple tumors, which complete for circulating
endothelial cells in order to build new blood vessels. In [5], they give a special issue
on cancer modelling, analysis and control. In [34], they present a continuous model for
three early stage events in angiogenesis: initiation, sprout extension and vessel maturation.
More works on tumor angiogenesis can be found in [25, 26, 27].

Generally, the dynamic behaviors of various mathematical models are usually handled
by the classical theories and methods on delay differential equations, like constructing
Lyapunov functionals [6, 17, 28, 29, 33], Lyapunov–LaSalle invariance principle [30, 32]
and so on. By using these techniques, we give a complete global stability analysis for
delay differential equation model (1).

The paper is structured as follows. In the next section, we develop our model. In Sec-
tion 3, we discuss the global existence, nonnegativity, boundedness of solutions, nature
of equilibria. By analyzing the corresponding characteristic equations, the local stability
of three boundary equilibria and the positive equilibrium of the system is discussed,
respectively. In Section 4, we further consider global asymptotic stability of the boundary
equilibria and the positive equilibrium by using the well-known Liapunov–LaSalle invari-
ance principal. In Section 5, some numerical simulations are given to illustrate the results
found.

2 The model

We now present our model of interactions between cancer cells, angiogenic growth factors
and endothelial cells. Let T (t) and E(t) be the mass of cancer cells and endothelial cells,
respectively. The angiogenic growth factor concentration is denoted by P (t). The model
is based on the considerations discussed in the introduction, which we summarize below:

1. The tumor growth rate is density-dependent and the cancer cells cannot exceed an
upper limit, denoted by k. In addition, the growth of cancer cells is dependent on
the presence of the endothelial cells [23] (the term rT (t)(1−T (t)/(k+ΓE(t)))).

2. Angiogenesis is induced by the release of various pro-angiogenic cytokines by the
tumor cells.
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3. The endothelial cells E(t) exhibit logistic proliferation rates, the other growth is
a proliferation term whereby endothelial cells are stimulated by angiogenic growth
factors, that is, produced by cancer cells, according to Holling type 2 function [18]
(the term βE(t)P (t)/(g + P (t))).

4. There is a time delay necessary for the production of the angiogenic growth factors
stimulated by cancer cells to form.

Hence, we obtain the following model:

Ṫ (t) = rT (t)

(
1− T (t)

k + ΓE(t)

)
− dT (t),

Ṗ (t) = αT (t− τ)− hP (t),

Ė(t) = cE(t)
(
1− bE(t)

)
+
βE(t)P (t)

g + P (t)
− µE(t).

(1)

In accordance with the biological meaning, the initial functions of model (1) is taken as
follows:

T (θ) = φ1(θ), P (θ) = φ2(θ), E(θ) = φ3(θ), θ ∈ [−τ, 0], (2)

where φi(θ) are continuous and nonnegative on [−τ, 0] (i = 1, 2, 3), that is, φ =
(φ1, φ2, φ3)T ∈ C = C([−τ, 0], R3

+), where C is a Banach space with norm ‖φ‖ =
sup−τ6θ60 |φ(t)|.

The parameters in model (1) may be interpreted as follows. r and k are the pro-
liferation rates and carrying capacities of T (t). Γ is the proportion of endothelial cells
responsible for the tumor angiogenesis. Cancer cells die with a rate d. Angiogenic factors
are produced by cancer cells with a rate α and decay with a rate h. c and 1/b are the
proliferation rates and carrying capacities of E(t). The population of the endothelial
cells die with a rate µ. β is the rate at which the endothelial cells grows and g is the
half saturation constant. τ represents the time taken for the cancer cells to stimulate the
angiogenic growth factors to form.

By using the basic theory of delay differential equations (see [14]) and some simple
calculation, it is not difficult to show the following theorem.

Theorem 1. The solution (T (t), P (t), E(t)) of model (1) with the initial condition (2)
exists, is unique and nonnegative on [0,+∞), and satisfies

lim sup
t→∞

T (t) 6
kbc+ Γ (c+ β)

bc
≡ TM ,

lim sup
t→∞

P (t) 6
α(kbc+ Γ (c+ β))

hbc
≡ PM ,

lim sup
t→∞

E(t) 6
c+ β

bc
≡ EM .

In addition, G = {φ= (φ1, φ2, φ3) ∈ C | 0 6 φ1 6 TM , 0 6 φ2 6 PM , 0 6 φ3 6EM}
attracts all solutions of model (1) and is positively invariant.
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3 Local stability analysis

3.1 Existence of equilibria

Next, we examine the conditions under which a tumor can grow and expand. As model (1)
is formulated, it assumes that the tumor can grow only if sufficient blood supply is
generated. Therefore, model (1) describes the growth of angiogenic cells. Nonangiogenic
cells cannot grow beyond a very small size. Such nonangiogenic cells are not explicitly
included in the model. Thus, if the angiogenic tumor cells go extinct in the model, this
does not mean that the entire population of tumor cells goes extinct, but that only a small
number of cells remain.

We now find all biologically feasible equilibria admitted by model (1) and study the
dynamic properties of the model around each equilibrium. The equilibria for model (1)
are as follows:

(i) There always exists the trivial equilibrium F0 = (0, 0, 0). In this case, the angio-
genic cells cannot grow and go extinct, all populations are extinct.

(ii) If c > µ, there exists a tumor-free equilibrium F1 = (0, 0, Ē), where Ē =
(c − µ)/(bc). In this case, the tumor cell population is zero but the endothelial
cells survive.

(iii) If r > d, there exists a endothelium-free equilibrium F2 = (T̂ , P̂ , 0), where
T̂ = k(r − d)/r, P̂ = αk(r − d)/(rh). In this case, the angiogenic factors,
which are produced by cancer cells, cannot promote the additional endothelial
cells.

In mathematics, the equilibria F0, F1, F2 are also called the boundary equilibria.

(iv) Model (1) has an angiogenesis equilibrium provided that r > d and the quadratic
equation

αΓbc(r − d)E2 −
(
αΓ (r − d)(c− µ+ β)− bc

(
grh+ αk(r − d)

))
E

−
(
grh(c− µ) + αk(r − d)(c− µ+ β)

)
= 0 (3)

has a positive root.

Next, we give the conditions to ensure that (3) has the positive root under r > d. If

r > d and grh(c− µ) + αk(r − d)(c− µ+ β) > 0, (4)

then equation (3) has a unique positive root. If

r > d, grh(c− µ) + αk(r − d)(c− µ+ β) < 0,

αΓ (r − d)(c− µ+ β)− bc
(
grh+ αk(r − d)

)
> 0,(

αΓ (r − d)(c− µ+ β) + bc
(
grh+ αk(r − d)

))2
− 4αΓbcgrhβ(r − d) > 0,

(5)

then (3) has two different positive roots.
From the above, we have the following.
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Lemma 1. If (4) holds, there exists a unique angiogenesis equilibriumF ∗ = (T ∗, P ∗, E∗),
where E∗ is the root of equation (3) and

T ∗ =
(r − d)(k + ΓE∗)

r
, P ∗ =

α(r − d)(k + ΓE∗)

rh
.

If (5) holds, there exist two angiogenesis equilibria F ∗= (T ∗, P ∗, E∗) and F ∗∗= (T ∗∗,
P ∗∗, E∗∗), where E∗ and E∗∗ are the solutions of equation (3).

3.2 Characteristic equation

In order to determine the stability of any equilibrium F (T, P,E), we linearize model (1)
about F and obtain

w′(t) = Aw(t) +Bw(t− τ),

where w(t) = (T (t), P (t), E(t))T and

A =

r(1− 2T
k+ΓE )− d 0 ΓrT 2

(k+ΓE)2

0 −h 0

0 gβE
(g+P )2 c(1− 2bE) + βP

g+P − µ

 ,

B =

0 0 0
α 0 0
0 0 0

 ,
where matrices A and B are computed at the equilibrium under consideration. The sta-
bility is determined by computing the roots of the characteristic equation

det
(
λI −A−Be−λτ

)
= 0. (6)

3.3 Local stability

From the point of view in disease management, it is important to identify the range of the
parameters such that tumor cells can be eventually removed or exist forever. Hence, in
mathematics, it is necessary to consider stability of the equilibria of model (1).

For local stability of the equilibria F0, F1 and F2 of model (1), we have the following
results.

Theorem 2. For model (1), we have:

(i) If r < d and c < µ, then the trivial equilibrium F0 is locally asymptotically stable
for any time delay τ > 0.

(ii) If r < d and c > µ, then the tumor-free equilibrium F1 is locally asymptotically
stable for any time delay τ > 0.

(iii) If r > d and αk(r− d)(c− µ+ β) + grh(c− µ) < 0, then the endothelium-free
equilibrium F2 is locally asymptotically stable for any time delay τ > 0.
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Proof. The eigenvalues of model (1) at F0 = (0, 0, 0) are λ1 = r − d, λ2 = −h < 0,
λ3 = c − µ. If r < d and c − µ < 0, all eigenvalues are negative and F0 is locally
asymptotically stable for any time delay τ > 0.

The eigenvalues of model (1) at F1 = (0, 0, Ē) are λ1 = r − d, λ2 = −h < 0,
λ3 = (c− µ− 2bcĒ) = µ− c < 0. If r < d and c > µ, all eigenvalues are negative and
F1 is locally asymptotically stable for any time delay τ > 0.

The eigenvalues of model (1) at F2 = (T̂ , P̂ , 0) are

λ1 =r − d− 2rT̂

k
= −(r − d) < 0, λ2 = −h < 0,

λ3 =c− µ+
βP̂

g + P̂
=
αk(r − d)(c− µ+ β) + grh(c− µ)

grh+ αk(r − d)
.

If αk(r − d)(c − µ + β) + grh(c − µ) < 0 and r > d, all eigenvalues are negative and
F2 is locally asymptotically stable for any time delay τ > 0.

This completes the proof.

From Lemma 1, we have that there exists a unique angiogenesis equilibrium F ∗=
(T ∗, P ∗, E∗) if (4) holds and that there exist two angiogenesis equilibriaF ∗= (T ∗, P ∗, E∗)
and F ∗∗ = (T ∗∗, P ∗∗, E∗∗) if (5) holds. Without loss of generality, we assume that
F ∗ > F ∗∗. Next, we discuss local stability of the angiogenesis equilibria.

Theorem 3.
(i) If r > d and c > µ hold, the angiogenesis equilibrium F ∗ of model (1) is locally

asymptotically stable for any time delay τ > 0.
(ii) If (5) holds, the angiogenesis equilibrium F ∗ of model (1) is locally asymptoti-

cally stable for any time delay τ > 0.
(iii) If (5) holds, the angiogenesis equilibrium F ∗∗ of model (1) is unstable for any

time delay τ > 0.

Proof. Computing the characteristic polynomial (6) at F ∗, we obtain

H(λ) = λ3 + a2λ
2 + a1λ+ a0 + b0e−λτ = 0, (7)

where
a2 =(r − d) + h+ bcE∗,

a1 =h(r − d) + hbcE∗ + bc(r − d)E∗,

a0 =hbc(r − d)E∗,

b0 =− ΓrαβgT ∗2E∗

(g + P ∗)2(k + ΓE∗)2
.

We first discuss the situation that the cancer cells stimulate the angiogenic growth fac-
tors to form is instantaneous (that is, τ = 0), the characteristic equation (7) is reduced to

λ3 + a2λ
2 + a1λ+ a0 + b0 = 0. (8)

Obviously, a2 > 0.
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If (4) holds, there exists a unique equilibrium F ∗. Next, let us show that a0 + b0 > 0.
From (3) and (4), it has

E∗ >
Γαβ(r − d)− bc(grh+ αk(r − d))

2αbcΓ (r − d)
,

thus,

a0 + b0 =
T ∗E∗

(k + ΓE∗)(g + P ∗)2
(
hrbcP ∗2 + 2hrbcgP ∗ + g

(
hrbcg − Γαβ(r − d)

))
=

T ∗E∗

(k + ΓE∗)(g + P ∗)2
(
hrbcP ∗2 + 2bcgα(r − d)(k + ΓE∗)

+ ghrbcg − gΓαβ(r − d)
)

>
T ∗E∗

(k + ΓE∗)(g + P ∗)2
(
hrbcP ∗2 + bcg

(
ghr + αk(r − d)

)
+ 2bcgα(r − d)ΓE∗ − gΓαβ(r − d)

)
> 0.

If (5) holds, there exists two angiogenesis equilibria F ∗ and F ∗∗ (F ∗∗ < F ∗). Next, we
discuss the sign of a0 + b0 at F ∗. Let

G(P ) = hrbcP 2 + 2hrbcgP + g
(
hrbcg − Γαβ(r − d)

)
.

Then

a0 + b0 =
T ∗E∗

(k + ΓE∗)(g + P ∗)2
G(P ∗).

From equation (3) and Vieta’s theorem, we have

E∗ + E∗∗ =
αΓ (r − d)(c− µ+ β)− bc(grh+ αk(r − d))

αΓbc(r − d)
,

E∗E∗∗ =
−(grh(c− µ) + αk(r − d)(c− µ+ β))

αΓbc(r − d)
.

By the above expressions, Lemma 1 and P ∗ > P ∗∗, we have

P ∗ + P ∗∗

2
=
αΓ (r − d)(c− µ+ β)− bc(grh− αk(r − d))

2hrbc
< P ∗,

P ∗P ∗∗ =
−gα(r − d)(bck + Γ (c− µ))

hrbc
< P ∗2.

Since the function G(P ) is increasing for P > 0, we have

G(P ∗) > −gα(r − d)
(
bck + Γ (c− µ)

)
+ αgΓ (r − d)(c− µ+ β)

− bcg
(
grh− αk(r − d)

)
+ ghrbcg − gΓαβ(r − d) = 0.

Hence, we have a0 + b0 > 0.
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Now, let us further show that a2a1 − (a0 + b0) > 0. In fact, it has that

a2a1 − (a0 + b0)

=
hrT ∗

k + ΓE∗

(
h+

rT ∗

k + ΓE∗

)
+

(
h+

rT ∗

k + ΓE∗

)(
hbcE∗ +

rbcT ∗E∗

k + ΓE∗

)
+ bcE∗

(
hbcE∗ +

rbcT ∗E∗

k + ΓE∗

)
+

ΓrαβgT ∗2E∗

(g + P ∗)2(k + ΓE∗)2
> 0.

By Routh–Hurwitz criterion we know that all roots of (8) have negative real parts and
λ = 0 is not the root of (8). If (7) has pure imaginary roots λ = iω for some ω > 0 and
τ > 0, we have from (7) that

−iω3 − a2ω2 + a1iω + a0 + b0(cosωτ − i sinωτ) = 0.

Hence, we have

−ω3 + a1ω = b0 sinωτ,

a2ω
2 − a0 = b0 cosωτ,

(9)

which leads to
ω6 + pω4 + qω2 + r = 0, (10)

where
p = a22 − 2a1, q = a21 − 2a0a2, r = a20 − b20 > 0.

Let v = ω2, then (10) becomes

h(v) = v3 + pv2 + qv + r = 0. (11)

Since

p = (bcE∗)2 + h2 +

(
rT ∗

k + ΓE∗

)2

> 0,

q =

(
hrT ∗

k + ΓE∗

)2

+ (hbcE∗)2 +

(
rbcT ∗E∗

k + ΓE∗

)2

> 0,

hence, we have that h(v) > 0, which contradicts h(v) = 0. This shows that all the
roots of the characteristic equation (7) have negative real parts for any time delay τ > 0.
Therefore, the conclusions (i) and (ii) hold. By the similar argument as above, it has

P ∗∗ <
αΓ (r − d)(c− µ+ β)− bc(grh− αk(r − d))

2hrbc
,

P ∗∗2 <
−gα(r − d)(bck + Γ (c− µ))

hrbc
.

Consequently,G(P ∗∗)<0. Hence, a0+b0 =T ∗∗E∗∗G(P ∗∗)/(k+ΓE∗∗)(g+P ∗∗)2<0.
For any time delay τ > 0, H(0) = a0 + b0 < 0 and limt→+∞H(λ) = +∞. It has from
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the continuity of the function H(λ) on [0,+∞) that H(λ) = 0 has one positive root.
Consequently, the characteristic equation (7) has one positive root. Thus, conclusion (iii)
holds.

This completes the proof.

Remark 1. In Theorem 3(i), we give the conditions under which the tumor cells can grow
and expand. As the model is formulated, it is assumed that the tumor cells can grow only
if the blood supply is sufficient. Necessary conditions for the growth of tumor cells are
c > µ and r > d. The growth of tumor cells is determined by the intrinsic rate of cell
division r and the death rate of tumor cells d, and how many endothelial cells are available
(expressed in the parameters c) and the death rate of endothelial cells µ. A high intrinsic
rate of cell division, a low death rate of tumor cells, and a large available of endothelial
cells promotes the growth of cancer cells.

4 Global stability

4.1 Global asymptotic stability of the boundary equilibria

In this section, we will consider the global asymptotic stability of the boundary equilibria
of model (1).

Theorem 4.
(i) If c > µ and r < d, the tumor-free equilibrium F1 of model (1) is globally

asymptotically stable for any time delay τ > 0.
(ii) If c > µ and r = d, the tumor-free equilibrium F1 of model (1) is globally

attractive for any time delay τ > 0.

Proof. First, for any solution (T (t), P (t), E(t)) of model (1), from Ė(t) > E(t)(c−µ−
bcE(t)), we easily have that lim inft→+∞E(t) > (c− µ)/(bc) = E. Define

G1 =
{
φ = (φ1, φ2, φ3) ∈ G

∣∣ 0 6 φ1 6 TM , 0 6 φ2 6 PM , E 6 φ3 6 EM
}
.

From Theorem 1, we see that G1 attracts all solutions of model (1). For any φ = (φ1, φ2,
φ3) ∈ G1, let (T (t), P (t), E(t)) be the solution of model (1) with the initial function φ.
Clearly, for any t > 0, we have that E(t) > 0. We claim that for any t > 0, E(t) > E.
In fact, if there is t1 > 0 such that E(t1) < E, then E(t) < E for t2 < t 6 t1, here
t2 = sup{t | E(t) = E, t 6 t1} > 0. From Lagrange mean value theorem, there exists
some ξ ∈ (t2, t1) such that 0 < E(ξ) < E and Ė(ξ) < 0. Hence, we have that

Ė(ξ) = bcE(ξ)
(
E − E(ξ)

)
+
βE(ξ)P (ξ)

g + P (ξ)
> 0.

This is a contradiction to Ė(t1) < 0. Hence, G1 is positively invariant with respect to
model (1).

To prove global stability of F1, let us define a functional L on G1 as follows:

L(φ1, φ2, φ3) = φ1(0).

http://www.mii.lt/NA



Stability of a mathematical model of tumor-induced angiogenesis 335

Calculating the time derivative of L along solutions of model (1), we obtain

L̇(φ)|(1) = (r − d)φ1(0)− rφ21(0)

k + Γφ3(0)
.

By r 6 d, we have that

L̇(φ)|(1) 6 −
rφ21(0)

k + Γφ3(0)
6 0 (12)

for any φ ∈ G1. This show that L(φ) is a Liapunov function on the subset G1 in C.
Define D = {φ ∈ G1 | L̇(φ)|(1) = 0}. From (12), we have that

D ⊂
{
φ ∈ G1

∣∣ φ1(0) = 0
}
.

Let M be the largest set in D, which is invariant with respect to model (1). Clearly,
M is not empty since (0, 0, (c − µ)/(bc)) ∈ M . For any φ ∈ M , let (T (t), P (t), E(t))
be the solution of model (1) with the initial function φ. From the invariance of M , we
have that (Tt, Pt, Et) ∈ M ⊂ D for any t ∈ R. Thus, T (t) ≡ 0 for any t ∈ R.
If P (0) > 0, from the second equation of model (1), we have that P (t) → +∞ as
t → −∞. This is a contradiction to boundedness of G1. Hence, the invariance of M
implies P (t) ≡ 0 for any t ∈ R. From the third equation of model (1), we have that
E(t) → (c − µ)/(bc) = E as t → +∞. Hence, the invariance of M implies that
E(t) ≡ E for any t ∈ R. Therefore, M = {(0, 0, E)}. The classical Liapunov–LaSalle
invariance principal (see, for example, [14]) shows that F1 is globally attractive. Since it
has been shown that, if r < d and c > µ, F1 is locally asymptotically stable for any time
delay τ > 0. Hence, if c > µ and r < d, F1 is globally asymptotically stable for any time
delay τ > 0. If c > µ and r = d, F1 is globally attractive for any time delay τ > 0.

This completes the proof.

Theorem 5. If r > d and c−µ+β 6 0, the endothelium-free equilibrium F2 of model (1)
is globally asymptotically stable for any time delay τ > 0.

Proof. For any solution (T (t), P (t), E(t)) of model (1), from Ṫ (t) > T (t)(r − d −
rT (t)/k), we easily have that lim inft→+∞ T (t) > k(r − d)/r = T̂ . Define

G2 =
{
φ = (φ1, φ2, φ3) ∈ C

∣∣ T̂ 6 φ1 6 TM ,

0 6 φ2 6 PM , 0 6 φ3 6 EM
}
.

We see that G2 attracts all solutions of model (1). For any φ = (φ1, φ2, φ3) ∈ G2, let
(T (t), P (t), E(t)) be the solution of model (1) with the initial function φ. By similar
method as in the proof of Theorem 4, we can show that G2 is positively invariant with
respect to model (1).

To prove global stability of F2, let us define a functional W on G2 as follows:

W (φ1, φ2, φ3) = φ3(0).
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Calculating the time derivative of W along solutions of model (1), we obtain

Ẇ (φ)|(1) = cφ3(0)
(
1− bφ3(0)

)
+
βφ3(0)φ2(0)

g + φ2(0)
− µφ3(0)

6 φ3(0)
(
c− µ+ β − bcφ3(0)

)
.

By c− µ+ β 6 0, we have that

Ẇ (φ)|(1) 6 −bcφ23(0) 6 0 (13)

for any φ ∈ G2. This show that W (φ) is a Liapunov function on the subset G2 in C.
Define D = {φ ∈ G2 | Ẇ (φ)|(1) = 0}. From (13), we have that

D ⊂
{
φ ∈ G2

∣∣ φ3(0) = 0
}
.

Let M be the largest set in D, which is invariant with respect to model (1). Clearly,
M is not empty since (k(r − d)/r, αk(r − d)/(rh), 0) ∈ M . For any φ ∈ M , let
(T (t), P (t), E(t)) be the solution of model(1) with the initial function φ. From the in-
variance of M , we have that (Tt, Pt, Et) ∈ M ⊂ D for any t ∈ R. Thus, E(t) ≡ 0 for
any t ∈ R. From the first equation of model (1) and E(t) ≡ 0 for any t ∈ R, we further
have that T (t)→ k(r − d)/r = T̂ as t→ +∞. Hence, the invariance of M implies that
T (t) ≡ T̂ for any t ∈ R. From the second equation of model(1), we have that Ṗ (t) =
αT̂ − hP (t) for any t ∈ R. If P (0) 6= P̂ , it has that |P (t)| = |(P (0)− P̂ )e−ht + P̂ | →
+∞ as t → −∞. This is a contradiction to boundedness of G2. Hence, the invariance
of M implies that P (t) ≡ P̂ for any t ∈ R. Therefore, M = {(T̂ , P̂ , 0)}. The classical
Liapunov–LaSalle invariance principal (see, for example, [14]) shows that F2 is globally
attractive. Since it has been shown that, if r > d and c − µ + β < 0, F2 is locally
asymptotically stable for any time delay τ > 0. Hence, F2 is globally asymptotically
stable for any time delay τ > 0.

This completes the proof.

4.2 Global stability of the angiogenesis equilibrium

In this section, we study the global stability of the angiogenesis equilibrium of model (1)
in G.

Theorem 6. If r > d and c > µ hold, the angiogenesis equilibrium F ∗ = (T ∗, P ∗, E∗)
of model (1) is globally asymptotically stable provided that A1 > 0, A2 > 0 and A3 > 0,
where

A1 =
r

k + ΓEM
− rΓT ∗

2k(k + ΓE∗)
− α

2
− αrτTM

2k
> 0,

A2 = h− α

2
− β

2(g + P ∗)
− ατrTM (k + ΓE∗ + ΓT ∗)

2k(k + ΓE∗)
> 0,

A3 = bc− rΓT ∗(2ατTM + 1)

2k(k + ΓE∗)
− β

2(g + P ∗)
> 0.

(14)
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Proof. Let (T (t), P (t), E(t)) be any positive solution of model (1) with initial condi-
tions (2).

Define

V1 = T − T ∗ − T ∗ ln
T

T ∗
+

1

2
(P − P ∗)2 + E − E∗ − E∗ ln

E

E∗
.

Calculating the derivative of V1 along positive solution of model (1), it follows that

dV1
dt

=

(
1− T ∗

T (t)

)(
rT (t)(1− T (t)

k + ΓE(t)
)− dT (t)

)
+
(
P (t)− P ∗

)(
αT (t− τ)− hP (t)

)
+

(
1− E∗

E(t)

)(
cE(t)

(
1− bE(t)

)
+
βE(t)P (t)

g + P (t)
− µE(t)

)
. (15)

Equation (15) can be rewritten as

dV1
dt

=

(
r − d− rT (t)

k + ΓE(t)

)(
T (t)− T ∗

)
+
(
P (t)− P ∗

)(
α
(
T (t− τ)− T ∗

)
− h
(
P (t)− P ∗

))
+

(
c
(
1− bE(t)

)
+

βP (t)

g + P (t)
− µ

)(
E(t)− E∗

)
. (16)

Substituting r − d = rT ∗/(k + ΓE∗) and c− µ = bcE∗ − βP ∗/(g + P ∗) into (16), we
obtain that

dV1
dt

=

(
rT ∗

k + ΓE∗
− rT (t)

k + ΓE(t)

)(
T (t)− T ∗

)
+
(
P (t)− P ∗

)(
α
(
T (t− τ)− T ∗

)
− h
(
P (t)− P ∗

))
+

(
bcE∗ − βP ∗

g + P ∗
− bcE(t) +

βP (t)

g + P (t)

)(
E(t)− E∗

)
= − r

(k + ΓE(t))

(
T (t)− T ∗

)2
+

rΓT ∗

(k + ΓE(t))(k + ΓE∗)

(
T (t)− T ∗

)(
E(t)− E∗

)
+
(
P (t)− P ∗

)(
α
(
T (t)− T ∗

)
− h
(
P (t)− P ∗

)
− α

t∫
t−τ

T (u) du

)

− bc
(
E(t)− E∗

)2
+

βg

(g + P ∗)(g + P (t))

(
P (t)− P ∗

)(
E(t)− E∗

)
. (17)
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Substituting Ṫ (u) into (17), we obtain that

dV1
dt

= − r

(k + ΓE(t))

(
T (t)− T ∗

)2
+

rΓT ∗

(k + ΓE(t))(k + ΓE∗)

(
T (t)− T ∗

)(
E(t)− E∗

)
+ α

(
T (t)− T ∗

)(
P (t)− P ∗

)
− h
(
P (t)− P ∗

)2
− α

(
P (t)− P ∗

) t∫
t−τ

T (u)

(
−r(T (u)− T ∗)

k + ΓE(u)
+

rΓT ∗(E(u)− E∗)
(k + ΓE∗)(k + ΓE(u))

)
du

− bc
(
E(t)− E∗

)2
+

βg

(g + P ∗)(g + P (t))

(
P (t)− P ∗

)(
E(t)− E∗

)
. (18)

From equation (18) and by using the inequality a2 + b2 > 2ab, we obtain that

dV1
dt

6

(
− r

(k + ΓE(t))
+

rΓT ∗

2(k + ΓE(t))(k + ΓE∗)
+
α

2

)(
T (t)− T ∗

)2
+

(
−h+

α

2
+

βg

2(g + P ∗)(g + P (t))

)(
P (t)− P ∗

)2
+

(
−bc+

rΓT ∗

2(k + ΓE(t))(k + ΓE∗)
+

βg

2(g + P ∗)(g + P (t))

)(
E(t)− E∗

)2
+
α

2

(
P (t)− P ∗

)2 t∫
t−τ

T (u)

(
r

k + ΓE(u)
+

rΓT ∗

(k + ΓE(u))(k + ΓE∗)

)
du

+
α

2

t∫
t−τ

T (u)

(
r(T (u)− T ∗)2

k + ΓE(u)
+

rΓT ∗(E(u)− E∗)2

(k + ΓE(u))(k + ΓE∗)

)
du. (19)

From (19), we obtain that

dV1
dt

6

(
− r

(k + ΓE(t))
+

rΓT ∗

2(k + ΓE(t))(k + ΓE∗)
+
α

2

)(
T (t)− T ∗

)2
+

(
−h+

α

2
+

βg

2(g + P ∗)(g + P (t))

)(
P (t)− P ∗

)2
+

(
−bc+

rΓT ∗

2(k + ΓE(t))(k + ΓE∗)
+

βg

2(g + P ∗)(g + P (t))

)(
E(t)− E∗

)2
+
αTM

2

(
P (t)− P ∗

)2 t∫
t−τ

(
r

k + ΓE(u)
+

rΓT ∗

(k + ΓE(u))(k + ΓE∗)

)
du

+
α

2
TM

t∫
t−τ

(
r(T (u)− T ∗)2

k + ΓE(u)
+

rΓT ∗(E(u)− E∗)2

(k + ΓE(u))(k + ΓE∗)

)
du. (20)
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By (20), we get that

dV1
dt

6

(
− r

(k + ΓEM )
+

rΓT ∗

2k(k + ΓE∗)
+
α

2

)(
T (t)− T ∗

)2
+

(
−h+

α

2
+

β

2(g + P ∗)
+
αTMτr(k + ΓE∗ + ΓT ∗)

2k(k + ΓE∗)

)(
P (t)− P ∗

)2
+

(
−bc+

rΓT ∗

2k(k + ΓE∗)
+

β

2(g + P ∗)

)(
E(t)− E∗

)2
+
α

2
TM

t∫
t−τ

(
r

k

(
T (u)− T ∗

)2
+

rΓT ∗

k(k + ΓE∗)

(
E(u)− E∗

)2)
du. (21)

Define

V2 =
αTMr

2k

t∫
t−τ

t∫
s

(
T (u)− T ∗

)2
duds

+
αTMrΓT

∗

2k(k + ΓE∗)

t∫
t−τ

t∫
s

(
E(u)− E∗

)2
duds. (22)

It follows from (21) and (22) that

dV1
dt

+
dV2
dt

6 −A1

(
T (t)− T ∗

)2 −A2

(
P (t)− P ∗

)2 −A3

(
E(t)− E∗

)2
,

where A1, A2 and A3 are definited by (14).
Therefore, equation (14) ensures that dV1/dt+dV2/dt60, and dV1/dt+dV2/dt=0

if and only if T = T ∗, P = P ∗ andE = E∗. It is easy to know that F ∗ = (T ∗, P ∗, E∗) is
the largest invariant set in D = {(T, P,E) ∈ G | (dV1/dt+ dV2/dt)|(1) = 0}. From the
Liapunov–LaSalle invariance principal (see, for example, [14]) shows that F ∗ is globally
asymptotically stable if A1 > 0, A2 > 0 and A3 > 0.

This completes the proof.

We summarize the stability results (LAS and GAS) in the following table.

Table 1. The stability results.

Equilibrium The conditions of locally The conditions of globally
asymptotically stable asymptotically stable

F0 r < d, c < µ r < d, c < µ
F1 r < d, c > µ r < d, c > µ
F2 r > d, r > d, c− µ+ β 6 0

αk(r − d)(c− µ+ β) + grh(c− µ) < 0
F ∗ r > d, c > µ r > d, c > µ,

A1 > 0, A2 > 0, A3 > 0

Nonlinear Anal. Model. Control, 21(3):325–344
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5 Discussion and numerical simulations

In this paper, we explore the effects and interactions of cancer cells, angiogenic factors
and endothelial cells via a system of nonlinear delay differential equations. We take
into account the angiogenic growth factors secreted by the tumor associated with the
angiogenic process, which helps the tumor growth. We investigate the stability properties
of all the equilibria of model (1). Our results show that the time delay is actually harmless
for local and global dynamical properties of model (1).

Next, we carry out some numerical simulations of model (1) to illustrate the theoret-
ical results obtained in Section 3. Parameter values used for numerical simulations are
given in Table 2.

Next, we present numerical simulations. From Theorem 2(i), we know that, for smaller
growth rate r of tumor cells and smaller proliferation rate c of endothelial cells, the tumor
cells, angiogenic promoters and the endothelial cells can be eventually eliminated (see
Fig. 2). Condition (ii) in Theorem 2 imply that for a very low growth rate of tumor cells

Table 2. Parameter values used in the numerical simulations.

Description Parameter Value
Cancer cells proliferation rate r Varies
The endothelial cells proliferation rate c Varies
Carrying capacity of cancer cells k 195
Carrying capacity of the endothelial cells 1/b 1/210
Proportion of the endothelial cells due to angiogenesis Γ 0.15
The rate of the angiogenic promoters produced by cancer cells α 0.000371
The rate of the endothelial cells growth β 0.1245
The half saturation constant of the endothelial cells g 2×107

The mortality of cancer cells d Varies
The mortality of angiogenic promoters h 0.1 day−1

The mortality of the endothelial cells µ Varies
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Figure 2. The equilibrium F0 = (0, 0, 0) of model (1) is locally asymptotically stable when r = 0.01,
d = 0.1, c = 0.01, µ = 0.05, τ = 1 and other values are shown in Table 2. The initial functions are
(0.01, 0.01, 0.01).
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Figure 3. The equilibrium F1 = (0, 0, 168) of model (1) is locally asymptotically stable when r = 0.01,
d = 0.1, c = 0.05, µ = 0.01, τ = 1 and other values are shown in Table 2. The initial functions are
(0.01, 0.01, 0.01).
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Figure 4. The equilibrium F2 = (175.5, 6.51, 0) of model (1) is locally asymptotically stable when r = 0.1,
d = 0.01, c = 0.01, µ = 0.05, τ = 1 and other values are shown in Table 2. The initial functions are
(0.01, 0.01, 0.01).

and high proliferation rate of endothelial cells, the endothelial cells can not be eliminated
(see Fig. 3). From Theorem 2(iii), we know that, for higher growth rate of tumor cells,
smaller proliferation and growth rates of endothelial cells, the endothelial cells will not
be stimulated by angiogenic growth factors that are produced by cancer cells (see Fig. 4).

For model (1), let us choose the parameter values as follows, r = 0.1, c = 0.2,
d = 0.01, µ = 0.01. The other parameters values are shown in Table 2. From Theorem 3,
we know that the angiogenesis equilibrium F ∗ is locally asymptotically stable for all
τ > 0 (see Fig. 5). Next, we choose the parameter values as follows, r = 0.1, d =
0.01, c = 0.1, µ = 0.2, g = 20, Γ = 1000, τ = 1 and other parameters values are
shown in Table 2. By simple computations, we can obtain two angiogenesis equilibria

Nonlinear Anal. Model. Control, 21(3):325–344
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Figure 5. The equilibrium F ∗ = (202.4325, 7.5102, 199.5) of model (1) is locally asymptotically stable
when r = 0.1, d = 0.01, c = 0.2, µ = 0.01, τ = 1 and other values are shown in Table 2. The initial
functions are (0.01, 0.01, 0.01).
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Figure 6. The equilibrium F ∗ = (43880, 1627.9, 45.44) of model (1) is locally asymptotically stable when
r = 0.1, d = 0.01, c = 0.1, µ = 0.2, g = 20, Γ = 1000, τ = 1 and other values are shown in Table 2. The
initial functions are (2000, 90, 45).

F ∗= (43880, 1627.9, 45.44) and F ∗∗= (2320.3, 86.08, 45.44). Figure 6 shows that the
angiogenesis equilibrium F ∗ = (43880, 1627.9, 45.44) is locally asymptotically stable
for all τ > 0.

It would be interesting to consider more general models with immune responses. Such
modifications should be more reasonable in reality and give us more insights into the
cancer therapies, but some complicated dynamic behaviors may occur, such as periodic
oscillations and back-ward bifurcations etc. We leave this as a future work.
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