
http://dx.doi.org/10.15388/NA.2016.2.5
Nonlinear Analysis: Modelling and Control, Vol. 21, No. 2, 211–222 ISSN 1392-5113

Multivalued generalizations of fixed point results
in fuzzy metric spaces∗
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Abstract. This paper attempts to prove fixed and coincidence point results in fuzzy metric
space using multivalued mappings. Altering distance function and multivalued strong {bn}-fuzzy
contraction are used in order to do that. Presented theorems are generalization of some well known
single valued results. Two examples are given to support the theoretical results.
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1 Introduction

Banach contraction principle [1] was motivation for many fixed point studies in various
spaces [2,3,4,5,6,7,10,12,13,14,15,16,17,18,22,24,25,26,30]. In particular, multivalued
generalization of this principle in metric space (X, d) is done by Nadler [27] on the
following way: there exist k ∈ (0, 1) so that, for every x, y ∈ X ,

H(fx, fy) 6 kd(x, y), (1)

where H is Hausdorff–Pompeiu metric and f is multivalued mapping from X to the
family of its non-empty, closed and bounded subsets. Later on, the probabilistic versions
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of condition (1) are given in [12, 13, 15, 16], where notions of weakly demicompact
mapping, f -strongly demicompact and weakly commuting mapping are introduced. Fur-
ther, Hausdorff distance between sets in fuzzy metric spaces is introduced [22] and used
in [7] for study of existence of coincidence point using two multivalued and one single
valued mappings.

Also, Banach contraction principle in metric spaces is improved by Khan, Swaleh
and Sessa [19], where control function, called altering distance function, is introduced.
This type of function is used in [30] in fuzzy matric space (X,M, T ) with the following
condition:

ϕ
(
M(fx, fy, t)

)
6 k(t) · ϕ

(
M(x, y, t)

)
, x, y ∈ X, t > 0, 0 < k(t) < 1, (2)

where ϕ is altering distance function. Note that condition (2) is improved in [5]. More-
over, many functions of this type are used in the study of fixed point problems [3, 4, 26].

Another classes of contraction, so called (strong) {bn}-probabilistic contraction, are
introduced in [6, 24] and used in the study of fixed point problems in multivalued case in
probabilistic spaces [25].

Our aim in present paper is to study the multivalued generalization in fuzzy met-
ric spaces of results given in [6, 19, 30]. First, we use altering distance function in the
style of condition (2) to obtain coincidence point results. That is realized through two
theorems using strong fuzzy metric space with t-norm of H-type in the first and
f -strongly demicompact mappings in the second one. On the other side, result given
in [6] is transferred to multivalued case by introducing multivalued strong {bn}-fuzzy
contraction.

2 Preliminaries

In order to make paper more readable, first, we list the definitions of basic notions im-
portant to further work. Using the results of Menger and Zadeh [23, 31], Kramosil and
Michalek [21] introduced the notion of fuzzy metric space. Later, George and Veermani
[8, 9] modified their definition in way to associate each fuzzy metric to a Hausdorff
topology.

Definition 1. (See [29].) A mapping T : [0, 1]× [0, 1]→ [0, 1] is called a triangular norm
(t-norm) if the following conditions are satisfied:

(T1) T (a, 1) = a, a ∈ [0, 1],
(T2) T (a, b) = T (b, a), a, b ∈ [0, 1],
(T3) a > b, c > d ⇒ T (a, c) > T (b, d), a, b, c, d ∈ [0, 1],
(T4) T (a, T (b, c)) = T (T (a, b), c), a, b, c ∈ [0, 1].

Definition 2. (See [21].) The 3-tuple (X,M, T ) is said to be a KM fuzzy metric space
in the sense of Kramosil and Michalek if X is an arbitrary set, T is a t-norm and M is
a fuzzy set on X2 × [0,∞) satisfying the following conditions:

(KM1) M(x, y, 0) = 0, x, y ∈ X ,
(KM2) M(x, y, t) = 1, t > 0 ⇔ x = y,
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(KM3) M(x, y, t) =M(y, x, t), x, y ∈ X , t > 0,
(KM4) T (M(x, y, t),M(y, z, s)) 6M(x, z, t+ s), x, y, z ∈ X , t, s > 0,
(KM5) M(x, y, ·) : [0,∞)→ [0, 1] is left-continuous for every x, y ∈ X .

Definition 3. (See [8, 9].) The 3-tuple (X,M, T ) is said to be a fuzzy metric space in
the sense of George and Veeramani if X is an arbitrary set, T is a continuous t-norm and
M is a fuzzy set on X2 × (0,∞) satisfying the following conditions:

(GV1) M(x, y, t) > 0, x, y ∈ X , t > 0,
(GV2) M(x, y, t) = 1, t > 0 ⇔ x = y,
(GV3) M(x, y, t) =M(y, x, t), x, y ∈ X , t > 0,
(GV4) T (M(x, y, t),M(y, z, s)) 6M(x, z, t+ s), x, y, z ∈ X , t, s > 0,
(GV5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous for every x, y ∈ X .

If (GV4) is replaced by condition

(GV4’) T (M(x, y, t),M(y, z, t)) 6M(x, z, t), x, y, z ∈ X , t > 0,

then (X,M, T ) is called a strong fuzzy metric space [11].

Moreover, if (X,M, T ) is a fuzzy metric space, then M is a continuous function on
X ×X × (0,∞) [28] and M(x, y, ·) is non-decreasing for all x, y ∈ X [10].

If (X,M, T ) is a fuzzy metric space, then M generates the Hausdorff topology on
X (see [8, 9]) with base of open sets {U(x, r, t): x ∈ X, r ∈ (0, 1), t > 0}, where
U(x, r, t) = {y: y ∈ X, M(x, y, t) > 1− r}.

A function ϕ : [0, 1] → [0, 1] is called an altering distance function [26, 30] if it
satisfies the following properties:

(AD1) ϕ is strictly decreasing and left continuous;
(AD2) ϕ(λ) = 0 if and only if λ = 1.

It is obvious that limλ→1− ϕ(λ) = ϕ(1) = 0.

Definition 4. (See [8, 9]) Let (X,M, T ) be a fuzzy metric space.

(a) A sequence {xn}n∈N is a Cauchy sequence in (X,M, T ) if, for every ε ∈ (0, 1),
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε, n,m > n0, t > 0.

(b) A sequence {xn}n∈N converges to x in (X,M, T ) if, for every ε ∈ (0, 1), there
exists n0 ∈ N such that M(xn, x, t) > 1 − ε, n > n0, t > 0. Then we say that
{xn}n∈N is convergent. Every convergent sequence is a Cauchy sequence.

(c) A fuzzy metric space (X,M, T ) is complete if every Cauchy sequence in
(X,M, T ) is convergent.

Definition 5. (See [14].) Let T be a t-norm and Tn : [0, 1]→ [0, 1], n ∈ N, be defined in
the following way:

T1(x) = T (x, x), Tn+1(x) = T
(
Tn(x), x

)
, n ∈ N, x ∈ [0, 1].

We say that t-norm T is of H-type if the family {Tn(x)}n∈N is equicontinuous at x = 1.

Nonlinear Anal. Model. Control, 21(2):211–222



214 T. Došenović et al.

Each t-norm T can be extended (see [20]) (by associativity) in a unique way to an
n-ary operation taking for (x1, . . . , xn) ∈ [0, 1]n the values

T0
i=1 xi = 1, Tn

i=1 xi = T
(
Tn−1
i=1 xi, xn

)
.

A t-norm T can be extended to a countable infinite operation taking for any sequence
(xn)n∈N from [0, 1] the value

T∞i=1 xi = lim
n→∞

Tn
i=1 xi.

The sequence (Tn
i=1 xi)n∈N is non-increasing and bounded from below. Hence, the limit

T∞i=1 xi exists.
In the fixed point theory (see [15, 17]), it is of interest to investigate the classes of

t-norms T and sequences (xn) from the interval [0, 1] such that limn→∞ xn = 1 and

lim
n→∞

T∞i=n xi = lim
n→∞

T∞i=1 xn+i = 1. (3)

In [15], the following proposition is obtained.

Proposition 1. Let (xn)n∈N be a sequence of numbers from [0,1] such that limn→∞xn=1
and t-norm T is of H-type. Then limn→∞T∞i=n xi = limn→∞T∞i=1 xn+i = 1.

Definition 6. (See [12,15].) Let (X,M, T ) be a fuzzy metric space,A a non-empty subset
ofX and f : A→ 2X\{∅}. The mapping f is weakly demicompact if, for every sequence
{xn}n∈N from A such that xn+1 ∈ fxn, n ∈ N, and limn→∞M(xn+1, xn, t) = 1,
t > 0, there exists a convergent subsequence {xnk

}k∈N.

Throughout the paper by C(X) is denoted a family of all non-empty and closed
subsets of X .

Definition 7. (See [22].) Let (X,M, T ) be a fuzzy metric space, A a non-empty subset
of X , f : A → A and F : A → C(A). The mapping F is a f -strongly demicompact
if, for every sequence {xn}n∈N from A such that limn→∞M(fxn, yn, t) = 1, t > 0,
for some sequence {yn}n∈N, yn ∈ Fxn, n ∈ N, there exists a convergent subsequence
{fxnk

}k∈N.

Definition 8. (See [13, 15].) A mapping F : X → C(X) is weakly commuting with
f : X → X if, for all x ∈ X , it holds f(Fx) ⊆ F (fx).

3 Main results

3.1 Multivalued mappings using altering distance

Main result of this section is an extension of results given in [30] to the case of multivalued
mappings.
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Let A and B be two nonempty subsets of X, define the Hausdorff–Pompeiu fuzzy
metric as

M̃(A,B, t) = min
{
inf
x∈A

E(x,B, t), inf
y∈B

E(y,A, t)
}
, t > 0,

where E(x,B, t) = supy∈BM(x, y, t).

Theorem 1. Let (X,M, T ) be a complete strong fuzzy metric space and T is t-norm of
H-type. Let f : X → X be a continuous mapping and F,G : X → C(X) are weakly
commuting with f . If there exist k : (0,∞) → (0, 1) and altering distance function ϕ
such that the following condition is satisfied:

ϕ
(
M̃(Fx,Gy, t)

)
6 k(t) · ϕ

(
M(fx, fy, t)

)
, x, y ∈ X, x 6= y, t > 0, (4)

then there exists x ∈ X such that fx ∈ Fx ∩Gx.

Proof. Let x0 ∈ X. Since Fx0 is a non-empty subset of X , there exist x1 ∈ X such that
fx1 ∈ Fx0. Let t0 > 0 be arbitrary. Continuity of M and the fact that k(t) < 1, t > 0,
implies that, for ε1 > 0, the following inequality holds:

k(t0) · ϕ
(
M(fx0, fx1, t0)

)
< ϕ

(
M(fx0, fx1, t0) + ε1

)
. (5)

By definition of Hausdorff fuzzy metric, for ε1 > 0 given in (5), there exist x2 ∈ X ,
fx2 ∈ Gx1 and l1 ∈ N \ {0} such that

M̃(Fx0, Gx1, t0) 6M(fx1, fx2, t0) +
ε1
2l1

. (6)

Now, by (4), (5) and (6), using that ϕ is strictly decreasing, we conclude that

M(fx0, fx1, t0) < M(fx1, fx2, t0). (7)

Similarly, we can find x3 ∈ X , fx3 ∈ Fx2, and l2 ∈ N, l2 > l1 such that

k(t) · ϕ
(
M(fx1, fx2, t0)

)
< ϕ

(
M(fx1, fx2, t0) + ε1

)
(8)

and
M̃(Gx1, Fx2, t0) 6M(fx2, fx3, t0) +

ε1
2l2

. (9)

By (8) and (9) we have

M(fx1, fx2, t0) < M(fx2, fx3, t0). (10)

Repeating the procedure presented above, we define a sequence {xn}n∈N from X and
strictly increasing sequence {ln}n∈N from N such that the following conditions are satis-
fied:

(i) fx2n+1 ∈ Fx2n, fx2n+2 ∈ Gx2n+1, n ∈ N,
(ii) M(fxn−1, fxn, t) < M(fxn, fxn+1, t), t > 0, n ∈ N,
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where

M̃(Fx2n, Gx2n+1, t) 6M(fx2n+1, fx2n+2, t) +
ε1
2ln

, t > 0, n ∈ N. (11)

Hence, the sequence {M(fxn, fxn+1, t)}n∈N, t > 0, is non-decreasing and bounded, so
there exist a : (0,∞)→ [0, 1] such that

lim
n→∞

M(fxn, fxn+1, t) = a(t), t > 0. (12)

By (4), (11) and (12), for n ∈ N, t > 0, we have

ϕ

(
M(fx2n+1, fx2n+2, t) +

ε1
2ln

)
< ϕ

(
M̃(Fx2n, Gx2n+1, t)

)
< k(t) · ϕ

(
M(fx2n, fx2n+1, t)

)
. (13)

Letting n→∞ in (13), we get

ϕ
(
a(t)

)
6 k(t) · ϕ

(
a(t)

)
, t > 0, (14)

and we conclude that ϕ(a(t)) = 0 for all t > 0 so that a ≡ 1.
Further, we will prove that {fxn}n∈N is a Cauchy sequence. Let ε > 0 and s ∈ N.

Since t-norm T is ofH-type, using (12) and Proposition 1, we have that there exist n0 ∈ N
such that

T∞i=nM(fxi, fxi+1, t) > 1− ε, t > 0, n > n0. (15)

Since (X,M, T ) is strong fuzzy metric space and {Tn
i=1M(fxi, fxi+1, t)}n∈N is non-

increasing sequence, by (15), we have that

M(fxn+s+1, fxn, t) > Tn+s
i=n M(fxi, fxi+1, t) > 1− ε, t > 0, n > n0. (16)

So, {fxn}n∈N is a Cauchy sequence and, since the space (X,M, T ) is complete, there
exist x ∈ X such that

x = lim
n→∞

fxn. (17)

It remains to prove that fx ∈ Fx∩Gx. As Fx∩Gx = Fx∩Gx, we need to show that,
for every t > 0 and λ ∈ (0, 1), there exists r1 = r1(t, λ) ∈ Fx and r2 = r2(t, λ) ∈ Gx
such that r1, r2 ∈ U(fx, t, λ), i.e. M(fx, r1, t) > 1− λ and M(fx, r2, t) > 1− λ.

Let t0 > 0 and λ ∈ (0, 1). Since t-norm T is continuous, it follows that there exist
δ = δ(λ) ∈ (0, 1) such that

T
(
1− δ, T (1− δ, 1− δ)

)
> 1− λ. (18)

By the continuity of f and (17) there exist n1 ∈ N such that

M

(
fx, ffx2n,

t0
3

)
> 1− δ, n > n1. (19)
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By (12) there exists n2 ∈ N such that

M

(
ffx2n, ffx2n+1,

t0
3

)
> 1− δ, n > n2.

Since f is weakly commuting with F , we have

ffx2n+1 ∈ f(Fx2n) ⊆ F (fx2n). (20)

Also, there exist ε∗ ∈ (0, 1) such that

k

(
t0
3

)
· ϕ
(
M

(
fx, ffx2n0 ,

t0
3

))
< ϕ

(
M

(
fx, ffx2n0 ,

t0
3

)
+ ε∗

)
(21)

for arbitrary n0 > max{n1, n2}. By (20) and definition of Hausdorff fuzzy metric there
exist r2 ∈ Gx such that, for ε∗ > 0 (defined in (21)), the following is satisfied:

M̃

(
Gx,F (fx2n0

),
t0
3

)
6M

(
r2, ffx2n0+1,

t0
3

)
+ ε∗. (22)

By (4), (20) and (21) we have:

ϕ

(
M

(
r2, ffx2n0+1,

t0
3

)
+ ε∗

)
6 ϕ

(
M̃

(
Gx,F (fx2n0

),
t0
3

))
6 k

t0
3
· ϕ
(
M

(
fx, ffx2n0

,
t0
3

))
< ϕ

(
M

(
fx, ffx2n0

,
t0
3

)
+ ε∗

)
.

Now, by (19) follows that

M

(
r2, ffx2n0

,
t0
3

)
> M

(
fx, ffx2n0

,
t0
3

)
> 1− δ.

Finally, using (18), we get

M(fx, r2, t0) > T

(
M

(
fx, ffx2n0 ,

t0
3

)
,

T

(
M

(
ffx2n0

, ffx2n0+1,
t0
3

)
, M

(
ffx2n0+1, r2,

t0
3

)))
> T

(
1− δ, T (1− δ, 1− δ)

)
> 1− λ.

So, r2 ∈ U(fx, t0, λ) for arbitrary t0 > 0 and λ ∈ (0, 1), i.e. fx ∈ Gx. Similarly, it can
be shown that r1 ∈ U(fx, t, λ), t > 0, λ ∈ (0, 1), which implies that fx ∈ Fx, too.
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Theorem 2. Let (X,M, T ) be a complete fuzzy metric space and f : X → X be a con-
tinuous mapping. Let F,G : X → C(X) are weakly commuting with f and F or G is
f -strongly demicompact. If, for some k : (0,∞) → (0, 1) and altering distance func-
tion ϕ, the following condition is satisfied:

ϕ
(
M̃(Fx,Gy, t)

)
6 k(t) · ϕ

(
M(fx, fy, t)

)
, x, y ∈ X, x 6= y, t > 0, (23)

then there exists x ∈ X such that fx ∈ Fx ∩Gx.

Proof. The proof is similar with that of the Theorem 1, except in the part related to
Cauchy sequence. Namely, since F or G is f -strongly demicompact, fx2n+1 ∈ Fx2n or
fx2n+2 ∈ Gx2n+1 and limn→∞M(fx2n, fx2n+1, t) = 1, t > 0, we conclude that there
exist convergent subsequence {fx2np}p∈N or {fx2np+1}p∈N, respectively, such that

lim
p→∞

fx2np
= x. (24)

The last part of the proof is analogous as in Theorem 1, where instead of sequence
{fxn}n∈N, we deal with subsequences {fx2np

}p∈N and {fx2np+1}p∈N.

If in Theorems 1 and 2, we take that F = G and that f is the identity mapping, we
get the following corollary.

Corollary 1. Let (X,M, T ) be a complete fuzzy metric space, F : X → C(X), and one
of the following conditions is satisfied:

(a) F is weakly demicompact mapping,
or

(b) (X,M, T ) is strong fuzzy metric space and T is t-norm of H-type.

If there exist k : (0,∞)→ (0, 1) and altering distance function ϕ such that:

ϕ
(
M̃(Fx, Fy, t)

)
6 k(t) · ϕ

(
M(x, y, t)

)
, x, y ∈ X, t > 0, (25)

then there exists x ∈ X such that x ∈ Fx.

Moreover, if the mapping F in Corollary 1 is single-valued we got the result in [30].

Example 1.
(a) Let X = [0, 2], T = TP ,M(x, y, t) = t/(t + d(x, y)), where d is Euclidian

metric. Then (X,M, T ) is a fuzzy metric space. Let F (x) = {1, 2}, x ∈ X .
Since F is weakly demicompact and condition (25) is satisfied, by Corollary 1(a)
follows that there exists x ∈ X such that x ∈ Fx.

(b) LetX = [0, 2], T = TM ,M
∗(x, y, t) = t/(t+d∗(x, y)), where d∗ is ultrametric.

Ultrametric space is metric space, where instead of triangle inequality condition,
the following is satisfied: d∗(x, z) 6 max{d∗(x, y), d∗(y, z)}. Then (X,M∗, T )
is a strong fuzzy metric space [11]. For F (x) = {1, 2}, x ∈ X , condition (25) is
satisfied and by Corollary 1(b) follows that there exists x ∈ X such that x ∈ Fx.
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3.2 Multivalued strong {bn}-fuzzy contraction

In this part, we present multivalued extension of results given in [6] using multivalued
strong {bn}-fuzzy contraction.

Definition 9. Let (X,M, T ) be a fuzzy metric space and {bn}n∈N a sequence from (0, 1)
such that limn→∞ bn = 1. The mapping F : X → C(X) is a multivalued strong {bn}-
fuzzy contraction if there exist q ∈ (0, 1) such that

M(x, y, t) > bn =⇒ M̃(Fx, Fy, qt) > bn+1, x, y ∈ X, t > 0, n ∈ N. (26)

Theorem 3. Let (X,M, T ) be a complete KM fuzzy metric space such that limt→∞M(x,
y, t) = 1, x, y ∈ X , supa<1 T (a, a) = 1. Let {bn} ⊂ (0, 1) be a sequence such that
limn→∞ bn = 1 and F : X → C(X) be a multivalued strong {bn}-fuzzy contraction. If
t-norm T satisfies the following condition:

lim
n→∞

T∞i=n bi = 1, (27)

then there exists x ∈ X such that x ∈ Fx.

Proof. Let x0, x1 ∈ X , where x1 ∈ Fx0. By (27), for arbitrary ε > 0, there exist n0 ∈ N
and t0 > 0 such that

T∞i=n0
bi > 1− ε and M(x0, x1, t0) > bn0

. (28)

Then by condition (26), for some q ∈ (0, 1) and ε0 > 0, we have

M̃(Fx0, Fx1, qt0) > bn0+1 + ε0. (29)

Keeping the same ε0 and using definition of Hausdorff metric, we can find x2 ∈ Fx1
such that

M̃(Fx0, Fx1, qt0) 6M(x1, x2, qt0) + ε0. (30)

By (26), (29) and (30) we obtain

M(x1, x2, qt0) > bn0+1 =⇒ M̃(Fx1, Fx2, q
2t0) > bn0+2.

Repeating the same procedure, we get

M(xk, xk+1, q
kt0) > bn0+k, k ∈ N. (31)

Let ε > 0 and t > 0. If we choose k0 ∈ N, k0 > n0, such that
∑∞
k=k0

qk < t/t0, then,
for every l, r ∈ N, r > 1, we have

M(xk0+l, xk0+l+r, t)

>M

(
xk0+l, xk0+l+r, t0

∞∑
k=k0

qk

)
>M

(
xk0+l, xk0+l+r, t0

k0+l+r−1∑
k=k0+l

qk

)
> T

(
T . . . T︸ ︷︷ ︸

(r−1)−times

(
M
(
xk0+l, xk0+l+1, t0q

k0+l
)
, . . .

)
,

M
(
xk0+l+r−1, xk0+l+r, t0q

k0+l+r−1
))

> T∞i=n0
bi > 1− ε,
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where is used (28) and (31). So, {xn}n∈N is a Cauchy sequence and, since (X,M, T ) is
complete, there exist x ∈ X so that

lim
n→∞

xn = x. (32)

It is remain to prove that x ∈ Fx. As Fx = Fx, it is enough to show that, for every
λ ∈ (0, 1) and t > 0, there exists r = r(t, λ) ∈ Fx such that M(x, r, t) > 1− λ.

Let t0 > 0 and λ ∈ (0, 1). Since supa<1 T (a, a) = 1, there exist δ = δ(λ) ∈ (0, 1)
such that

T
(
T (1− δ, 1− δ), 1− δ

)
> 1− λ. (33)

From limn→∞ bn = 1, for δ defined in (33), there exist p0 ∈ N such that

bp > 1− δ, p > p0. (34)

By (32), for p0 given above, it is possible to find n0 ∈ N such that

M

(
xn, x,

t0
3

)
> bp0 > 1− δ, n > n0, (35)

and

M

(
xn, xn+1,

t0
3

)
> bp0 > 1− δ, n > n0. (36)

Now, by (26) there exist ε∗ > 0 such that

M̃

(
Fxn, Fx, q

t0
3

)
> bp0+1 + ε∗, n > n0.

For the same ε∗ there exist r ∈ Fx such that

M

(
xn+1, r, q

t0
3

)
+ ε∗ > M̃

(
Fxn, Fx, q

t0
3

)
> bp0+1 + ε∗,

i.e.

M

(
xn+1, r,

t0
3

)
> M

(
xn+1, r, q

t0
3

)
> bp0+1 > 1− δ, n > n0. (37)

Finally, by (33), (35), (36) and (37) we get

M(x, r, t0) > T

(
T

(
M

(
x, xn,

t0
3

)
,M

(
xn, xn+1,

t0
3

))
,M

(
xn+1, r,

t0
3

))
> 1− λ,

which means x ∈ Fx.

4 Conclusion

In this paper we prove several fixed point and coincidence point results, which presented
fuzzy generalization of Nadler fixed point result using altering distance function, as well
as a multivalued generalizations of strong fuzzy {bn}-contractions.
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