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Abstract. In this paper, the synchronization problem for a class of generalized neural networks with
interval time-varying delays and reaction-diffusion terms is investigated under Dirichlet boundary
conditions and Neumann boundary conditions, respectively. Based on Lyapunov stability theory,
both delay-derivative-dependent and delay-range-dependent conditions are derived in terms of
linear matrix inequalities (LMIs), whose solvability heavily depends on the information of reaction-
diffusion terms. The proposed generalized neural networks model includes reaction-diffusion local
field neural networks and reaction-diffusion static neural networks as its special cases. The obtained
synchronization results are easy to check and improve upon the existing ones. In our results, the
assumptions for the differentiability and monotonicity on the activation functions are removed. It
is assumed that the state delay belongs to a given interval, which means that the lower bound of
delay is not restricted to be zero. Finally, the feasibility and effectiveness of the proposed methods
is shown by simulation examples.

Keywords: synchronization, local field neural networks, static neural networks, reaction-diffusion,
interval time-varying delays.

1 Introduction

In the past several decades, neural networks have been extensively investigated and suc-
cessfully applied to signal processing, pattern recognition, artificial intelligence, opti-
mization, fault diagnosis, associative memories, and so on. Such applications heavily
depend on the dynamical behaviors of the neural networks. Therefore, the study of dy-
namical behaviors is a necessary step for practical design of neural networks.
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As pointed in [6, 15] and [18], for the study of current neural network, two basic
mathematical models are commonly adopted: either local field neural network models or
static neural network models. The basic model of local field neural network is described
in the following matrix form:

u̇(t) = −Au(t) +Wf
(
u(t)

)
+ J, (1)

where u(t) = [u1(t), u2(t), . . . , un(t)]T ∈ Rn is the neuron state vector; A = diag(a1,
a2, . . . , an) is a diagonal matrix with ai > 0, i = 1, 2, . . . , n; W = (wij)n×n is
the synaptic connectivity value weigh matrix with wij being the synaptic connectivity
value between neurons i and j; J = [J1, J2, . . . , Jn]T ∈ Rn is a constant input vector;
f(u(t)) = [f1(u1(t)), f2(u2(t)), . . . , fn(un(t))]T ∈ Rn denotes the neuron activation
function.

With the same notations, static neural network model can be written as

u̇(t) = −Au(t) +Wf
(
u(t) + J

)
. (2)

Suppose that u∗ and u∗∗ are the equilibrium point of (1) and (2), respectively. Then
they can be shifted to the origin by setting û(t) = u(t) − u∗ and ǔ(t) = u(t) − u∗∗,
respectively. Neural networks (1) and (2) can be rewritten as [17]

˙̂u(t) = −Aû(t) +Wf̂
(
û(t)

)
(3)

and
˙̌u(t) = −Aǔ(t) + f̌

(
Wǔ(t)

)
, (4)

respectively, where f̂(û(t)) = f(û(t) + u∗) − f(u∗) and f̌(Wǔ(t)) = f(Wǔ(t) +

Wu∗∗ + J)− f(Wu∗∗ + J). It is easy to see that f̂(0) = f̌(0) = 0.
One can easily check that, under the assumption that A and W are commutative and

W is nonsingular, that is,
AW = WA, detW 6= 0, (5)

(4) can be transformed to (3) by the substitution of û(t) = Wǔ(t). However, in many
real applications of the neural networks, it is not rational to assume the invertibility of
the matrix W . Many neural systems, such as the oculomotor integrator [12] or the head-
direction system [16], are modelled by non-invertible networks. That is, local field neural
network models and static neural network models are not always equivalent.

In [17], a generalized neural network model without considering reaction-diffusion
terms was proposed, which includes both the local field neural network model and static
neural network model as its special cases, based on that model, both delay-derivative-
dependent and delay-range-dependent stability criteria were established. In the delay-in-
dependent stability analysis, by introducing more information on the activation functions
of the neurons into the chosen Lyapunov–Krasovskii functional, a new delay-independent
stability criterion was obtained in terms of a simple linear matrix inequality. In the delay-
dependent stability analysis, by employing an integral inequality and convex combination
technique, some novel delay-dependent stability criteria were derived. It has been pointed
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out that all of these criteria provided a unified frame suitable for both local field neural
networks and static neural networks.

In the practical operation, diffusion effects cannot be avoided in the neural networks
and electric circuits when electrons are moving in asymmetric electromagnetic fields.
Therefore, it is desired to consider the activation of neurons varying in space as well as
in time. The reaction-diffusion local field neural networks and reaction-diffusion static
neural networks can be described by

∂u(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂u(t, x)

∂xk

)
−Au(t, x) +Wf

(
u(t, x)

)
(6)

and

∂u(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂u(t, x)

∂xk

)
−Au(t, x) + f

(
Wu(t, x)

)
, (7)

respectively, where x ∈ Ω ⊂ Rl and Ω = {x = (x1, x2, . . . , xl)
T| εk 6 xk 6 ηk, k =

1, 2, . . . , l} is a bound compact set with smooth boundary ∂Ω and mesΩ > 0 in space
Rl; Dk = diag(D1k, D2k, . . . , Dnk) with Dik > 0 (i = 1, 2, . . . , n) corresponds to the
transmission diffusion operator along the ith neuron.

On the other hand, it is well known that there exist time delays in the information
processing of neurons due to various reasons. For example, time delays can be caused
by the finite switching speed of amplifier circuits in neural networks or deliberately
introduced to achieve tasks of dealing with motion-related problems, such as moving
image processing. Since time delays as a source of instability and bad performance always
appear in many neural networks owing to the finite speed of information processing,
the dynamical behaviors for the delayed local field neural networks [1, 11] and delayed
static neural networks [13,18] have received considerable attention. The delayed reaction-
diffusion local field neural networks and delayed reaction-diffusion static neural networks
can be described by

∂u(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂u(t, x)

∂xk

)
−Au(t, x) +Wf

(
u(t− τ(t), x)

)
(8)

and

∂u(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂u(t, x)

∂xk

)
−Au(t, x) + f

(
Wu(t− τ(t), x)

)
, (9)

respectively, where τ(t) is a time delay, which may be constant or time-varying. Simi-
larly, it is easy to see that reaction-diffusion neural networks (6) and (7), (8) and (9) are
equivalent, respectively, if A and W satisfy (5).

As special dynamical systems, reaction-diffusion neural networks have also been
found to exhibit unpredictable behaviors including periodic oscillations, bifurcation and
chaotic attractors, which induced the studies on its chaos synchronization. Therefore, the
study of neural synchronization is an important step for both understanding brain science
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and designing reaction-diffusion neural networks for practical use. Recently, investigation
of the synchronization problems for reaction-diffusion local field neural networks has
attracted numerous scientists [8, 14]. The above conditions can be classified into two
categories, namely, diffusion-dependent ones and diffusion-independent ones. The former
can make use of information concerning the reaction-diffusions, they are generally less
conservative than the latter.

Compared with rich results for local field networks, results for static neural networks
are much more scare. To the best of the authors’ knowledge, the synchronization problem
for static neural networks, especially the synchronization problem for reaction-diffusion
static neural networks, has not been studied in the literature and it is interesting to study
this problem both in theory and in applications, so there exist open room for further
improvement. This situation motivates our present investigation. Therefore, it is inter-
esting to study this problem both in theories and applications. In this paper, we consider
the problem of synchronization for a class of generalized reaction-diffusion neural net-
works model with interval time-varying delays under Dirichlet boundary conditions and
Neumann boundary conditions, respectively, which includes reaction-diffusion local field
neural networks model and the reaction-diffusion static neural networks model. Based
on Lyapunov stability theory and free-weighting matrix approach, both delay-derivative-
dependent and delay-range-dependent criteria for the synchronization of the proposed
neural networks were derived and the controller gain matrix was designed. The activation
functions may not be required to satisfy the monotonicity and the derivative of the time-
varying delay need not be smaller than one. Consequently, our results obtained in this
paper are not only less conservative, but also effectually complement or improve the
previously known results.

The main contribution of this paper can be summarized as follows:

1. Inspired by the work [17], a unified model, i.e., general reaction-diffusion neural
networks, which include reaction-diffusion static neural networks and reaction-
diffusion local field neural networks, is considered in our work.

2. By constructing novel Lyapunov–Krasovskii functional, the rigorous requirement
of other literatures that the time-derivatives of time-varying delays must be small
that one is abandoned in the proposed delay-range-dependent synchronization cri-
terion, i.e., the new criterion are applicable to both fast and slow time-varying
delays.

3. In [14], the authors pointed out that it is quite difficult to find a chaotic attractor
for reaction-diffusion delayed neural networks. Obviously, this is an important
and interesting open problem. In this paper, by using the classical implicit format
solving the partial differential equations and the method of steps for differential
difference equations, we find that if the parameters are appropriately chosen, the
reaction-diffusion neural networks can exhibit chaotic attractors.

The notations in this paper are really standard. Rn and Rn×m denote the n dimen-
sional Euclidean space and the set of all n ×m real matrices, respectively; the notation
C2,1(R+×Rn;R+) denotes the family of all nonnegative functions V (t, e(t)) on R+×Rn,
which are continuously twice differentiable in e and once differentiable in t; the
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superscript T and −1 denote matrix transposition and matrix inversion, respectively; the
notation X > Y (resp. X > Y ), where X and Y are symmetric matrices, means that
X−Y is semi-positive definite (resp. positive definite); the shorthand diag(·) denotes the
block diagonal matrix; det(·) denotes the determinant of matrix; the symmetric terms in
asymmetric matrix are denoted by ∗.

2 Modeling and preliminary

In this paper, we consider a class of generalized neural networks with time-varying delays
and reaction-diffusion terms with its equilibrium point being shifted to the origin

∂y(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂y(t, x)

∂xk

)
−Ay(t, x) +W1f

(
W0y(t, x)

)
+W2f

(
W0y

(
t− τ(t), x

))
, (10)

where

W0 =
(
W

(0)
ij

)
n×n, W1 =

(
W

(1)
ij

)
n×n, W2 =

(
W

(2)
ij

)
n×n,

y(t, x) =
(
y1(t, x), y2(t, x), . . . , yn(t, x)

)T
,

f
(
y(t, x)

)
=
(
f1
(
y1(t, x)

)
, f2
(
y2(t, x)

)
, . . . , fn

(
yn(t, x)

))T
,

f
(
y
(
t− τ(t), x

))
=
(
f1
(
y1
(
t− τ(t), x

))
, f2
(
y2
(
t− τ(t), x

))
, . . . ,

fn
(
yn
(
t− τ(t), x

)))T
.

It is easy to see that:

1) if taking Dk = 0 (k = 1, 2, . . . , l), W0 = I , W1 = W and W2 = 0, Eq. (10)
reduces to the local field neural networks model (3);

2) if taking Dk = 0 (k = 1, 2, . . . , l), W0 = W , W1 = I and W2 = 0, Eq. (10)
reduces to the static neural networks model (4);

3) if takingW0 = I ,W1 = W andW2 = 0, Eq. (10) reduces to the reaction-diffusion
local field neural networks model (6);

4) if takingW0 = W ,W1 = I andW2 = 0, Eq. (10) reduces to the reaction-diffusion
static neural networks model (7);

5) if takingW0 = I , W1 = 0 andW2 = W , Eq. (10) reduces to the delayed reaction-
diffusion local field neural networks model (8);

6) if takingW0 = W , W1 = 0 andW2 = I , Eq. (10) reduces to the delayed reaction-
diffusion static neural networks model (9);

7) if taking W0 = I , Eq. (10) reduces to a classic delayed reaction-diffusion cellular
neural networks model.

Therefore, (10) can be called a generalized reaction-diffusion neural networks model,
based on which synchronization analysis for both reaction-diffusion local field neural

Nonlinear Anal. Model. Control, 21(3):379–399



384 Q. Gan et al.

networks and reaction-diffusion static neural networks models can be made in a unified
frame even if condition (5) is not satisfied.

In this paper, we give the following hypotheses:

(H1) We assume that there exist constants l−i and l+i such that the neuron activation
functions fi satisfy the following condition:

l−i 6
fi(v̂i)− fi(v̌i)

v̂i − v̌i
6 l+i ,

where v̂i, v̌i ∈ R, v̂i 6= v̌i (i = 1, 2, . . . , n).
(H2) τ(t) is supposed to be an interval time-varying transmission delay satisfying

0 6 τ1 6 τ(t) 6 τ2, τ̇(t) 6 µ,

for all t, where τ1, τ2 and µ are constants.

Remark 1. In [7,8,17], hypothesis (H1) has been used to investigated the stability or syn-
chronization of neural networks. The feature of hypothesis (H1) is that the constants l−i
and l+i (i = 1, 2, . . . , n) are allowed to be positive, negative or zero. By all appearances,
this hypothesis is weaker those given in [1, 5, 19], which require the monotonicity of the
activation functions (l−i = 0) or usual Lipschitz conditions (l−i = l+i ). Such a description
is precise in quantifying the lower and upper bounds of the activation functions.

In this paper, we consider two types of boundary conditions as follows:
1) Dirichlet boundary conditions

y(t, x) = 0, (t, x) ∈ [−τ2,+∞)× ∂Ω; (11)

2) Neumann boundary conditions

∂y(t, x)

∂n̄
=

(
∂y(t, x)

∂x1
,
∂y(t, x)

∂x2
, . . . ,

∂y(t, x)

∂xl

)
= 0,

(t, x) ∈ [−τ2,+∞)× ∂Ω.
(12)

The initial value of system (10) is

y(s, x) = φ(s, x), (s, x) ∈ [−τ2, 0]×Ω, (13)

where φ(s, x) = (φ1(s, x), φ2(s, x), . . . , φn(s, x))T is bounded and continuous on
[−τ2, 0]×Ω.

In order to observe the synchronization behavior of system (10), the response (slaver)
system is designed as

∂z(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂z(t, x)

∂xk

)
−Az(t, x) +W1f

(
W0z(t, x)

)
+W2f

(
W0z

(
t− τ(t), x

))
+ U(t, x), (14)
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where z(t, x) = (z1(t, x), z2(t, x), . . . , zn(t, x))T; U(t, x) = (U1(t, x), U2(t, x), . . . ,
Un(t, x))T indicates the control input, which will be appropriately designed.

Consider a delayed state feedback controller of the following form:

U(t, x) = K1

[
z(t, x)− y(t, x)

]
+K2

[
z
(
t− τ(t), x

)
− y
(
t− τ(t), x

)]
, (15)

where K1 and K2 are the controller gains to be determined.
The boundary condition and initial condition for response system (14) are given in the

forms:
1) Dirichlet boundary conditions

z(t, x) = 0, (t, x) ∈ [−τ2,+∞)× ∂Ω; (16)

2) Neumann boundary conditions

∂z(t, x)

∂n̄
=

(
∂z(t, x)

∂x1
,
∂z(t, x)

∂x2
, . . . ,

∂z(t, x)

∂xl

)
= 0,

(t, x) ∈ [−τ2,+∞)× ∂Ω,
(17)

and
z(s, x) = ψ(s, x), (s, x) ∈ [−τ2, 0]×Ω, (18)

where ψ(s, x) = (ψ1(s, x), ψ2(s, x), . . . , ψn(s, x))T is bounded and continuous on
[−τ2, 0]×Ω.

Defining the synchronization error state as e(t, x) = (e1(t, x), e2(t, x), . . . , en(t, x))T

= z(t, x)− y(t, x) and subtracting (10) from (14) yields the error system as follows:

∂e(t, x)

∂t
=

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
−Ae(t, x) +W1g

(
W0e(t, x)

)
+W2g

(
W0e

(
t− τ(t), x

))
+K1e(t, x) +K2e

(
t− τ(t), x

)
, (19)

where

g
(
W0e(t, x)

)
= f

(
W0z(t, x)

)
− f

(
W0y(t, x)

)
,

g
(
W0e

(
t− τ(t), x

))
= f

(
W0z

(
t− τ(t), x

))
− f

(
W0y

(
t− τ(t), x

))
.

Before ending this section, we introduce some lemmas, which will be essential in
establishing the desired synchronization criteria.

Lemma 1. (See [19]). Let Ω = {x = (x1, x2, . . . , xl)
T | εk 6 xk 6 ηk, k = 1, 2,

. . . , l} is a bound compact set with smooth boundary ∂Ω and mesΩ > 0 in space Rl,
and let ϕ(x) be a real-valued function belonging to C1(Ω), which vanish on the boundary
∂Ω of Ω, i.e., ϕ(x)|∂Ω = 0, then∫

Ω

ϕ2(x) dx 6

(
ηk − εk
π

)2 ∫
Ω

(
∂ϕ

∂xk

)2

dx. (20)
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Lemma 2 [Jensen integral inequality]. (See [3].) For any positive definite symmetric
constant matrix Z ∈ Rn×n, the scalars r1 < r2 and vector function ω : [r1, r2] → Rn
such that the concerned integrations are well defined, the following inequality holds:[ r2∫

r1

ω(s) ds

]T
Z

[ r2∫
r1

ω(s) ds

]
6 (r2 − r1)

r2∫
r1

ωT(s)Zω(s) ds.

Lemma 3 [Poincaré integral inequality]. (See [10].) Let Ω be a bound compact set
with smooth boundary ∂Ω and mesΩ > 0 in space Rl. ϕ(x) is a real-valued function
belonging to C1(Ω) and ∂ϕ(x)/∂l|∂Ω = 0. Then∫

Ω

ϕ2(x) dx 6
1

λ1

∫
Ω

(
∂ϕ

∂xm

)2

dx,

where λ1 is the smallest positive eigenvalue of the Neumann boundary problem

−∆ψ(x) = λψ(x), x ∈ Ω,
∂ψ(x)

∂l
= 0, x ∈ ∂Ω.

(21)

Remark 2. When Ω is bounded, or at least bounded in one direction, Poincaré integral
inequality can also hold. The smallest eigenvalue λ1 of problem (21) is only determined
by Ω. For example, if Ω = {x = (x1, x2, . . . , xl)

T | εm 6 xm 6 ηm, m = 1, 2,
. . . , l} ⊂ Rl, then

λ1 = min

{(
π

η1 − ε1

)2
,

(
π

η2 − ε2

)2
, . . . ,

(
π

ηl − εl

)2}
.

3 Delay-derivative-dependent synchronization

In this section, we are concerned with the delay-derivative-dependent synchronization
analysis (the synchronization conditions are delay-derivative-dependent and delay-range-
independent) for neural networks (10) and (14).

Theorem 1. For given scalars τ1, τ2 and µ < 1, the two coupled generalized reaction-
diffusion neural networks with interval time-varying delays (10) and (14) can be globally
synchronized under the Dirichlet boundary conditions (11), (16) and linear feedback
controller (15) if there exist positive definite matrices P , Q1 and Q2, positive definite
diagonal matrices H1 and H2, real matrix X1 and X2 such that the following linear
matrix inequality holds:

Π =


Π11 X2 PW1 +WT

0 (L+ + L−)H1 PW2

∗ Π22 0 WT
0 (L+ + L−)H2

∗ ∗ Q2 − 2H1 0
∗ ∗ ∗ −(1− µ)Q2 − 2H2

 < 0, (22)

http://www.mii.lt/NA



Generalized reaction-diffusion neural networks 387

where

Dπ = diag

(
l∑

k=1

(
π

ηk − εk

)2

D1k,

l∑
k=1

(
π

ηk − εk

)2

D2k, . . . ,

l∑
k=1

(
π

ηk − εk

)2

Dnk

)
,

L+ = diag
(
l+1 , l

+
2 , . . . , l

+
n

)
, L− = diag

(
l−1 , l

−
2 , . . . , l

−
n

)
,

Π11 = −2PDπ − 2PA+ 2X1 +Q1 − 2WT
0 L

−H1L
+W0,

Π22 = −(1− µ)Q1 − 2WT
0 L

−H2L
+W0.

Moreover, the gain matrices K1 and K2 of the linear feedback controller (15) can be
designed as

K1 = P−1X1, K2 = P−1X2. (23)

Proof. Define a Lyapunov–Krasovskii functional V (t, e(t, x)) ∈ C2,1(R+×Rn;R+) for
system (19) as

V
(
t, e(t, x)

)
=

∫
Ω

eT(t, x)Pe(t, x) dx+

∫
Ω

t∫
t−τ(t)

eT(s, x)Q1e(s, x) dsdx

+

∫
Ω

t∫
t−τ(t)

gT
(
W0e(s, x)

)
Q2g

(
W0e(s, x)

)
dsdx. (24)

From the boundary conditions (11), (16), Green formula [9] and Lemma 1 we can
obtain∫

Ω

eT(t, x)P

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
dx 6 −

∫
Ω

eT(t, x)PDπe(t, x) dx. (25)

It can be deduced from hypothesis (H1) that for any hi > 0 (i = 1, 2, . . . , n), the
following inequality holds:

2
[
gT
(
W0e(θ, x)

)
− eT(θ, x)WT

0 L
−]H[L+W0e(θ, x)− g

(
W0e(θ, x)

)]
> 0,

where H = diag(h1, h2, . . . , hn). Let θ be t and t − τ(t), replace H with H1 and H2,
respectively. Then one obtains

2
[
gT
(
W0e(t, x)

)
− eT(t, x)WT

0 L
−]H1

×
[
L+W0e(t, x)− g

(
W0e(t, x)

)]
> 0, (26)

2
[
gT
(
W0e

(
t− τ(t), x

))
− eT

(
t− τ(t), x

)
WT

0 L
−]H2

×
[
L+W0e

(
t− τ(t), x

)
− g
(
W0e

(
t− τ(t), x

))]
> 0. (27)
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By virtue of (22), (23), (25)–(27), hypothesis (H2), and computing the time-derivative
of V (t, e(t, x)) along the trajectory of system (19), we have

∂

∂t
V
(
t, e(t, x)

)
6 ηT(t)Πη(t), (28)

where
η(t) =

[
eT(t, x), eT

(
t− τ(t), x

)
, gT
(
W0e(t, x)

)
, gT
(
W0e

(
t− τ(t), x

))]T
.

Hence, by Lyapunov theorem for functional differential equations [4], the origin of
error system (19) is asymptotically stable, this implies that the two systems (10) and (14)
are asymptotically synchronized. The proof of Theorem 1 is completed.

Remark 3. In this paper, X is assumed to be a cube εk 6 xk 6 ηk (k = 1, 2, . . . , l).
Choosing ηk = −εk = δk in Lemma 1, inequality (20) is reduced to the following form:∫

Ω

ϕ2(x) dx 6

(
2δk
π

)2 ∫
Ω

(
∂ϕ

∂xk

)2

dx < δ2k

∫
Ω

(
∂ϕ

∂xk

)2

dx,

which has been introduced in [7, 8] as an important lemma (Friedrichs’ inequality [2]).
Hence, our results are more general and they effectually complement or improve the
previously known results.

Remark 4. In Theorem 1, to guarantee Π < 0, matrix Π22 should be negative definite.
However, in this paper, l+i and l−i (i = 1, 2, . . . , n) are known real scalars and may
be positive, negative, or zero, which means that the resulting activation functions may
be non-monotonic. Correspondingly, term WT

0 L
−H2L

+W0 in (22) may not be positive
definite, negative definite, or zero. Therefore, when WT

0 L
−H2L

+W0 6 0, the bound of
the derivation of time delays µ should be smaller than one. It should be pointed that it is
interesting to remove the restriction on the bound of the derivation of time delays.

In fact, by defining a Lyapunov–Krasovskii functional candidate as the same as (24)
and using the Poincaré integral inequality (Lemma 3), neural networks (10) and (14) are
asymptotically synchronized under the Neumann boundary conditions (12) and (17).

Theorem 2. The generalized reaction-diffusion neural networks with interval time-vary-
ing delays (10) and (14) can be globally synchronized under the Neumann boundary
conditions (12), (17) and linear feedback controller (15) if there exist positive definite
matrices P , Q1 and Q2, positive definite diagonal matrices H1 and H2, real matrix X1

and X2 such that the following linear matrix inequality holds:

Π∗ =


Π∗

11 X2 PW1 +WT
0 (L+ + L−)H1 PW2

∗ Π22 0 WT
0 (L+ + L−)H2

∗ ∗ Q2 − 2H1 0
∗ ∗ ∗ −(1− µ)Q2 − 2H2

 < 0, (29)

where
Π∗

11 = −2Pλ1 − 2PA+ 2X1 +Q1 − 2WT
0 L

−H1L
+W0,
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λ1 is the lowest positive eigenvalue of the Neumann boundary problem. Moreover, the
gain matrices K1 and K2 of the linear feedback controller (15) can be designed as

K1 = P−1X1, K2 = P−1X2. (30)

4 Delay-range-dependent synchronization

It should be pointed out that all delay-derivative-dependent synchronization results do
not include any information on the size of delays. It is well known that delay-range-
dependent synchronization conditions (the synchronization conditions are both delay-
derivative-dependent and delay-range-dependent) are generally less conservative than
delay-derivative-dependent ones, especially when the size of the delay is small. In this
section, the delay-range-dependent results are developed to implement the global syn-
chronization between generalized neural networks with mixed time-varying delays and
reaction-diffusion terms (10) and (14).

Theorem 3. The generalized reaction-diffusion neural networks with interval time-vary-
ing delays (10) and (14) can be globally synchronized under the Dirichlet boundary
conditions (11) and linear feedback controller (15), if there exist positive definite matrices
P , Q1, Q2, R1, R2, S1, S2, T1, T2, Z1 and Z2, positive definite diagonal matrices
H1, H2, Λ1, Λ2 and M , real matrix X1 and X2 such that the following linear matrix
inequality holds:

Ξ =



Ξ11 Ξ12 X2 Ξ14 MW2 Σ1 0 T1 0
∗ Ξ22 X2 Ξ24 MW2 0 0 0 0
∗ ∗ Ξ33 0 Ξ35 Σ2 Σ2 0 0
∗ ∗ ∗ Q2 − 2H1 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 −T1 T2
∗ ∗ ∗ ∗ ∗ ∗ −R2 − Z2 0 −T2
∗ ∗ ∗ ∗ ∗ ∗ ∗ −S1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S2


< 0, (31)

where

Ξ11 = Q1 +R1 + τ21S1 + (τ2 − τ1)2S2 − 2WT
0 L

−H1L
+W0

− Z1 − 2MA+ 2X1 − 2MDπ,

Ξ12 = P −M −MA+X1 +WT
0

(
Λ2L

+ − Λ1L
−)W0,

Ξ14 = MW1 +WT
0 (L+ + L−)H1, Ξ22 = τ21Z1 + (τ2 − τ1)2Z2 − 2M,

Ξ24 = MW1 +WT
0 (Λ1 − Λ2),

Ξ33 = −(1− µ)Q1 − 2WT
0 L

−H2L
+W0 − Z2,

Ξ35 = WT
0

(
L+ + L−)H2, Ξ55 = −(1− µ)Q2 − 2H2,

Ξ66 = −R1 +R2 − Z1 − Z2, Σ1 =
1

2

(
Z1 + ZT

1

)
, Σ2 =

1

2

(
Z2 + ZT

2

)
.
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Moreover, the gain matrices K1 and K2 of the linear feedback controller (15) can be
designed as

K1 = M−1X1, K2 = M−1X2. (32)

Proof. Define a Lyapunov–Krasovskii functional V̄ (t, e(t, x)) ∈ C2,1(R+ × Rn;R+)
candidate by

V̄
(
t, e(t, x)

)
= V

(
t, e(t, x)

)
+

6∑
i=1

Vi
(
t, e(t, x)

)
, (33)

where

V1
(
t, e(t, x)

)
= −

∫
Ω

eT(t, x)M

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
dx,

V2
(
t, e(t, x)

)
=

∫
Ω

t∫
t−τ1

eT(s, x)R1e(s, x) dsdx+

∫
Ω

t−τ1∫
t−τ2

eT(s, x)R2e(s, x) dsdx,

V3
(
t, e(t, x)

)
= τ1

∫
Ω

0∫
−τ1

t∫
t+θ

eT(s, x)S1e(s, x) dsdθ dx

+ (τ2 − τ1)

∫
Ω

−τ1∫
−τ2

t∫
t+θ

eT(s, x)S2e(s, x) dsdθ dx,

V4
(
t, e(t, x)

)
=

∫
Ω

[∫ t

t−τ1
eT(s, x) dsT1

t∫
t−τ1

e(s, x) ds

]
dx

+

∫
Ω

[ t−τ1∫
t−τ2

eT(s, x) dsT2

t−τ1∫
t−τ2

e(s, x) ds

]
dx,

V5
(
t, e(t, x)

)
= τ1

∫
Ω

0∫
−τ1

t∫
t+θ

(
∂e(s, x)

∂s

)T

Z1

(
∂e(s, x)

∂s

)
dsdθ dx

+ (τ2 − τ1)

∫
Ω

−τ1∫
−τ2

t∫
t+θ

(
∂e(s, x)

∂s

)T

Z2

(
∂e(s, x)

∂s

)
dsdθ dx,

V6
(
t, e(t, x)

)
= 2

∫
Ω

n∑
i=1

W0ie(t,x)∫
0

[
αi
(
gi(s)− l−i s

)
+ βi

(
l+i s− gi(s)

)]
dsdx,

where Λ1 = diag(α1, α2, . . . , αn), Λ2 = diag(β1, β2, . . . , βn), and W0i denotes the ith
row vector of the matrix W0.
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From (25), it follows that

−
∫
Ω

eT(t, x)M

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
dx 6

∫
Ω

eT(t, x)MDπe(t, x) dx.

Therefore, V1(t, e(t, x)) is positive definite, and V̄ (t, e(t, x)) is positive definite [7].
Denote

ζ(t, x) =

[
eT(t, x),

(
∂e(t, x)

∂t

)T]T
and slack matrix

Γ =
[
MT,MT

]T
.

Then note that

0 = 2

∫
Ω

ζT(t, x)Γ

[ l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
−Ae(t, x)

+W1g
(
W0e(t, x)

)
+W2g

(
W0e

(
t− τ(t), x

))
+K1e(t, x) +K2e

(
t− τ(t), x

)
− ∂e(t, x)

∂t

]
dx. (34)

Similar to (25), we have

2

∫
Ω

eT(t, x)M

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
dx 6 −2

∫
Ω

eT(t, x)MDπe(t, x) dx. (35)

Computing the time-derivative of V (t, e(t, x)) and Vi(t, e(t, x)) (i = 1, . . . , 6) along
the trajectory of system (19), and using (H1), (26), (27), (34) and (35), we can deduce

∂

∂t
V̄ (t, e(t, x)) 6 ΞT(t)ΞΞ(t), (36)

where

Ξ(t) =

[
eT(t, x),

(
∂e(t, x)

∂t

)T
, eT(t− τ(t), x), gT

(
W0e(t, x)

)
,

gT
(
W0e

(
t− τ(t), x

))
, eT(t− τ1, x), eT(t− τ2, x),( t∫

t−τ1

e(s, x) ds

)T

,

( t−τ1∫
t−τ2

e(s, x) ds

)T]T
.

It follows the Lyapunov theorem in functional differential equations [4] that the gener-
alized reaction-diffusion neural networks (10) and (14) are asymptotically synchronized.
This completes the proof.
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Remark 5. Compared with the results in Theorem 1, some novel integral terms have been
established in the Lyapunov–Krasovskii functional (33), which has two main advantages
listed as follows:

1. Both l−i and l+i are taken into account in V6(t, e(t, x)), the dedicated construc-
tion of Lyapunov–Krasovskii functional (33) does have full information on the
recurrent neural network system dynamics. It is therefore that the conservatism is
reduced.

2. In order to obtain less conservative delay-range-dependent synchronization results
on the restriction of the time derivative of time-varying delays τ(t) and enhance
the feasibility of the obtained LMIs, free-weighting matrix Γ = [MT,MT]T is
introduced. This leads to a term∫

Ω

(
∂e(t, x)

∂xk

)T

M

l∑
k=1

∂

∂xk

(
Dk

∂e(t, x)

∂xk

)
dx,

which can be compensated by computing the time-derivative of V1(t, e(t, x)).

These considerations highlight the main differences in the construction of the Lyapu-
nov–Krasovskii functional candidate in this paper.

Remark 6. In this paper, we introduce a linear feedback controller to guarantee the
synchronization of generalized reaction-diffusion neural networks with time-varying de-
lays. So far, There are many results concerning the stability or synchronization for
reaction-diffusion local field neural networks [8, 14]. However, to the best of the the
authors’ knowledge, there is no results on the synchronization for reaction-diffusion static
neural networks. This motivates us to write this paper. It is the first time to establish the
synchronization criterion for a class of generalized reaction-diffusion neural networks
with time-varying delays, which includes reaction-diffusion local field neural networks
model and reaction-diffusion static neural networks model as its special cases. In this
paper, the linear feedback control is developed to study a more reasonable generalized
reaction-diffusion neural networks model and the traditional restrictions that τ̇(t) < 1 is
removed in Theorem 3. Hence, our results have been shown to be the generalization and
improvement of existing results reported recently in the literature.

Remark 7. Today, there are generally two kinds of continuously distributed delays in the
neural networks model, i.e., finitely distributed delays and infinitely distributed delays.

In fact, for the reaction-diffusion neural networks with finitely distributed delays, we
can introduce a new term in Lyapunov–Krasovskii functional (33)

V7
(
t, e(t, x)

)
=

∫
Ω

0∫
−σ(t)

t∫
t+θ

gT
(
W0e(s, x)

)
Y g
(
W0e(s, x)

)
dsdθ dx.
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It follows from Lemma 2 that
∂

∂t
V7
(
t, e(t, x)

)
= σ(t)gT

(
W0e(t, x)

)
Y g
(
W0e(t, x)

)
−
∫
Ω

t∫
t−σ(t)

gT
(
W0e(s, x)

)
Y g
(
W0e(s, x)

)
dsdx

6 σgT
(
W0e(t, x)

)
Y g
(
W0e(t, x)

)
− 1

σ

∫
Ω

[ t∫
t−σ(t)

g
(
W0e(s, x)

)
ds

]T
Y

[ t∫
t−σ(t)

g
(
W0e(s, x)

)
ds

]
dx.

It is easy to see that the proposed method in this paper can be used to deal with the
synchronization problem for generalized reaction-diffusion neural networks with discrete
time-varying and finitely distributed time-varying delays.

However, Lemma 2 can not be used to deal with the infinitely distributed delays,
therefore, our theoretical results can not be used to deal the synchronization problem
for generalized reaction-diffusion neural networks with both discrete time-varying and
infinitely distributed delays, this is another problem that we should study in the future.

By utilizing Poincaré integral inequality, following a similar line as in the proof of
Theorem 3, the desired synchronization of generalized reaction-diffusion neural networks
with Neumann boundary conditions can be obtained readily.

Theorem 4. The generalized reaction-diffusion neural networks with interval time-vary-
ing delays (10) and (14) can be globally synchronized under the Neumann boundary
conditions (12), (17) and linear feedback controller (15), if there exist positive definite
matrices P , Q1, Q2, R1, R2, S1, S2, T1, T2, Z1 and Z2, positive definite diagonal
matrices H1, H2, Λ1, Λ2 and M , real matrix X1 and X2 such that the following linear
matrix inequality holds:

Ξ∗ < 0, (37)
where

Ξ∗
11 = Q1 +R1 + τ21S1 + (τ2 − τ1)2S2 − 2WT

0 L
−H1L

+W0

− Z1 − 2MA+ 2X1 − 2Mλ1,

Ξ∗
ij = Ξij , i, j = 1, 2, . . . , 9, i ∗ j 6= 1,

λ1 is the lowest positive eigenvalue of the Neumann boundary problem. Moreover, the
gain matrices K1 and K2 of the linear feedback controller (15) can be designed as

K1 = M−1X1, K2 = M−1X2. (38)

Remark 8. It is worth pointing out that, for Neumann boundary conditions, the syn-
chronization criteria given in Theorem 4 contain the information not only about the time
delays, but also about the reaction-diffusion terms. In this sense, the conditions are dif-
fusion-dependent as well as delay-range-dependent, which has less conservation than the
diffusion-independent synchronization criteria in [7, 11].
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5 Numerical simulations

In this section, by using the classical implicit format solving the partial differential equa-
tions and the method of steps for differential difference equations, we find that if the
parameters are appropriately chosen, the reaction-diffusion neural networks can exhibit
chaotic attractors. Furthermore, some numerical examples are given to illustrate the theo-
retical results above.

Example 1. For the sake of simplification, we consider the following 2-D reaction-diffu-
sion neural network (drive system):

∂y(t, x)

∂t
=

∂

∂x

(
D
∂y(t, x)

∂x

)
−Ay(t, x)

+W1f
(
W0y(t, x)

)
+W2f

(
W0y

(
t− τ(t), x

))
, (39)

where

D =

[
0.2 0
0 0.2

]
, A =

[
1.5 0
0 1.5

]
, W0 =

[
−2 −5
1 −3

]
,

W1 = I, W2 = 0, f(u) = tanh(u)− 0.025u, −5 6 x 6 5.

(40)

The neural network described in this example is a reaction-diffusion static neural network.
The initial condition of the neural network (39) is chosen as

y1(0, x) = 0.5 sin
x

π
, y2(0, x) = 0.3 sin

x

π
. (41)

The simulation results of (39) are provided in Fig. 1. The chaotic behaviors can be found
in Fig. 2, where x is set as −2 and 4, respectively.

The response system is described by

∂z(t, x)

∂t
=

∂

∂x

(
D
∂z(t, x)

∂x

)
−Az(t, x) +W1f

(
W0z(t, x)

)
+W2f

(
W0z

(
t− τ(t), x

))
+K1

(
z(t, x)− y(t, x)

)
+K2

(
z
(
t− τ(t), x

)
− y
(
t− τ(t), x

))
. (42)

Meanwhile, we set the initial condition for response system (42) as follows:

z1(0, x) = −0.1 cos
x

π
, z2(0, x) = 0.6 cos

x

π
. (43)

It is easy to see that τi = µ = 0, l−i = −0.025 and l+i = 0.975, i = 1, 2. By using
Matlab LMI control toolbox to solve the LMI in Theorem 1, we can find a set of feasible
solutions of (22) as

P =

[
0.2408 0.2408
0.2408 0.3611

]
, X1 =

[
−0.8711 0.3343
0.3343 −0.8191

]
.
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Figure 1. Chaotic behaviors of reaction-diffusion neural network (39) with parameters (40) and initial
condition (41).
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Figure 2. Chaotic behaviors of neural network (39) with parameters (40) and initial condition (41) when
x = −2 and x = 4, respectively.
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Figure 3. Synchronization errors e1(t, x) and e2(t, x) between systems (39) and (42) with parameters (40) and
initial conditions (41) and (43).
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Therefore, by Theorem 1, we know that the response system (42) can completely
synchronize the drive system (39), and the control gain matrix K1 is

K1 =

[
−13.6317 10.9697
10.0135 −9.5812

]
.

The dynamical behavior of the error system between (39) and (42) with parame-
ters (40) and initial conditions (41) and (43) is shown in Fig. 3. The simulation results
imply that the response system (42) are completely synchronize the drive system (39).

Example 2. We choose the parameters of (39) and (42) as

D =

[
0.1 0
0 0.1

]
, A =

[
2 0
0 2

]
, W1 =

[
2 1
−3 1.5

]
,

W2 =

[
2.5 1
−1 2

]
, W0 = I,

f(u) = tanh(u)− 0.025u, τ(t) = 3.5 + 0.1 sin(11t),

−3 6 x 6 5.

(44)

The initial conditions of systems (39) and (42) are chosen as

y1(s, x) = 0.5

(
1 +

s− τ(s)

π

)
sin

x

π
,

y2(s, x) = 0.3

(
1 +

s− τ(s)

π

)
sin

x

π
,

(45)

and

z1(s, x) = −0.1

(
1 +

s− τ(s)

π

)
cos

x

π
,

z2(s, x) = 0.6

(
1 +

s− τ(s)

π

)
cos

x

π
,

(46)

respectively, where (s, x) ∈ [−3.6, 0]×Ω.
The neural network described in this example is a classic delayed reaction-diffusion

cellular neural network. Similarly, the neural network (39) with above parameters (44)
exhibits a chaotic behavior as shown in Fig. 4.

By simple computation, we obtain that τ1 = 3.4, τ2 = 3.6, µ = 1.1, l−i = −0.025
and l+i = 0.975, i = 1, 2. By using Matlab LMI control toolbox to solve the LMI in
Theorem 3, we can find a set of feasible solutions of (22) as

P =

[
23.4555 −0.0067
−0.0067 23.5818

]
,

X1 =

[
−35.0176 0.2354

0.2364 −35.0030

]
, X2 =

[
−0.4309 −0.0005
−0.0005 −0.3367

]
.
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Figure 4. Chaotic behaviors of reaction-diffusion neural network (39) with parameters (44) and initial
condition (45).

Figure 5. Synchronization errors e1(t, x) and e2(t, x) between systems (39) and (42) with parameters (44) and
initial conditions (45) and (46).

It follows from Theorem 3 that the response system (42) can completely synchronize
the drive system (39), and the control gain matrices K1 and K2 are

K1 =

[
−101.8484 0.6876

0.6876 −101.8060

]
, K2 =

[
−1.2533 −0.0014
−0.0014 −0.9793

]
.

The dynamical behavior of the error system between (39) and (42) with parame-
ters (44) and initial conditions (45) and (46) is shown in Fig. 5. The simulation results
imply that the response system (42) are completely synchronize the drive system (39).

Remark 9. In [8], the authors studied the asymptotical synchronization in the mean
square for reaction-diffusion neural networks with time-varying delays under the Dirich-
let boundary conditions. The main results in [8] cannot be used to study this example
with τ̇(t) > 1 for all t (fast-varying delay). However, after a simple computation, the
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conditions of Theorem 3 in this paper hold. The numerical simulations clearly verify
the effectiveness of the developed linear feedback controller to the synchronization of
generalized reaction-diffusion neural networks with interval time-varying delays.

6 Conclusion

In this paper, we have dealt with the synchronization problem for a class of chaotic gen-
eralized neural networks with interval time-varying delays and reaction-diffusion terms.
Based on linear feedback control technique, both delay-derivative-dependent and delay-
range-dependent synchronization criteria are derived in terms of LIMs. The proposed
sufficient conditions depend on physical parameters of neural networks, time delays and
diffusion effects, so can be checked easily and quickly. Finally, some illustrative examples
and their simulations show the feasibility and effectiveness of our proposed theoretical
results. It is worth mentioning that those new criteria not only extend some existing
results, but also have advantages over some previous ones due to less conservatism.
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