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Abstract. In nature, a number of populations live in groups. As a result when predators attack
such a population, the interaction occur only at the outer surface of the herd. Again, every model
in biology, being concerned with a subsystem of the real world, should include the effect of
random fluctuating environment. In this paper, we study a prey–predator model in deterministic and
stochastic environment. The social activity of the prey population has been incorporated by using the
square root of prey density in the functional response. A brief analysis of the deterministic model,
including the stability of equilibrium points, is presented. In random environment, the birth rate of
prey species and death rate of predator species are perturbed by Gaussian white noises. We have
used the method of statistical linearization to study the stability and non-equilibrium fluctuation of
the populations in stochastic model. Numerical computations carried out to illustrate the analytical
findings. The biological implications of analytical and numerical findings are discussed critically.

Keywords: herd, square root functional response, white noise, moment equation, stability.

1 Introduction

About an entire century has already been elapsed on understanding and analyzing the
basic rule between living food and its eater. It is not possible to construct a mathematical
model that will fit entirely any natural subsystem. To find out the most suitable model
that may analyze and forecast the natural phenomena, ecological and mathematical re-
searchers are performing continuous numerous study. This process was initiated by Alfred
James Lotka [20] and Vito Volterra [32]. The Lotka–Volterra prey–predator model has
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been consequently used as a machine to introduce numerous theoretical and mathematical
concepts in population modelling. This model has been modified incorporating Verhulst
or Logistic growth to take into account the fact that the resource is limited, and also to
avoid the structural unstable nature of the model.

The mass action predation term (in Lotka–Volterra model), though reasonable, is
not the only possibility. Depending upon the behaviour of populations, more suitable
‘functional response’ has been developed as a quantification of the relative responsiveness
of the predation rate to change in prey density at various populations of prey. In this
connection, Holling family of functional responses [13, 14, 15] are the most focused, and
in particular, the Holling type-II functional response has served as basis for a very large
literature in prey–predator theory [1,3,4,22,26,30]. According to Holling, the probability
of a given predator encountering prey in a fixed time interval Tt depends linearly on the
prey density. We may express this relationship in the form X̄ = αTsX , where X̄ is the
number of prey consumed by one predator, X is the prey density, Ts is the time available
for searching and α is the constant of proportion, termed as ‘search efficiency’. Assuming
that, each predator requires a handling time Th for each individual prey that is consumed,
the time available for searching Ts is given by: Ts = Tt − ThX̄ . And then the above
expression leads to X̄ = αTtX − αThXX̄ , which implies X̄ = αXTt/(1 + ThαX).
Thus, the functional response would be of the following form:

F (X) =
αX

1 + ThαX
, (1)

where X(T ) is the prey density at time T , α is the search efficiency of the predator for
prey, Th is the handling time for each prey. Handling time is the average time spent by
the predator on processing the food, beginning from the time the predator finds the prey
item to the time the prey item is eaten. The type-II functional response also includes the
fact that a single individual can feed only until the stomach is not full, and so a saturation
function would be better to describe the intake of food.

In natural ecosystems, many living beings live forming herds and all members of
a group do not interact at a time. There are many reasons for this herd behaviour, such as
searching for food resources, defending the predators, etc. As a consequence, it is neces-
sary to search for suitable form of functional response to describe this social behaviour.
Only a few works have so far tried to enlighten this area. These works have demonstrated
an ingenious idea that suitable powers of the state variables can account for the social
behaviour of the populations. For example, to explore the consequence of forming spatial
group of fixed shape by predators, Cosner et al. [9] have introduced the idea that the
square root of the predator variable is to be used in the function describing the encounter
rate in two-dimensional systems. Similarly, for three-dimensional systems, the two-third
power of the predator in the encounter rate would better describe such group behaviour
by predators. Unfortunately, such an idea has not been used by the researchers for about
a decade. The work of Chattopadhyay et al. [8] may be regarded as a strong recognition
of this concept. Then came the most innovative works of Ajraldi et al. [2] and Braza [7],
which gave such modelling a new dimension. We recall their central ideas in the next
paragraph.
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Let X be the density of a population that gathers in herds, and suppose that herd
occupies an area A. The number of individuals staying at outermost positions in the herd
is proportional to the length of the perimeter of the patch, where the herd is located.
Clearly, its length is proportional to

√
A. Since X is distributed over a two-dimensional

domain,
√
X would therefore count the individuals at the edge of the patch. Thus, when

attack of a predator on this population is to be modelled, the functional response should
be in terms of square root of prey population. This is the main idea of Ajraldi et al. [2].
Braza [7] has placed a strong emphasis on this concept, and he has introduced a new
functional response, where the prey density in (1) is replaced by its square root. That is,
the functional response takes the form

F1(X) =
α
√
X

1 + Thα
√
X
.

In this paper,we have considered the original model suggested by Braza [7] as our basic
deterministic model.

Most of the mathematical models proposed and analyzed in ecological literature are
in the unvarying framework assuming that the observed dynamics are driven exclusively
by internal deterministic mechanism. But real biological systems will always be exposed
to influences that are not completely deterministic. Hence, there is an increasing need to
expand the deterministic system to models including stochastic influence or noise that
embrace more complex variations in the dynamics. Mathematical modelling in randomly
fluctuating environment elicited modellers to introduce the stochastic differential equa-
tions. The deterministic ordinary differential equations are thus extended to stochastic
differential equations. This is done in two ways: (i) when relevant parameters are taken
as suitable stochastic processes, or (ii) when the deterministic system are partly driven by
noises. In this paper, we follow the second one.

In many cases, mainly in nonlinear dynamical systems the noise may drastically
change the characteristic of the systems. Generally stochastic effects may enhance, di-
minish or even completely change the dynamical behaviour of the system. Lorenz [19]
and May [24, 25] are the initiators in this context. Renshaw [29] mentioned that the most
natural phenomena do not follow strictly deterministic laws, but rather oscillate randomly
about some average so that the deterministic equilibrium is not an absolutely fixed state;
instead it is a ‘fuzzy’ value around which the biological system fluctuates.

A central obstacle in stochastic modelling of ecosystems is that there is an insuffi-
ciency for proper mathematical tools to analyze the nonlinear multi-dimensional stochas-
tic processes. However some different techniques of linearization of non-linear stochastic
differential equations have been developed by some researchers (see [11,28,31]). Though
these approaches have some limitations in their validity compared to the original non-
linear stochastic differential equation, these have been used to reduce the complexity of
the solution of original non-linear stochastic differential equations without changing the
characteristics of the system too much.

In this paper, we have considered a prey–predator model, where the ‘functional re-
sponse’ is of the form Holling type-II, but the prey density is replaced by its square root.
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The paper is organized as follows. In the next section, we have discussed the details of
the assumptions in our basic deterministic model and the significance of the parameters
used in it. The positivity and boundedness, stability of equilibrium points have also been
carried out. Section 3 deals with the stochastic version of the model, which takes into
account the effect of fluctuating environment characterized by Gussion white noises. The
method for linearization developed by Valsakumar et al. [31] has been used to find out the
criterion for stability. Section 4 contains the numerical verification of the analytical find-
ings. Biological significance of the analytical and numerical findings have been discussed
in Section 5.

2 The deterministic model

The model we consider here is originally proposed by Braza [7]. However, in his paper,
Braza has presented the analysis of a simpler form of the model, assuming the average
handling time to be zero. In the following, we discuss how the model is constructed.

Let X(T ) denotes the prey population density at time T . In the absence of predators,
the prey population is assumed to have a logistic growth with intrinsic growth rate r and
environmental carrying capacityK. Let Y (T ) denotes the density of the predator that has
the only food source X . Our main consideration is that the prey population live in herd.
Therefore, we consider the model under the framework of the following pair of nonlinear
differential equations:

dX

dT
= rX

(
1− X

K

)
− α

√
XY

1 + Thα
√
X
,

dY

dT
= −δY +

cα
√
XY

1 + Thα
√
X

(2)

with
X(0) = X0 > 0, Y (0) = Y0 > 0.

Here α is the search efficiency of the predator for prey, Th is the average handling time
for each prey, c is the biomass conversion rate of prey population to predator population,
and δ is the natural death rate for predator population. All parameters are assumed to be
positive.

To reduce the number of parameters and to make it easier, we non-dimensionalize
system (2) with the following scaling:

x =
X

K
, y =

αY

r
√
K
, t = rT.

Then system (2) takes the form (after some simplification)

dx

dt
= x(1− x)−

√
xy

1 + a
√
x
,

dy

dt
= −dy +

b
√
xy

1 + a
√
x
,

(3)
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where

a = Thα
√
K, b =

cα
√
K

r
, d =

δ

r
.

2.1 Positivity and boundedness

Theorem 1. All solutions of system (3) that start in R2
+ remain positive forever.

The proof is simple, and therefore, it is omitted.
The following theorem ensures the boundedness of system (3).

Theorem 2. All solutions of system (3) that start in R2
+ are uniformly bounded.

Proof. Let (x(t), y(t)) be any solution of system (3). Since

dx

dt
6 x(1− x),

we have
lim sup
t→∞

x(t) 6 1.

Let
W = bx+ y.

Therefore,
dW

dt
6 bx(1− x)− dy 6 b(1 + d)x− dW 6 b(1 + d)− dW.

Hence,
dW

dt
+ dW 6 b(1 + d) = γ (say).

Applying a theorem on differential inequalities [6], we obtain

0 6W (x, y) 6
γ

d
+
W (x(0), y(0))

edt
,

and for t→∞,
0 6W 6

γ

d
.

Thus, all the solutions of (3) enter into the region

B =

{
(x, y): 0 6W 6

γ

d
+ ε for any ε > 0

}
.

Hence, the theorem.

Theorem 3. If d > b/a, then limt→∞ y(t) = 0.

Proof. From the 2nd equation of system (3)

dy

dt
6 −dy +

b
√
xy

1 + a
√
x
6 −dy +

by

a

(
1− 1

1 + a
√
x

)
6 −

(
ad− b
a

)
y.

That implies y(t) 6 y0e−((ad−b)/a)t.
Now, for d > b/a, we have (ad− b)/a > 0, and hence, limt→∞ y(t) = 0.
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2.2 Equilibrium points and criteria for their existence

The following theorem states all the possible equilibrium points of system (3).

Theorem 4. System (3) always has the trivial equilibrium E0(0, 0) and axial equilibrium
E1(1, 0). If d < b/(1 + a), the interior equilibrium point E∗(x∗, y∗) exists and is given
by

x∗ =
d2

(b− ad)2
, y∗ =

bd{(b− ad)2 − d2}
(b− ad)4

.

2.3 Stability

2.3.1 The trivial equilibrium

At the originE0(0, 0), the variational matrix becomes indeterminate. System (3) being not
linearizable, due to the square root term, the stability of the origin cannot be evaluated.
Rescaling the variable x = p2, the singularity may be overcome [2]. But such rescaling
may hide the true dynamics in case of prey–predator system.

We think the study of Braza [7] is more realistic to highlight the effect of the square
root term by a local nonlinear analysis of system (3) to uncover the singular dynamics
near origin. As the population densities approaches origin, it is reasonable to assume x(t)
sufficiently small with the initial value x0 = x(0) near to origin so that (i) x2 or higher
order terms vanishes, (ii) 1 + a

√
x ≈ 1 and (iii) b

√
xy is negligible to y. Under this

approach, system (3) shifted to

dx

dt
= x− y

√
x,

dy

dt
= −dy.

If the prey population is considerably smaller than predator population, i.e. x = O(yα)
with α > 2, then the prey population first extincts and the predator population follows
suit. For α < 2, origin becomes a saddle causing system (3) to be unstable near origin.

2.3.2 The predator-free (i.e. prey-only) equilibrium

At E1(1, 0), the variational matrix V (E1) is given by

V (E1) =

[
−1 − 1

1+a

0 b
1+a − d

]
.

The corresponding eigenvalues are −1, −(d− b/(1 + a)), and hence, system (3) is stable
at E1(1, 0) if

d >
b

1 + a
.

Thus, there is a threshold value of the predator mortality rate over which the predator
population goes to extinction.
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2.3.3 The interior equilibrium

At the interior equilibrium E∗(x∗, y∗), the variational matrix V (E∗) is given by

V (E∗) =

[
a11 a12
a21 0

]
,

where a11, a12 and a21 are given by

a11 =
(b+ ad)(b− ad)2 − (ad+ 3b)d2

2b(b− ad)2
,

a12 = −d
b
, a21 =

(b− ad)2 − d2

2(b− ad)
.

Then we have the following theorem.

Theorem 5. If (ad + 3b)d2 − (b + ad)(b − ad)2 > 0, then E∗(x∗, y∗) is locally
asymptotically stable.

Proof. The characteristic equation of V (E∗) is given by

λ2 +Aλ+B = 0, (4)

where

A =
(ad+ 3b)d2 − (b+ ad)(b− ad)2

2b(b− ad)2
, B =

d((b− ad)2 − d2)

2b(b− ad)
.

For existence ofE∗, we have d < b/(1+a) that ensuresB > 0. And for the proposed
condition, it is obvious that A > 0. Thus, the roots of (4), given by

λ1,2 =
−A±

√
A2 − 4B

2
,

are negative or with negative real part. Hence, the theorem.

3 Stochastic model

It is impossible to think of the real world without environmental fluctuations, and hence,
it is essential to investigate the influence of environmental noise in biological systems
through proper modelling. It is well recognized that the basic mechanisms and factors,
such as birth, death, etc., change non-deterministically due to environmental fluctuations.
From this viewpoint, we have perturbed the prey growth rate and predator death rate by
noises [10, 21, 22, 23, 33]. Then the deterministic system (3) is modified to a stochastic
system under the framework of the following stochastic differential equations:

dx

dt
= x

(
1 + η1(t)− x

)
−
√
xy

1 + a
√
x
,

dy

dt
=
(
−d+ η2(t)

)
y +

b
√
xy

1 + a
√
x
,

(5)
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where the perturbed terms η1(t), η2(t) are assumed as the independent Gaussian white
noises that satisfy the conditions〈

ηj(t)
〉

= 0 and
〈
ηj(t)ηj(t

′)
〉

= εjδ(t− t′) for j = 1, 2.

Here εj (j = 1, 2) are the intensities or strength of the random perturbation, δ is the Dirac
delta function and 〈·〉 represents the ensemble average.

Now we are concerned with stochastic differential equations, which are driven by
Gaussian white-noises and interpreted mathematically as Itô stochastic differential equa-
tions. Gaussian white noise, which is a delta-correlated random process, is very irregular
and as such it is to be treated with care. In spite of this, it is an immensely useful concept
to model rapidly fluctuating phenomenon. Of course, true white noise does not occur
in nature. However, as can be seen by studying their spectra, thermal noise in electrical
resistance, the force acting on a Brownian particle and climate fluctuations, disregarding
the periodicities of astronomical origin, etc., are white to a very good approximation.
These examples support the usefulness of the white-noise idealization in applications
to natural systems. Furthermore, it can be proved that the process (x, y), a solution
of (5), is Markovian if and only if the external noises are white. These results explain
the importance and appeal of the white noise idealization [16].

Using the transformation x = x∗eu, y = y∗ev (where (x∗, y∗) is the equilibrium
of the deterministic system (3)) and neglecting the terms with degree more than two, we
have the following pair of stochastic differential equations in Itô form (non-linear coupled
bivariate Langevin equation):

du

dt
= a1u+ b1u

2 + c1v + d1v
2 + e1uv + η1(t),

dv

dt
= a2u+ b2u

2 + c2v + d2v
2 + e2uv + η2(t),

(6)

where

a1 =
(b+ ad)(b− ad)2 − (ad+ 3b)d2

2b(b− ad)
,

b1 = − (b− ad)4(2a2d2 + abd+ b2)− (b− ad)2b2d2 + 4b2d2

8b2(b− ad)4
,

c1 = −1 +
d2

(b− ad)2
, d1 = −1

2
+

d2

2(b− ad)2
,

e1 =
(b+ ad)((b− ad)2 − d2)

(b− ad)2
,

a2 =
d(b− ad)

2b
, b2 =

(b− ad)(b− 2ad)

8b2
,

c2 = 0, d2 = 0, e2 = 0.
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3.1 Statistical linearization: moment equations

To study the complexity of non-linear stochastic differential equations, different tech-
niques has been derived by several researchers and mathematicians [12, 28]. The mostly
used way is to linearize it, which gives rise a set of deterministic moment equations.
Jumarie [17] pointed out the fact that moment techniques can be used to solve a large class
of problems in stochastic optimization involved with the problem of stochastic optimal
control. In the following, the behaviour of the stochastic model (5) about the steady state
will be cultured by the technique of statistical linearization developed by Valsakumar
et al. [31]. Though this is not the only way, but this technique has some advantages in
reducing the complexity of the solution of original non-linear equations without loss of
information about the system too much.

Thus, we have the following linearized system:

du

dt
= p1u+ q1v + s1 + η1(t),

dv

dt
= p2u+ q2v + s2 + η2(t),

(7)

where the errors for linearization are given by

E1 = a1u+ b1u
2 + c1v + d1v

2 + e1uv − p1u− q1v − s1,

E2 = a2u+ b2u
2 + c2v + d2v

2 + e2uv − p2u− q2v − s2.
(8)

The unknown coefficients pi, qi, si (i = 1, 2) of equations (7) are determined from
the minimization of the averages of the squares of errors (8). To compute the unknown
coefficients we use the similar techniques used by Valsakumar et al. [31], Van Kampen
[18], Bandyopadhyay and Chakrabarti [5]:

∂

∂pi

〈
Ei

2
〉

=
∂

∂qi

〈
Ei

2
〉

=
∂

∂si

〈
Ei

2
〉

= 0, i = 1, 2.

Also using the following expressions for higher moments derived by Valsakumar et
al. [31]: 〈

u4
〉

= 3
〈
u2
〉2 − 2〈u〉4,〈

u2v2
〉

=
〈
u2
〉〈
v2
〉

+ 2〈uv〉2 − 2〈u〉2〈v〉2,〈
u3v
〉

= 3
〈
u2
〉
〈uv〉 − 2〈u〉3〈v〉,〈

u3
〉

= 3〈u〉
〈
u2
〉
− 2〈u〉3,〈

v3
〉

= 3〈v〉
〈
v2
〉
− 2〈v〉3,〈

u2v
〉

= 2〈u〉〈uv〉 − 2〈u〉2〈v〉+
〈
u2
〉
〈v〉,〈

uv2
〉

= 2〈v〉〈uv〉 − 2〈u〉〈v〉2 + 〈u〉
〈
v2
〉
,

(9)
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the expressions for pi, qi, si (i = 1, 2) are given by

pi = ai + 2bi〈u〉+ ei〈v〉,
qi = ci + 2di〈v〉+ ei〈u〉,

si = bi
(〈
u2
〉
− 2〈u〉2

)
+ di

(〈
v2
〉
− 2〈v〉2

)
+ ei

(
〈uv〉 − 2〈u〉〈v〉

)
.

(10)

The coefficients are the functions of the parameters involved with the model system and
also of the different moments involving u and v. Simple calculations lead to the system
of equations of the first two moments

d〈u〉
dt

= a1〈u〉+ b1
〈
u2
〉

+ c1〈v〉+ d1
〈
v2
〉

+ e1〈uv〉,

d〈v〉
dt

= a2〈u〉+ b2
〈
u2
〉

+ c2〈v〉+ d2
〈
v2
〉

+ e2〈uv〉,

d〈u2〉
dt

= 2
[
a1
〈
u2
〉

+ b1
〈
u3
〉

+ c1〈uv〉+ d1
〈
uv2
〉

+ e1
〈
u2v
〉]

+ 2ε1,

d〈v2〉
dt

= 2
[
a2〈uv〉+ b2

〈
u2v
〉

+ c2
〈
v2
〉

+ d2
〈
v3
〉

+ e2
〈
uv2
〉]

+ 2ε2,

d〈uv〉
dt

= a1〈uv〉+ b1
〈
u2v
〉

+ c1
〈
v2
〉

+ d1
〈
v3
〉

+ e1
〈
uv2
〉

+ a2
〈
u2
〉

+ b2
〈
u3
〉

+ c2〈uv〉+ d2
〈
uv2
〉

+ e2
〈
u2v
〉
,

(11)

where the following relations have been used:

〈uη1〉 = ε1, 〈uη2〉 = 〈vη1〉 = 0, 〈vη2〉 = ε2. (12)

Let us now assume that the system size expansion is valid such that the correlations
ε1 and ε2 given by (12) decrease with the increase of the population size and they are
assumed to be the order of the inverse of the population size N , i.e.

εi ∝
[

1

N

]
, i = 1, 2.

Therefore, using the expressions (10), (11) and keeping the lowest order terms and
replacing the averages 〈u〉 and 〈v〉 by their steady state values [27] 〈u〉 = 〈v〉 = 0, we get
the following reduced equations for second order moments:

d〈u2〉
dt

= 2a1
〈
u2
〉

+ 2c1〈uv〉,

d〈v2〉
dt

= 2c2
〈
v2
〉

+ 2a2〈uv〉,

d〈uv〉
dt

= a2
〈
u2
〉

+ c1
〈
v2
〉

+ (a1 + c2)〈uv〉.

(13)
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3.2 Non-equilibrium fluctuation and stability analysis

The characteristic equation of the coefficient matrix of system (13) is given by

V (E1) =

∣∣∣∣∣∣
2a1 − µ 0 2c1

0 2c2 − µ 2a2
a2 c1 a1 + c2 − µ

∣∣∣∣∣∣ = 0,

i.e.
µ3 + 3Aµ2 + 3Bµ+ C = 0, (14)

where

A = −(a1 + c2) =
(ad+ 3b)d2 − (b+ ad)(b− ad)2

2b(b− ad)
,

B =
2

3

(
(a1 + c2)2 + 2(a1c2 − a2c1)

)
=

(b+ ad− d)(b− ad)2 − (ad+ 3b− 2d)d2

3b(b− ad)
,

C = −4(a1 + c2)(a1c2 − a2c1)

=
d(d2 − (b− ad)2)((b+ ad)(b− ad)2 − d2(ad+ 3b))

b2(b− ad)2
.

To solve equation (14), let us replace µ by m−A and that leads to the following standard
cubic:

m3 + 3Hm+G = 0, (15)
where

H = B −A2

= − [(b+ ad)(b− ad)2 − d2(ad+ 3b)]2 − 8bd(b− ad)[(b− ad)2 − d2]

12b2(b− ad)2

and
G = 2A3 − 3AB + C = 0.

Now two possible cases arise depending on the value of H .

Case 1: H < 0. In this case, all roots of equation (15) are real and given by 0, ±
√
−3H .

Hence, the roots of the original equation (14) becomes

µ1 = −A, µ2 = −A+
√
−3H, µ3 = −A−

√
−3H.

Here all the eigenvalues are real. They are negative if A >
√
−3H > 0. Hence, sys-

tem (13) is stable if A > 0 and A >
√
−3H . Now A > 0 is the criteria for deter-

ministic stability of E∗, but in stochastic environment, it is not enough to ensure the
stability of E∗. So stability of the deterministic model does not guarantee the stability
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of the stochastic model. For example, if
√
−3H > A > 0, the system is stable for

deterministic environment but not in stochastic environment. On the other hand, if the
system is unstable in deterministic environment (i.e. A < 0), the system must be unstable
in random environment also.
Case 1: H > 0. In this case, roots of equation (15) are given by 0, ±i

√
3H , and hence,

the roots of the original equation (14) becomes

µ1 = −A, µ2 = −A+ i
√

3H, µ3 = −A− i
√

3H.

Here the eigenvalues have negative real parts if and only if A > 0. Consequently, system
(13) is stable in stochastic environment for A > 0. Further, since A > 0 is the condition
for stability of the deterministic model; the system behaves alike (with respect to stability)
in deterministic and stochastic environment.

4 Numerical simulation

Beside analytical findings, numerical simulations are also important; because simulations
can be used to validate the analytical findings. For various choices of the parameters of
the model, we have performed the simulations using MATLAB. It is observed that they
are in good agreement with our analytical findings.

If we take the parameters as a = 0.2, b = 0.85, d = 0.5; then by Theorem 4, the
interior equilibrium E∗(x∗ = 0.4444, y∗ = 0.4198) exists as d is less than b/(a + 1) =
0.7083. It is also noticed that (ad + 3b)d2 − (b + ad)(b − ad)2 = 0.1281, a positive
quantity; and so the condition of Theorem 5 is also satisfied. Therefore, for this choice
of parameters, E∗ is locally asymptotically stable. The corresponding phase portrait is
presented in Fig. 1a, which is clearly a stable spiral converging to E∗. Figure 1b shows
that x and y approach their equilibrium values in finite time.

0.32 0.36 0.4 0.44 0.48 0.52

0.36

0.4

0.44

0.48

x t( )

y t( )

(a)

0 40 80 120 160

0.3

0.35

0.4

0.45

0.5

0.55

t

x t( )
y t( )

(b)

Figure 1. Here x(0) = 0.4, y(0) = 0.5, a = 0.2, b = 0.85, d = 0.5. (a) The phase portrait of system (3)
showing that E∗ is locally asymptotically stable. (b) (x, y) approach to their equilibrium values (x∗ = 0.4444,
y∗ = 0.4198) in finite time.
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Figure 2. Behaviour of x and y for system (5)
that includes white noises in birth and death rates,
where x(0) = 0.4, y(0) = 0.5, a = 0.2, b =
0.85, d = 0.5.

Figure 3. Stable behaviour of system (5) in the
sense of second order moments for a = 0.2, b =
0.85, d = 0.5.

(a) (b)

Figure 4. Here a = 0.2, b = 0.95, d = 0.5. (a) Phase portrait of the deterministic system (3) showing
a periodic orbit near E∗. (b) Oscillations of x and y about E∗ with time.

For the above choices of parameters and including a random perturbation with mean
zero, the behaviours of x and y with time are depicted in Fig. 2. This figure shows that
both the prey and predator populations trace random paths with mean x∗ and y∗. The
stability of the stochastic model for these parameters are also established as the second
order moments approach zero (see Fig. 3). Here the computed value of H = 0.1574 > 0
and A = 0.1340 > 0 satisfy the stochastic stability criterion.

Changing the parameters a little bit as (a = 0.2, b = 0.95, d = 0.5 with x(0) = 0.4,
y(0) = 0.5) computed value of the expression (ad+ 3b)d2− (b+ ad)(b− ad)2 becomes
negative (= −0.0211), and hence, E∗ becomes unstable and there is a periodic orbit near
E∗ (see Fig. 4a). The oscillations of x and y with time is shown in Fig. 4b. For these
parameters, as H = 0.1950 > 0, the stability of the stochastic system is similar to that of
the deterministic system. The unstable nature of the stochastic system has been shown in
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Figure 5. Behaviour of x and y for system (5)
showing an unstable behaviour when a = 0.2,
b = 0.95, d = 0.5.

Figure 6. For a = 0.2, b = 0.95, d = 0.5,
unstable behaviour of the stochastic system (5)
in the sense of second order moments.

Fig. 5. In Fig. 6, the second order moments oscillate with increasing amplitude indicating
instability of the stochastic model.

5 Concluding remarks

So called ‘functional response’ is the key component in prey–predator ecosystems. It
determines the basic characteristics of a system since both the prey death rate and preda-
tor growth rate are maintained by this. Depending upon the nature of populations in
concerned real subsystem, various sophisticated functional responses are proposed and
discussed in ecological literature throughout the last century. But the social activity like
herd behaviour of the prey population for defense or food searching purpose has not
been studied considerably. Here we have studied the dynamics of a prey–predator model
(where the prey has a herd behaviour) in both deterministic and stochastic environment.
To describe the herd mechanism, we have taken a modified Holling type-II functional
response, where the prey density is replaced by its square root. This functional response
is derived from the concept that the prey–predator interactions take place only at the outer
surface of the herd formed by the prey.

The deterministic part consists of the basic findings like boundedness and stability
of the system under positive initial population distribution. It is shown that all solutions
of the system are uniformly bounded, which, in turn, implies that the system is biolog-
ically well behaved. It has been shown that (Theorem 3) the predator population dies
off if d > (b/a); i.e. in terms of original parameters, δ > (c/Th). Hence, the predator
population is washed out from the system if its death rate is greater than the ratio of
the biomass conversion rate and the prey handling time. It is obvious that due to disease
or any other natural circumstances, if predator death rate increases significantly; whole
predator population may wipe out. But the predator population may also go to extinction
if its biomass conversion rate becomes low due to digestive problem or the predator
takes much time in handling the prey. Stability at the origin is an important feature of
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the ‘square root functional response’. At the origin, the Jacobian being indeterminate,
eigenvalues cannot be computed to discuss the stability at origin. Here we follow the
pathway of approximation suggested by Braza [7]. We assume that near the origin, both
the populations being small, their products or higher order terms may be neglected. And
this gives an ecologically sound result that, if the prey density becomes smaller compared
to the predator (i.e. x = O(yα) with α > 2), the system approaches its trivial equilibrium
through stable path. This is a basic difference from the other models, where origin being
a saddle, no such possibility arises. Here the prey population first go to extinction and
then the predator population follows suit (see [7]). Stability of the deterministic model
at the predator-free and interior equilibrium has been discussed critically. It is again seen
that if the death rate of the predator population becomes greater than some threshold value
(d > b/(1 +a), which is automatically satisfied if d > (b/a)), the system stabilizes at the
predator-free equilibrium. On the other hand, A > 0 ensures the deterministic stability of
the interior equilibrium (see Fig. 1).

In fluctuating environment, we have formulated the stochastic version of the model
by including the additive Gaussian white noises that perturb the growth rate of the prey
population and the death rate of the predator population. Then the resulting model is
cultured by the method of statistical linearization developed by Valsakumar et al. [31].
This leads to a system of linear differential equation in terms of second order moments.
The criteria for stochastic stability of E∗(x∗.y∗) is derived. It is observed that if H > 0,
the populations in deterministic and stochastic environments behave alike with respect
to stability. However, if H < 0, the deterministic stability criterion (A > 0) is not
sufficient to guarantee the stability in the stochastic environment, rather, a further re-
striction A >

√
−3H is necessary for stochastic stability. Thus, if

√
−3H > A > 0, the

deterministically stable system become unstable under stochastic perturbation. Hence, to
keep ecological balance in a fluctuating environment, the populations of the system are
to be regulated in such a way that A > 0 when H > 0 and A >

√
−3H when H < 0.

These analytical findings have been verified by computer simulation (see Figs. 1–6).

Acknowledgment. We are grateful to the referees for their careful reading and con-
structive comments.
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