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Abstract. We propose a new method to solve input constrained optimal control problems for
autonomous nonlinear systems affine in control. We then extend the method to compute the bang-
bang control solutions under the symmetric control constraints. The most attractive aspect of
the proposed technique is that it enables the use of linear quadratic control theory on the input
constrained linear and nonlinear systems. We illustrate the effectiveness of our technique both on
linear and nonlinear examples and compare our results with those of the literature.
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1 Introduction

Control of nonlinear systems is of great importance since many systems have inherent
nonlinearities. Design and implementation of nonlinear controllers is a difficult task com-
pared to linear controller design. Moreover this task becomes more demanding when
systems have bounds on the control input, which is referred to as actuator saturation. In
the presence of actuator saturation, a given nominal controller may loose its performance
or even make the system unstable unless the constraints are considered a priori in the
design process. Therefore, the effects of input constraints are very important in nonlinear
control design and as a consequence, have attracted much interest in the area of nonlinear
and optimal control [1, 2, 5, 6, 12, 13].

In some control problems such as minimum-time optimal control problems, if the
control input is bounded and the system is affine in the control, an optimal nonsingular
solution to the control problem is of bang-bang type, i.e. control input switches between
its lower and upper limits [9]. In general, when the solution to the control problem is bang-
bang, the problem reduces to finding the switching instants or bang-bang arc durations.
Optimal control problems whose solutions are of bang-bang, are solved by using indirect
shooting methods to solve the multi-point boundary value problem obtained from the
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Pontryagin’s minimum principle (PMP). Solving these problems is extremely difficult
since very good initial guesses for switching arc durations and the values of the states
at the switching instants are required. Direct optimization methods, such as nonlinear
programming, can also be used to find bang-bang control solutions for nonlinear systems.
This method works by converting the optimal control problem to a very large, finite
dimensional optimization problem and it requires again good initial guesses for the initial
value of the control and the number of switchings [8, 10].

In this paper, input constrained control of nonlinear systems are studied by using
a special kind of approximation technique. In this method, the nonlinear system is rep-
resented in the form of a series of linear time-varying (LTV) systems whose responses
converge to the nonlinear system’s response in the limit. This property enables one to
use the well-known linear control methods on nonlinear systems. The approximation
technique, which is also called as Approximating Sequence of Riccati Equations (ASRE),
has been modified in order to be applied to input constrained systems since unbounded
control input is considered in the general theory [3, 7, 11]. More importantly, we show
that using the input constrained theory, one can also obtain near minimum-time bang-
bang type control solutions for both linear and nonlinear systems without any requirement
of the knowledge for the initial value of the control input and the number of bang-bang
switchings since they are directly obtained from the solutions of the differential Riccati
equations for the approximate linear time-varying systems. We also indicate the condition
for the minimum convergence time of the LTV approximations.

The organization of the paper is as follows. In Section 2, we introduce the approxi-
mation method and then show how to incorporate hard constraints in the control problem.
In Section 3, bang-bang type control for the nonlinear system type under consideration
is studied. We apply our technique on both a linear and nonlinear system examples and
show the simulation results in Section 4. Finally, we draw the conclusions in Section 5.

2 Control of input constrained nonlinear systems using LTV approx-
imations

Consider the general control-affine autonomous nonlinear system

ẋ(t) = f
(
x(t)

)
+

m∑
i=1

gi
(
x(t)

)
ui(t), x(0) = x0, (1)

where x(t) ∈ Rn denotes state vector, u(t) = [u1, u2, . . . , um]T ∈ Rm is the control
vector and t ∈ [t0, tf ]. u(t) ∈ Ω ⊆ Rm denotes the constraints in the control inputs such
that

Ω =
{
u(t) ∈ Rm:

∣∣ui(t)∣∣ 6 umax
i , i = 1, 2, . . . ,m

}
. (2)

The functions f(x) and gi(x) are assumed to be sufficiently smooth. Without loss of
generality, assuming that the origin is an equilibrium point, i.e. f(0) = 0 and gi(0) = 0,
then system (2) can be expressed in the factored (extended-linearized) form

ẋ(t) = A
(
x(t)

)
x(t) +G

(
x(t)

)
u(t), (3)
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where A(x) ∈ Rn×n and G(x) = [g1(x), g2(x), . . . , gm(x)] ∈ Rn×m are matrix valued
functions. Note that the factored representation f(x) = A(x)x is not unique unless the
system is scalar. The cost functional for the finite-time quadratic optimal control problem
to be minimized is

J = xT(tf )Fx(tf ) +

tf∫
t0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt, (4)

where F,Q ∈ Rn×n are positive semi-definite and R ∈ Rm×m is positive definite
symmetric matrices. We note that the weighting matrices Q and R can also be chosen
state dependent such that Q(x) > 0 and R(x) > 0 for all x(t), where t ∈ [t0, tf ].
However, state-dependent selection of the weighting matrices yields a non-quadratic cost
functional, which requires a special treatment.

The quadratic optimal control problem (3)–(4) cannot be solved by using linear qua-
dratic regulator (LQR) control theory directly, since the differential constraint (3) is non-
linear. Moreover, control solutions obtained by using the LQR theory is unbounded and in
order to satisfy the control constraints the designer must tweak the weighting matrices Q
and R. However, this is cumbersome and often it is difficult to find the correct weighting
matrices, which satisfy the design specifications. Here we propose incorporating the input
constraints into the optimal control problem priori by using a saturation function such that

ui(t) = φi
(
ūi(t), u

max
i

)
. (5)

Here φi(·) is a sufficiently smooth function and ū(t) = [ū1, ū2, . . . , ūm]T is the new
control input vector. Also, φi(·) must be chosen such that the constraint given by Eq. (2)
is satisfied. If we multiply and divide Eq. (5) by ūi and substitute it in Eq. (3), then we
get

ẋ(t) = A
(
x(t)

)
x(t) +

m∑
i=1

gi
(
x(t)

)φi(ūi(t), umax
i )ūi(t)

ūi(t)
. (6)

We then define a new control matrix

ḡi
(
x, ūi, u

max
i

)
= gi(x)

φi(ūi, u
max
i )

ūi
.

Therefore, Eq. (6) becomes

ẋ(t) = A
(
x(t)

)
x(t) +

m∑
i=1

ḡi
(
x(t), ūi(t), u

max
i

)
ūi(t).

The new system is now control non-affine and moreover as ūi(t)→ 0, ḡi(·)→∞,
which is not desired in any control problem. Let us define the function φi(·) as follows:

φi
(
ūi, u

max
i

)
= ρi arctan(ūi),

where ρi = 2umax
i /π. Since arctan(·) ∈ [−π/2, π/2], we get φi(ūi, umax

i ) ∈ [−umax
i ,

umax
i ], which guarantees ui ∈ [−umax

i , umax
i ]. Moreover, when ūi → 0, we get
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limūi→0 ρi arctan(ūi)/ūi = ρi. Therefore, the new control problem becomes

ẋ(t) = A
(
x(t)

)
x(t) +

m∑
i=1

ḡi
(
x(t), ūi(t), u

max
i

)
ūi(t) (7)

along with the cost functional to be minimized

J̄ = xT(tf )Fx(tf ) +

tf∫
t0

(
xT(t)Qx(t) + ūT(t)R̄ū(t)

)
dt, (8)

where R̄ ∈ Rm×m is a positive definite symmetric matrix. In general, solving the optimal
control problems of minimizing the cost (8) subject to nonlinear differential constraint (7)
requires solving the two point boundary-value problem of the state and co-state equations
that results from calculus of variations, by shooting techniques or nonlinear programming.
We propose a different approach, which represents the nonlinear system (7) as a sequence
of Linear Time-Varying (LTV) approximations whose responses converge to the nonlinear
system in the limit. Then one can implement LQR control theory on the LTV system of
each approximation. For initiating the iterations, let us define a base system

ẋ[0](t) = A(x0)x[0](t) + Ḡ(x0, 0)ū[0](t), x(0) = x0, (9)

together with the quadratic cost functional

J̄ [0] = xT [0](tf )Fx[0](tf ) +

tf∫
t0

(
xT [0](t)Qx[0](t) + ūT [0](t)R̄ū[0](t)

)
dt, (10)

where Ḡ(x, u) = [ḡ1, ḡ2, . . . , ḡm]. We obtain a linear time invariant (LTI) base system
for the initiation of the LTV sequences and hence, the optimal control for the base system
is

u[0](t) = −R̄−1ḠT(x0, 0)P [0]x[0](t), (11)

where P [0] ∈ Rn×n can be obtained by solving the well-known Algebraic Riccati Equa-
tion (ARE).

For the forthcoming approximations (k > 1),

ẋ[k](t) = A
(
x[k−1](t)

)
x[k](t) + Ḡ

(
x[k−1](t), ū[k−1](t)

)
ū[k](t), (12)

J̄ [k] = xT [k](tf )Fx[k](tf ) +

tf∫
t0

(
xT [k](t)Qx[k](t) + ūT [k](t)R̄ū[k](t)

)
dt,

where the superscript [k] denotes the iteration number and x[k](0) = x0. Thus, the
nonlinear optimal control problem becomes a LTV quadratic optimal control problem
for each iteration of the approximation sequences. The optimal control input for each

Nonlinear Anal. Model. Control, 21(3):400–412



404 M. Itik

approximation is

ū[k](t) = −R̄−1ḠT
(
x[k−1](t), ū[k−1](t)

)
P [k](t)x[k](t), (13)

where P [k](t) ∈ Rn×n is the solution of the matrix-differential Riccati equation given in
Eq. (14) backwards in time from tf to t0:

Ṗ [k](t) = −Q− P [k](t)A(·)−AT(·)P [k](t)

+ P [k](t)Ḡ(·)R̄−1ḠT(·)P [k](t), (14)

where P [k](tf ) = F is the final time penalty matrix, A(·) = A(x[k−1](t)) and Ḡ(·) =
Ḡ(x[k−1](t), ū[k−1](t)). Then kth closed-loop dynamic system can be written as

ẋ[k](t) = Ā
(
x[k−1](t), ū[k−1](t)

)
x[k](t),

where
Ā
(
x[k−1](t), ū[k−1](t)

)
= A(·)− Ḡ(·)R̄−1ḠT(·)P [k](t).

For the LTV sequences (12) to converge, i.e.

lim
k→∞

∥∥x[k](t)− x[k−1](t)
∥∥ = 0,

we only need local Lipschitz continuity of the nonlinear system (7), which is a very mild
condition [4].

3 Computation procedure

The LTV sequences cannot be solved analytically, hence, numerical computations must
be used. The computation procedure can be summarized as follows:

1. Use the initial state vector x[k−1](t) =x0 and the control input vector ū[k−1](t) = 0
for k = 0 in (9) and obtain a LTI system.

2. Solve the LQR problem (10)–(11) for the LTI system obtained in the first step and
get a stable solution for the state vector x[0](t).

3. Substitute x[k−1](t) and ū[k−1](t) for k = 1 into A(x(t)) and Ḡ(x(t), ū(t)) in
Eqs. (12)–(14), then solve the matrix-differential Riccati equation (14) backwards
in time to obtain P [k](t).

4. Use P [k](t) to solve (12) with the initial condition x[k](0) = x0 and obtain the
solution x[k](t) simultaneously with the control input ū[k](t) from (13).

5. Repeat the steps 3–4 for k = 1, 2, . . . , `, where ` is the number of last iteration,
until the LTV approximations converge, i.e. ‖x[k](t) − x[k−1](t)‖ 6 ε, where ε is
a small positive number.

6. Calculate u`(t) = φ`(ū`(t), u
max) and use it in Eq. (1).
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For the first step, one can also linearize the nonlinear system (7) around the origin
and solve the LQR problem obtained from the linearized system. If the LTI system is
uncontrollable, the differential Riccati equation must be solved instead of the algebraic
Riccati equation to obtain x[0](t). We note that the technique proposed here differs from
the State-Dependent Riccati Equation (SDRE) approach in that it solves the differential
Riccati equation for each LTV approximation systems. Therefore, the proposed method
does not require pointwise controllability of the (A(x), B(x)) pair for all t ∈ [t0, tf ].
In the next section, we shall show how to obtain near-minimum time bang-bang type
solutions for the nonlinear system (1).

4 Stability of the ASRE control

In the literature, although the proof of convergence for the ASRE control has been dis-
cussed [4], its stability has not been studied yet. Therefore, we shall prove the stability of
the ASRE control in the following theorem.

Theorem 1. Consider the nonlinear control problem

J̄ = xT(tf )Fx(tf ) +

tf∫
t0

(
xT(t)Qx(t) + ūT(t)R̄ū(t)

)
dt

subject to

ẋ(t) = A
(
x(t)

)
x(t) +

m∑
i=1

ḡi
(
x(t), ūi(t), u

max
i

)
ūi(t), (15)

and let

minimize J̄ [k] = xT [k](tf )Fx[k](tf )

+

tf∫
t0

(
xT [k](t)Qx[k](t) + ūT [k](t)R̄ū[k](t)

)
dt, (16)

ẋ[k](t) = A
(
x[k−1](t)

)
x[k](t) + Ḡ

(
x[k−1](t), ū[k−1](t)

)
ū[k](t). (17)

with x[k](0) = x0 be an approximating scheme as above. Then if the nonlinear sys-
tem (15) is pointwise controllable almost everywhere, then the solution of problems (16)–
(17) converges to a solution of the nonlinear problem as k → ∞. Moreover, if we
take F = αI and denote the solution of (16)–(17) by x[k](t;α), then as α → ∞,
limk→∞ ‖x[k](tf ;α)‖ → 0.

Proof. The idea comes from receding horizon control. First, note that the linear quadratic
solution to (16)–(17) is given by

ū[k](t) = −R̄−1ḠT
(
x[k−1](t), ū[k−1](t)

)
P [k](t)x[k](t),

Nonlinear Anal. Model. Control, 21(3):400–412
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where
Ṗ [k](t) = −Q− P [k](t)A(·)−AT(·)P [k](t)

+ P [k](t)Ḡ(·)R̄−1ḠT(·)P [k](t). (18)

Here P [k](tf ) = F , A(·) = A(x[k−1](t)) and Ḡ(·) = Ḡ(x[k−1](t), ū[k−1](t)). We would
like to set F = αI , and let α→∞. In order to do this, we set

W (t) = P [k](t)−1. (19)
Then

Ẇ (t) = A
(
x[k−1](t)

)
W (t) +W (t)AT

(
x[k−1](t)

)
+ Ḡ

(
x[k−1](t), ū[k−1](t)

)
R−1ḠT

(
x[k−1](t), ū[k−1](t)

)
, (20)

where W (tf ) = I/α. Hence, as α→∞,

W (t) =

tf∫
t

Φ[k−1](t− s)Ḡ
(
x[k−1](t), ū[k−1](t)

)
R−1ḠT

(
x[k−1](t), ū[k−1](t)

)
ds,

where Φ[k−1](t) is the transition matrix of A(x[k−1](t)). Since (A(x), B(x)) is control-
lable i.e. W (t) > 0, independently of α for almost all t < tf . Hence, the solution exists,
and we have x[k](tf ;α)→ 0 as t→ tf .

5 Obtaining bang-bang control solutions

We use a design parameter to increase the steepness of the sigmoid obtained by the arctan
function (see Fig. 1) to obtain bang-bang type bounded control solutions for the given
control problem. The modified control input becomes

ui(t) = φi
(
ri, ūi(t), u

max
i

)
,

where ri > 1 is a design parameter. Let us define the function φi(·) as follows:

φi
(
ri, ūi, u

max
i

)
= ρi arctan(riūi), (21)

where ρi = 2umax
i /π. When ūi → 0, we get limūi→0 ρi arctan(riūi)/ūi = ρiri. When

we substitute the new control variable into the control problem, we get

ẋ(t) = A
(
x(t)

)
x(t) +

m∑
i=1

ḡi
(
x(t), ri, ūi(t), u

max
i

)
ūi(t),

where

ḡi
(
x, ri, ūi, u

max
i

)
= gi(x)φi

(ri, ūi, u
max
i )

ūi
.

We note that the bounded control obtained from the saturation function (21) is con-
tinuous since we solve a continuous-time differential Riccati equation in each sequence
of the LTV approximations. If ri is selected large enough, the solutions to the optimal
control problem results in bang-bang type controls. Generally speaking, in order to obtain
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Figure 1. Saturation function. r = 1: dashed line, r = 100: solid line.

bang-bang type solutions to a constrained optimal control problem, two-point boundary
value problem of the state and co-state equations are solved by using indirect shoot-
ing techniques, or the control problem is transformed into an optimization problem by
discretization and recruiting a mathematical programming technique such as dynamic
programming or nonlinear programming. If the minimum-time solutions are desired, the
problem becomes more difficult as initial values for optimization problem parameters
such as the number of switchings, switching arc lengths or durations, initial value of the
control input must be guessed to start the optimization problem. Since multi-parameter
guesses are required at the same time, in the case of a bad initial guess for even one
parameter, the solutions to the optimization problem may converge very slowly or even
may not converge at all. The proposed method finds the bang-bang solutions to a class of
input constrained nonlinear optimal control problems for a given time tf . We note that a
search algorithm may be recruited to find a sub-optimal final time t∗f , which is close to
tmin (minimum-time), by using an initial guess for t∗minand repeatedly solving the LTV
approximations for the updated tf values. Moreover, the solution of the approximation
sequences directly gives the number of the switchings, the switching arc lengths and
the initial control value, i.e. whether the initial value of the control is umax or umin for
the problem under consideration, which are the required input parameters to solve the
optimization problem by shooting methods or nonlinear programming.

In order to find a solution to the nonlinear optimal control problem (7)–(8) by using
the proposed LTV sequences, the specified tf cannot be less then the minimum-time tmin,
which is necessary to drive the system states from an initial condition to a desired final
condition. This can be explained by simple contradiction. If the sequences of controls and
states did converge, then we would have a control, which drives the system to zero in less
than the optimal time tmin. Since the control is bounded by umax, we have a contradiction
and hence, tf > tmin condition must be satisfied.

6 Numerical results

In this section, we shall implement the proposed method first on a nonlinear system, which
is known as Rayleigh equations, also studied by [13, 14], to obtain input constrained

Nonlinear Anal. Model. Control, 21(3):400–412
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quadratic control results. In the second part of the simulations, we shall find the bang-
bang type near optimal control solutions of the Goddard problem and then the Rayleigh
system, respectively, by using LTV approximations.

6.1 Unbounded and bounded quadratic control simulations

Rayleigh equations given by Eq. (22) represent the dynamics of an electric circuit (tunnel
diode oscillator), where the state variable x1(t) denotes the electric current and the control
input u(t) is the suitable transformation of the voltage at the generator [14]. The control
problem is to stabilize at the origin the system

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t)
(
1.4− 0.14x2(t)2

)
+ u(t) (22)

subject to the quadratic cost functional (3). The initial states are x1(0) = x2(0) = −5,
and the control input is bounded as |u(t)| 6 4 for t ∈ [0, tf ]. The factored form of system
(22) for unbounded control design is selected as

ẋ(t) =

[
0 1
−1 (1.4− 0.14x2(t)2)

]
x(t) +

[
0
1

]
u(t).

In the absence of control, the Rayleigh system shows oscillatory dynamics. We first
implement the unbounded control obtained by solving the LTV approximations, to the
system. Figures 2 and 3 illustrate the system states x1(t) and x2(t), respectively, in the
absence of a bound on the control input. The design parameters for the quadratic control
are selected as F = I2×2, Q = diag(100, 10) and R = 0.1, where In×n is n dimensional
identity matrix and diag denotes diagonal matrix.

We then incorporate the bound function φ(·) along with the new transformed control
input ū(t) and obtain the system as follows:

ẋ(t) =

[
0 1
−1 (1.4− 0.14x2(t)2)

]
x(t) +

[
0

ḡ(x(t), ū(t))

]
ū(t), (23)
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Figure 2. Converging sequences of x1, unconstrained
response.
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Figure 3. Converging sequences of x2, unconstrained
response.
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Figure 6. Comparison of unconstrained and con-
strained control (inner plot) inputs.

where ḡ(x, ū) = ρ arctan(ū)/ū and ρ = 2umax/π, where the maximum value of the
control input umax = 4. The initial state vector is x0 = [−5,−5]. The responses of
the stabilized states in the presence of bounded control are given by Figs. 4 and 5. The
comparison of the unconstrained and constrained control inputs is depicted in Fig. 6. It
takes the system approximately 5 s to be stabilized at the origin with the constrained
control, whereas this time is about 1.5 s (s denotes the time in seconds) if the control is
unbounded. The design parameters for the quadratic constrained control are selected as
F = I2×2, Q = diag(100, 10), R̄ = 0.1.

6.2 Bang-bang control simulations

We first consider a linear system, which is also called as the Goddard problem

ẋ1(t) = x2(t), ẋ2(t) = u(t), (24)

where the initial states are x1(0) = 1, x2(0) = −1 and desired final states are x1(tf ) =
x2(tf ) = 0, t ∈ [0, tf ]. The control input is bounded such that |u(t)| 6 1. The analytical
solution to the minimum-time problem is found to be tmin = 1.45 s with a switch at
0.225 s starting with a negative control then switches to positive. Incorporating the bound
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on the control results in a new system, which is nonlinear, and it is given as follows:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0

ḡ(x(t), ū(t))

]
ū(t), (25)

where ḡ(x, ū) = ρ arctan(rū)/ū and ρ = 2umax/π, where the maximum value of
the control input umax = 1. We aim to obtain the bang-bang type control solution for
the original system (24) by using the modified system (25) and the cost functional (8).
As we have indicated before, the condition tf > tmin must be satisfied in order for
limk→∞ ‖x[k](t) − x[k−1](t)‖ = 0. In the case of tf > tmin, the solutions obtained
from the LTV approximations will converge to an arbitrary bang-bang solution. However,
a simple update algorithm may be recruited, which gradually reduces the initially selected
tf to obtain closer solutions to minimum-time solutions by checking whether the LTV
approximations converge or not. Here, in order to get a better convergence, we choose
tf = 1.46 s, which is very close to the analytical solution tmin. We note that when
tf = tmin is reached, numerical issues arises such as low convergence rate or reduced
accuracy of the final values of the states. In this example, the control parameters are
selected as F = I2×2, Q = 02×2, where 02×2 denotes the 2 by 2 null matrix, R̄ = 1 and
r = 2 × 103. Figure 7 illustrates the system response in the presence of the bang-bang
control. The control input u(t) is depicted in Fig. 8. We obtain x1(tf ) = 0.0000158 and
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Figure 10. Convergence of the system states.
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Figure 11. Control inputs of the 20th and 50th
iterations.
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Figure 12. Comparison of minimum-time and
approximated trajectories for Rayleigh system.

x2(tf ) = −0.00203 and the switch in the control occurs when the time is 0.227 s. The
comparison of the analytical solution and the approximated solution is given in Fig. 9 on
the phase plane.

We also obtain bang-bang type control solutions for the Rayleigh problem (22). Time
optimal control is studied for the same system in [14]. In order to get better convergence
results, we select our final time tf = 3.7 s, which is bigger than the minimum-time
tmin = 3.66817 s computed in [14]. The control parameters are selected as F = I2×2,
Q = 02×2, R̄ = 1 and r = 2 × 104. We obtained near-time optimal solutions to the
Rayleigh problem (22) by using the modified system (23). The time evolution of the
states under near bang-bang control is illustrated in Fig. 10, and the control input is in
Fig. 11. The switching times are obtained as 1.353 s and 3.245 s. The comparison of the
near minimum-time and minimum-time solutions for the states is illustrated on the phase
plane in Fig. 12.

7 Conclusions

We have studied input constrained control of a class of nonlinear system by using LTV
approximations. We show that the algorithm can be effectively used to find bang-bang
type control solutions to the nonlinear control problem for a specified time without any

Nonlinear Anal. Model. Control, 21(3):400–412
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requirement for the initial guess of switching times, arc length or durations. Technique
can be extended to the tracking problems, and stochastic systems by modification of the
solution to the approximating sequences.
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