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Abstract. The aim of this paper is to introduce generalized F2-Geraghty type fuzzy mappings
on a metric space for establishing the existence of fuzzy fixed points of such mappings. As an
application of our result, we obtain the existence of common fuzzy fixed point for a generalized
F2-Geraghty type fuzzy hybrid pair. These results unify, generalize and complement various known
comparable results in the literature. An example and an application to theoretical computer science
are presented to support the theory proved herein. Also, to suggest further research on fuzzy
mappings, a Feng–Liu type theorem is proved.
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1 Introduction and preliminaries

Banach contraction principle [4] is constructive in nature and is one of the most useful
tools in the study of nonlinear equations. Because of its simplicity and usefulness, many
authors were motivated to extend and generalize this principle. One of the most interesting
generalizations of Banach contraction principle was given by Geraghty [8]. Extensions of
Geraghty result for multivalued mappings have also been obtained in different directions
[9, 10, 19], which in turn generalize a well-known Nadler’s fixed point theorem [15],
a multivalued version of Banach contraction principle. Recently, Wardowski [21] intro-
duced the concept of F -contraction and obtained a fixed point result as a generalization
of Banach contraction principle; for more details in this direction, we refer to [21, 22].
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On the other hand, mathematical models have been used extensively in real world
problems related to engineering, computer sciences, economics, social, natural and medi-
cal sciences. Because of various uncertainties arising in real world situations, some times,
methods of classical mathematics may not be successfully applied to solve them. In fact,
fuzzy set theory has been evolved in mathematics as an important tool (initiated by Zadeh
[23]) to solve the issues of uncertainty and ambiguity. Heilpern [12] initiated the concept
of fuzzy mappings on a metric space and proved a fixed point theorem as a generalization
of Nadler’s theorem [15]. Abu-Donia [1] studied the Hausdorff metric between fuzzy
subsets via its correspondence between classical sets and obtained common fixed point
theorems for fuzzy mappings, see also [13]. For instance, the concept of fixed point of
a fuzzy mapping has a great deal in the Theory of noncooperativeN -persons fuzzy games,
see [5]; then the reader interested in fixed point results of fuzzy mappings is referred
to [1, 3, 6, 18, 20].

In this paper, we introduce a new class of generalized F2-Geraghty type fuzzy map-
pings by combining the concepts of F -contraction and Geraghty type contraction. We
establish the existence of fuzzy fixed point of such mappings, employing the concept of
Pompeiu–Hausdorff distance between α-level sets of fuzzy mappings, useful in construct-
ing Hausdorff dimensions for fuzzy spaces. As an application, coincidence fuzzy point
and common fuzzy fixed point of hybrid pair of a single valued self-mapping and a fuzzy
mapping are obtained. These results extend and strengthen various known results in [6,8,
12, 15, 21, 22]. We also provide an example to illustrate our results and an application to
theoretical computer science. Moreover, to suggest further research on fuzzy mappings,
a Feng–Liu type theorem is given; in fact, without using the concept of the Pompeiu–
Hausdorff distance, Feng and Liu [7] proved an interesting generalization of Nadler’s
theorem [15].

In the sequel, the letters R, R+ and N will denote the set of all real numbers, the set
of all nonnegative real numbers and the set of all positive integer numbers, respectively.

The following definitions and results will be considered in establishing our results.
Let X be a space of points with generic element of X denoted by x and I = [0, 1].

A fuzzy set A in X is characterized by a membership function A : X → I such that each
element x ∈ X is associated with a real number A(x) ∈ [0, 1]. Let IX be a collection of
all fuzzy subsets of X .

Let (X, d) be a metric space and A a fuzzy set in X . If α ∈ (0, 1], then the α-level set
Aα of A is defined as

Aα = {x: A(x) > α}.

For α = 0, we have A0 = {x ∈ X: A(x) > 0}, where B denotes the closure of a set B
in (X, d). A fuzzy set A is said to be more accurate than fuzzy set B, denoted by A ⊂ B
if and only if A(x) 6 B(x) for each x in X . It is obvious that if 0 < α 6 β 6 1, then
Aβ ⊆ Aα. Corresponding to each α ∈ [0, 1] and x ∈ X , the fuzzy point xα of X is
a fuzzy set xα : X → [0, 1] given by

xα(y) =

{
α if y = x,

0 otherwise.
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For α = 1, we have the following indicator function of {x}:

x1(y) =

{
1 if y = x,

0 otherwise.

Define
Wα(X) =

{
A ∈ IX: Aα is nonempty and compact

}
.

For A, B ∈Wα(X) and α ∈ [0, 1], let

pα(A,B) = inf
{
d(x, y), x ∈ Aα, y ∈ Bα

}
,

Dα(A,B) = max
{
sup
x∈Aα

d(x,Bα), sup
y∈Bα

d(y,Aα)
}
,

D(A,B) = sup
α
Dα(A,B).

Note that pα is a nondecreasing mapping of α and Dα a metric on Wα(X). Let Y be
an arbitrary subset in (X, d). A mapping R : Y → Wα(X) is called a fuzzy mapping
over the set Y , that is, a mapping which associates with each y in Y the fuzzy set Ry ∈
Wα(X). As a fuzzy set, Ry in X is characterized by a membership function Ry : X →
[0, 1], so Ry(x) is a membership of x in Ry . Thus, a fuzzy mapping R over Y is a fuzzy
subset of Y ×X having membership function Ry(x) = R(y, x).

In a more general sense than that given in [12], a mapping R : X → IX is a fuzzy
mapping over X (see [18]). Notice that the α-level set of a fuzzy mapping R over X is
given by

(Rx)α =
{
y ∈ X: Rx(y) > α

}
.

SetK(X) = {µ ∈ IX : µ̂ ∈ CB(X)}, whereCB(X) is the set of all closed and bounded
subsets of X , µ̂ = {x ∈ X: µ(x) = maxy∈X µ(y)} and Λ : K(X) → CB(X), where
Λ(µ) = µ̂. Abu-Donia [1] considers the fuzzy mapping R : X → K(X) instead of
R : X → IX . Denote the composition Λ ◦R by R̂. Thus,

R̂(x) =
{
y ∈ X: Rx(y) = max

z∈X
Rx(z)

}
.

For α∈(0, 1], α6maxz∈X Rx(z) implies that R̂(x)⊆(Rx)α. If α>maxz∈X Rx(z)=ω
(say), then (Rx)α ⊆ R̂(x) = (Rx)ω = {y ∈ X: Rx(y) > ω}. Hence, the approximation
R̂(x) of the fuzzy set Rx in the sense of Abu-Donia [1] corresponds to some α-level set.

Definition 1. (See [6].) A fuzzy point xα in X is called a fuzzy fixed point of fuzzy
mapping R if xα ⊂ Rx, that is, Rx(x) > α or x ∈ (Rx)α. Hence, the fixed degree of x
in Rx is at least α. If {x} ⊂ Rx, then x is a fixed point of the fuzzy mapping R.

Ali and Abbas [2] gave the following definitions.
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Definition 2. (See [2].) Let R : X → Wα(X) be a fuzzy mapping and g : X → X
a self-mapping. A fuzzy point xα in X is called:

(i) coincidence fuzzy point of hybrid pair (g,R) if (gx)α ⊂ Rx, that is,Rx(gx) > α
or gx ∈ (Rx)α (the fixed degree of gx in Rx is at least α);

(ii) common fuzzy fixed point of the hybrid pair (g,R) if xα = (gx)α ⊂ Rx, that
is, x = gx ∈ (Rx)α (the fixed degree of x and gx in Rx is the same and is at
least α).

The sets of all fuzzy fixed points, coincidence fuzzy points and common fuzzy fixed
points of the hybrid pair (g,R) are denoted by F ixα (R), Cα(R, g) and F ixα (R, g), respec-
tively.

Definition 3. (See [2].) Let R : X → Wα(X) be a fuzzy mapping and g : X → X
a self-mapping. Then:

(i) the hybrid pair (g,R) is called w-fuzzy compatible if g(Rx)α ⊆ (Rgx)α, when-
ever x ∈ Cα(R, g);

(ii) a mapping g is called R-fuzzy weakly commuting at some point x ∈ X if g2x ∈
(Rgx)α.

Lemma 1. (See [11].) Let X be a nonempty set and g : X → X . Then there exists
a subset E ⊆ X such that g(E) = g(X) and g : E → X is one to one.

Lemma 2. (See [12].) Let (X, d) be a metric space, x, y ∈ X and A,B ∈ Wα(X). The
following hold:

1. If pα(x,A) = 0, then xα ⊂ A;
2. pα(x,A) 6 d(x, y)+ pα(y,A);
3. If xα ⊂ A, then pα(x,B) 6 Dα(A,B).

Theorem 1. (See [6].) Let (X, d) be a complete metric space and R a fuzzy mapping
from X to Wα(X), where α ∈ (0, 1). If Dα(Rx, Ry) 6 qd(x, y) for each x, y ∈ X ,
where q ∈ (0, 1); then there exists x ∈ X such that xα is a fuzzy fixed point.

Lemma 3. (See [14].) Let (X, d) be a complete metric space and R a fuzzy mapping
from X to Wα(X) and x0 ∈ X . Then there exists x1 ∈ X such that {x1} ⊂ Rx0

.

Set S = {ψ : R+ → [0, 1): tn → 0 whenever ψ(tn)→ 1}. Consider

ψ1(t) =

{
e−3t if t > 0,

0 if t = 0
and ψ2(t) =

{
1/(t+ 1) if t > 0,

0 if t = 0,

then ψ1, ψ2 ∈ S, and hence, S 6= ∅.
Geraghty [8] proved the following result.

Theorem 2. Let (X, d) be a complete metric space and T : X → X . If there exists ψ ∈ S
such that d(Tx, Ty) 6 ψ(d(x, y))d(x, y) holds for all x, y ∈ X; then T has a unique
fixed point z ∈ X and for each x ∈ X , the sequence {Tnx} converges to z.
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Consider the following conditions for a mapping F : (0,+∞)→ R:

(C1) F is strictly increasing, that is, for all α, β ∈ (0,+∞), α < β implies F (α) <
F (β);

(C2) There exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0;

(C3) For every sequence {αn}n∈N of positive numbers, limn→+∞ αn = 0 if and
only if limn→+∞ F (αn) = −∞.

Let

z2 = {F2: F2 satisfies conditions (C1) and (C2)},
z3 = {F3: F3 satisfies conditions (C1), (C2) and (C3)}.

Wardowski [21] introduced the concept of F -contraction as follows.

Definition 4. (See [21].) Let (X, d) be a metric space. A mapping T : X → X is said to
be an F -contraction on X if there exists τ > 0 such that

d(Tx, Ty) > 0 =⇒ τ + F
(
d(Tx, Ty)

)
6 F

(
d(x, y)

)
for all x, y ∈ X , where F ∈ z3.

From now onwards, we shall call it F3-contraction instead of F -contraction. Note that
F3-contraction is continuous, see [21].

Wardowski [21] proved the following result as a generalization of Banach contraction
principle.

Theorem 3. (See [21].) Let (X, d) be a complete metric space and T : X → X an
F3-contraction. Then T has a unique fixed point x∗ ∈ X and, for every x0 ∈ X , the
sequence {Tnx0}n∈N converges to x∗.

Now, we introduce generalized Geraghty type fuzzy mapping over a metric space
(X, d).

Definition 5. Let (X, d) be a metric space. A fuzzy mapping R : X →Wα(X) is said to
be generalized Fi-Geraghty type fuzzy mapping if there exist τ > 0 and ψ ∈ S such that

Dα(Rx, Ry) > 0

=⇒ τ + Fi
(
Dα(Rx, Ry)

)
6 Fi

(
ψ
(
MR
α (x, y)

)
NR
α (x, y)

)
(1)

holds for all x, y ∈ X , where Fi ∈ zi for i ∈ {2, 3} and

MR
α (x, y) = max

{
d(x, y), pα(x,Rx), pα(y,Ry),

pα(x,Ry) + pα(y,Rx)

2

}
,

NR
α (x, y) = max

{
d(x, y), pα(x,Rx), pα(y,Ry)

}
.
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Definition 6. Let (X, d) be a metric space, R : X → Wα(X) a fuzzy mapping and
g : X → X . A pair (g,R) is called generalized Fi-Geraghty type fuzzy hybrid pair if
there exist τ > 0 and ψ ∈ S such that

Dα(Rx, Ry) > 0

=⇒ τ + Fi
(
Dα(Rx, Ry)

)
6 Fi

(
ψ
(
Mg,R
α (x, y)

)
Ng,R
α (x, y)

)
(2)

holds for all x, y ∈ X , where Fi ∈ zi for i ∈ {2, 3} and

Mg,R
α (x, y) = max

{
d(gx, gy), pα(gx,Rx), pα(gy,Ry),

pα(gx,Ry) + pα(gy,Rx)

2

}
,

Ng,R
α (x, y) = max

{
d(gx, gy), pα(gx,Rx), pα(gy,Ry)

}
.

2 Fuzzy fixed points of F2-Geraghty type fuzzy mappings

First, we prove a fuzzy fixed point result for generalized F2-Geraghty type fuzzy map-
pings on a complete metric space.

Theorem 4. Let (X, d) be a complete metric space and R : X →Wα(X) a generalized
F2-Geraghty type fuzzy mapping. Then there exists a point x ∈ X such that xα ⊂ Rx,
that is, F ixα (R) is nonempty.

Proof. Let u0 be a given point in X . As Ru0 ∈ Wα(X), we can choose u1 ∈ (Ru0)α
such that d(u0, u1) = pα(u0, Ru0

). If u0 = u1, then u0 = u1 ∈ (Ru0
)α and the result

follows trivially. Suppose that u0 6= u1; since Ru1
∈ Wα(X), there exists u2 ∈ (Ru1

)α
such that

d(u1, u2) = pα(u1, Ru1
) 6 Dα(Ru0

, Ru1
).

If u1 = u2, then u1 = u2 ∈ (Ru1
)α and the proof is finished. Suppose u1 6= u2, then

Dα(Ru0
, Ru1

) > 0. This further implies

F2

(
d(u1, u2)

)
6 F2

(
Dα(Ru0

, Ru1
)
)
6 F2

(
ψ
(
MR
α (u0, u1)

)
NR
α (u0, u1)

)
− τ

6 F2

(
ψ

(
max

{
d(u0, u1), pα(u0, Ru0

), pα(u1, Ru1
),
pα(u0, Ru1

)+pα(u1, Ru0
)

2

})
×max

{
d(u0, u1), pα(u0, Ru0), pα(u1, Ru1)

})
− τ

6 F2

(
ψ

(
max

{
d(u0, u1), d(u0, u1), d(u1, u2),

d(u0, u2)+d(u1, u1)

2

})
×max

{
d(u0, u1), d(u0, u1), d(u1, u2)

})
− τ

6 F2

(
ψ
(
max

{
d(u0, u1), d(u1, u2)

})
max

{
d(u0, u1), d(u1, u2)

})
− τ.
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Suppose that d(u1, u2) ≮ d(u0, u1). Then we obtain

F2

(
d(u1, u2)

)
6 F2

(
ψ
(
d(u1, u2)

)
d(u1, u2)

)
− τ.

Thus, since ψ ∈ S, we have

F2

(
d(u1, u2)

)
6 F2

(
d(u1, u2)

)
− τ,

which implies τ 6 0, a contradiction. Hence, d(u1, u2) < d(u0, u1) and so

F2

(
d(u1, u2)

)
6 F2

(
ψ
(
d(u0, u1)

)
d(u0, u1)

)
− τ.

Continuing this way, we can obtain a sequence {un} in X such that un ∈ (Run−1
)α,

un+1 ∈ (Run)α and also

d(un, un+1) = pα(un, Run) 6 Dα(Run−1 , Run).

Now un = un+1 gives that un = un+1 ∈ (Run)α; hence, the result follows. Suppose
that un 6= un+1 for all n ∈ N, then Dα(Run−1

, Run) > 0. Thus, we have

F2

(
d(un, un+1)

)
6 F2

(
Dα(Run−1 , Run)

)
6 F2

(
ψ
(
MR
α (un−1, un)

)
NR
α (un−1, un)

)
− τ

6 F2

(
ψ

(
max

{
d(un−1, un), pα(un−1, Run−1

), pα(un, Run),

pα(un−1, Run) + pα(un, Run−1
)

2

})
×max

{
d(un−1, un), pα(un−1, Run−1), pα(un, Run)

})
− τ

6 F2

(
ψ

(
max

{
d(un−1, un), d(un−1, un), d(un, un+1),

d(un−1, un+1) + d(un, un)

2

})
×max

{
d(un−1, un), d(un−1, un), d(un, un+1)

})
− τ

6 F2

(
ψ
(
max

{
d(un−1, un), d(un, un+1)

})
max

{
d(un−1, un), d(un, un+1)

})
−τ.

We claim that
d(un, un+1) < d(un−1, un) (3)

holds for each n ∈ N. If not, then from (3) we get

F2

(
d(un0

, un0+1)
)
6 F2

(
ψ
(
d(un0

, un0+1)
)
d(un0

, un0+1)
)
− τ

6 F2

(
d(un0

, un0+1)
)
− τ
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for some n0 ∈ N, which leads to the contradiction τ 6 0. Therefore, we write

F2(µn+1) 6 F2

(
ψ(µn)µn

)
− τ

where µn = d(un, un+1) and, since τ > 0, then we have F2(µn+1) < F2(ψ(µn)µn).
Also, since F2 is strictly increasing and ψ ∈ S, it follows that

µn+1 < ψ(µn)µn 6 µn, (4)

that is, {µn+1} is a decreasing sequence of nonnegative real numbers, which is bounded
below by 0; hence, limn→+∞ µn+1 = λ > 0 for some λ ∈ R+. Suppose that λ > 0. On
taking limit as n tends to +∞ on both sides of (4), we have

λ 6 lim
n→+∞

ψ(µn)λ 6 λ,

which implies that
1 6 lim

n→+∞
ψ(µn) 6 1,

that is, limn→+∞ψ(µn)=1. Then by definition of ψ∈S, it follows that limn→+∞µn=0,
a contradiction, and hence,

lim
n→+∞

µn = 0. (5)

From (C2) there exists k ∈ (0, 1) such that

lim
n→+∞

µknF2(µn) = 0. (6)

Now, we have

F2(µn) 6 F2

(
ψ(µn−1)µn−1

)
− τ 6 F2(µn−1)− τ 6 · · ·

6 F2

(
ψ(µ0)µ0

)
− nτ.

It follows that

µknF2(µn)− µknF2

(
ψ(µ0)µ0

)
6 µkn

(
F2

(
ψ(µ0)µ0

)
− nτ

)
− µknF2

(
ψ(µ0)µ0

)
6 −nτµkn 6 0. (7)

On taking limit as n tends to +∞ on both sides of (7) and using (5) and (6), we have
limn→+∞ nµkn = 0. Consequently, there exists n1 ∈ N such that nµkn < 1 for all n > n1,
and hence, we have

µn <
1

n1/k
for all n > n1.

For m ∈ N with m > n, we write

d(un, um) 6 d(un, un+1) + d(un+1, un+2) + · · ·+ d(um−2, um−1) + d(um−1, um)

6
1

n1/k
+

1

(n+ 1)1/k
+ · · ·+ 1

(m− 2)1/k
+

1

(m− 1)1/k

6
m−1∑
j=n

1

j1/k
6

+∞∑
j=n

1

j1/k
.
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Using the convergence of the series
∑+∞
j=n j

−1/k, we get that {un} is a Cauchy sequence
in X . Next, since (X, d) is complete, we have limn→+∞ d(un, z) = 0 for some z ∈ X .
Now, we show that zα ⊂ Rz; note that

lim
n→+∞

pα(un, Rz) = lim
n→+∞

d
(
un, (Rz)α

)
= pα(z,Rz).

Clearly, if pα(z,Rz) = 0, then by Lemma 2 we have zα ⊂ Rz , that is, z ∈ (Rz)α. On
the contrary if pα(z,Rz) 6= 0, then there exist ε0 > 0 and N ∈ N such that, for every
n ∈ N with n > N , one has pα(un, Rz) > ε0 > 0. Thus,

F2

(
pα(un+1, Rz)

)
6 F2

(
Dα(Run , Rz)

)
6 F2

(
ψ
(
MR
α (un, z)

)
NR
α (un, z)

)
− τ

6 F2

(
ψ

(
max

{
d(un, z), d(un, un+1), pα(z,Rz),

pα(un, Rz) + pα(z,Run)

2

})
×max

{
d(un, z), d(un, un+1), pα(z,Rz)

})
− τ.

Then, by definition of F2, it follows that

pα(un+1, Rz)

6 ψ

(
max

{
d(un, z), d(un, un+1), pα(z,Rz),

pα(un, Rz) + pα(z,Run)

2

})
×max

{
d(un, z), d(un, un+1), pα(z,Rz)

}
.

On taking limit as n tends to +∞ in the previous inequality, we have

pα(z,Rz) 6 lim
n→+∞

ψ
(
MR
α (un, Rz)

)
pα(z,Rz),

which implies that
lim

n→+∞
MR
α (un, Rz) = pα(z,Rz) = 0

and by Lemma 2, we have zα ⊂ Rz .

Next, we give a corollary.

Corollary 1. Let (X, d) be a complete metric space and R : X → Wα(X) a fuzzy
mapping. Suppose that there exist τ > 0 and ψ ∈ S such that

τ + F2

(
Dα(Rx, Ry)

)
6 F2

(
ψ
(
MR
α (x, y)

)
d(x, y)

)
for all x, y ∈ X , where F2 ∈ z2. Then F ixα (R) is nonempty.

Using the same techniques as in the proof of Theorem 4, one can prove the following
results.
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Theorem 5. Let (X, d) be a complete metric space and R : X → Wα(X) a fuzzy map-
ping. Suppose that there exist τ > 0 and ψ ∈ S such that

τ + F2

(
Dα(Rx, Ry)

)
6 F2

(
ψ
(
NR
α (x, y)

)
NR
α (x, y)

)
for all x, y ∈ X , where F2 ∈ z2. Then F ixα (R) is nonempty.

Theorem 6. Let (X, d) be a complete metric space and R : X → Wα(X) a fuzzy map-
ping. Suppose that there exist τ > 0 and ψ ∈ S such that

τ + F2

(
Dα(Rx, Ry)

)
6 F2

(
ψ
(
d(x, y)

)
d(x, y)

)
(8)

for all x, y ∈ X , where F2 ∈ z2. Then F ixα (R) is nonempty.

Remark 1. Let (X, d) be a complete metric space and R : X → Wα(X) a fuzzy map-
ping. Let ψ ∈ S and F2(α) = ln(α); clearly F2 ∈ z2. Then (8) becomes

τ + ln
(
Dα(Rx, Ry)

)
6 ln

(
ψ
(
d(x, y)

)
d(x, y)

)
,

which further implies that

Dα(Rx, Ry) 6 e−τψ
(
d(x, y)

)
d(x, y)

for all x, y ∈ X . Hence, Theorem 6 generalizes Theorem 2.

Now, we give an illustrative example.

Example 1. Let X = {0, 1, 2} and d : X ×X → R+ be the metric defined by

d(0, 0) = d(1, 1) = d(2, 2) = 0, d(0, 2) = d(2, 0) = 6,

d(0, 1) = d(0, 1) = 10, d(1, 2) = d(2, 1) = 16.

Let α ∈ (0, 1/3), F2(α) = ln(α), ψ(t) = e−t/50 if t > 0 and ψ(0) = 0. Clearly, ψ ∈ S
and F2 ∈ z2. Define a fuzzy mapping R : X →Wα(X) by

(R0)(x) =


2α if x = 0,

0 if x = 1,

α/4 if x = 2,

(R1)(x) =


3α if x = 0,

α/5 if x = 1,

0 if x = 2,

(R2)(x) =


α/3 if x = 0,

α if x = 1,

α/4 if x = 2.

Then (R0)α = (R1)α = {0}, (R2)α = {1}. Note that, for x, y ∈ {0, 1}, we have
Dα(Rx, Ry) = 0. On the other hand, we get

Dα(R1, R2) = Dα(R0, R2) = d(0, 1) = 10.
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For x = 0 and y = 2, we write

MR
α (0, 2) = max

{
d(0, 2), pα(0, R0), pα(2, R2),

pα(0, R2) + pα(2, R0)

2

}
= max

{
d(0, 2), d(0, 0), d(2, 1),

d(0, 1) + d(2, 0)

2

}
= max{6, 0, 16, 8} = 16,

NR
α (0, 2) = max{6, 0, 16} = 16.

Also, for x = 1 and y = 2, we get

MR
α (1, 2) = max

{
d(1, 2), pα(1, R1), pα(2, R2),

pα(1, R2) + pα(2, R1)

2

}
= max

{
d(1, 2), d(1, 0), d(2, 1),

d(1, 1) + d(2, 0)

2

}
= max{16, 10, 16, 3} = 16,

NR
α (1, 2) = max{16, 10, 16} = 16.

Finally, for x ∈ {0, 1}, we write

ln
(
ψ
(
MR
α (x, 2)

)
NR
α (x, 2)

)
− ln

(
Dα(Rx, R2)

)
= ln

(
16e−16/50

)
− ln(10) ≈ 0.150004.

Hence, there exists τ = 0.15 such that the condition

τ + ln
(
Dα(Rx, Ry)

)
6 ln

(
ψ
(
MR
α (x, y)

)
NR
α (x, y)

)
holds true for all x, y ∈ X with Dα(Rx, Ry) > 0. Thus, all the conditions of Theorem 4
are satisfied. Moreover, x = 0 is the fuzzy fixed point of the fuzzy mapping R. Indeed,
for x = 0, we have xα ⊂ Rx as (R0)(0) > α, that is, 0 ∈ (R0)α.

Remark 2. Note that in Example 1 above, we get

Dα(R0, R2) = d(0, 1) = 10 and d(0, 2) = 6.

Consequently, for any choice of q ∈ (0, 1) and ψ ∈ S, we have

Dα(R0, R2) 
 qd(0, 2)

and
Dα(R0, R2) 
 ψ(d(0, 2))d(0, 2).

Hence, Theorems 1 and 2 do not hold in this case. Thus, Theorem 4 is a proper general-
ization of the results in [6, 8, 12, 15].

Also we note that Theorem 4 generalizes the main results in [18, 20, 21, 22].
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Remark 3. Let T : X → CC (X) (set of all compact subsets of X) be a multivalued
mapping and, for all z ∈ X , define the fuzzy mapping R : X →Wα(X) by

Rx(z) =

{
α if z ∈ Tx,
0 otherwise

for each x ∈ X . Note that

(Rx)α =
{
z: Rx(z) > α

}
= Tx.

In view of Remark 3, by using the usual Pompeiu–Hausdorff distance of sets, say H ,
one can easily prove the following result.

Theorem 7. Let (X, d) be a complete metric space and T : X → CC (X) a multivalued
mapping. Assume that there exist τ > 0 and ψ ∈ S such that

H(Tx, Ty) > 0 =⇒ τ + F2

(
H(Tx, Ty)

)
6 F2

(
ψ
(
M(x, y)

)
N(x, y)

)
,

where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
,

N(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty)

}
and F2 ∈ z2. Then T has a fixed point; that is, there exists z ∈ X such that z ∈ Tz.

3 Complementary results and application

3.1 Coincidence and common fixed points

As an immediate consequence of Theorem 4, we obtain the following common fuzzy
fixed point result for F2-Geraghty type fuzzy hybrid pair (g,R). Denote (R(X))α :=⋃
x∈X(Rx)α.

Theorem 8. Let (X, d) be a complete metric space and (g,R) a generalized F2-Geraghty
type fuzzy hybrid pair. Then Cα(R, g) 6= ∅, provided that (R(X))α ⊆ g(X) for each α.
Moreover, R and g have a common fuzzy fixed point if any of the following conditions
holds:

(i) R and g are w-fuzzy compatible, limn→+∞ gnx = u for some x ∈ Cα(R, g) and
u ∈ X , and g is continuous at u;

(ii) g is R-fuzzy weakly commuting for some x ∈ Cα(R, g), and g2x = gx;
(iii) g is continuous at x for some x ∈ Cα(R, g), and, for some u ∈ X , we have

limn→+∞ gnu = x.

Proof. By Lemma 1, there exists E ⊆ X such that g : E → X is one to one and g(E) =
g(X). Define a mapping A : g(E)→Wα(X) by

Agx = Rx for all gx ∈ g(E).
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As g is one to one on E, so A is well defined. Therefore, (2) becomes

τ + F2

(
Dα(Agx,Agy)

)
= F2

(
Dα(Rx, Ry)

)
6 F2

(
ψ
(
Mg,R
α (x, y)Ng,R

α (x, y)
))

= F2

(
ψ

(
max

{
d(gx, gy), pα(gx,Rx), pα(gy,Ry),

pα(gx,Ry) + pα(gy,Rx)

2

})
×max

{
d(gx, gy), pα(gx,Rx), pα(gy,Ry)

})
= F2

(
ψ

(
max

{
d(gx, gy), pα(gx,Agx), pα(gy,Agy),

pα(gx,Agy) + pα(gy,Agx)
2

})
×max

{
d(gx, gy), pα(gx,Agx), pα(gy,Agy)

})
= F2

(
ψ
(
MAα (x, y)NAα (x, y)

))
for all gx, gy ∈ g(E) such that Dα(Agx,Agy) > 0. Thus, A satisfies (1) and all the
other conditions of Theorem 4. By an application of Theorem 4 to mapping A, it follows
that A has a fuzzy fixed point u ∈ g(E).

Now we show that R and g have a coincidence fuzzy point. SinceA has a fuzzy fixed
point uα ⊂ Au, then we have u ∈ (Au)α. Since (R(X))α ⊆ g(X), there exists u1 ∈ X
such that gu1 = u, and hence,

gu1 ∈ (Agu1)α = (Ru1)α,

that is, u1 ∈ X is a coincidence fuzzy point ofR and g. Now, we distinguish the following
three cases:

If (i) holds; then for some x ∈ Cα(R, g), we have limn→+∞ gnx = u, where u ∈ X .
Since g is continuous at u, so u is a fixed point of g, that is u = gu. As R and g are
w-fuzzy compatible and x ∈ Cα(R, g), then g(gx) ∈ (Rgx)α, that is, gx ∈ Cα(R, g).
By iterating this process, we deduce that gnx ∈ Cα(R, g) for all n > 1, and hence,

gnx ∈ R
(
gn−1x

)
α

for all n > 1. We show that gu ∈ (Ru)α. Note that pα(gnx,Ru) = d(gnx, (Ru)α), then
the continuity of d ensures that

lim
n→+∞

pα
(
gnx,Ru

)
= pα(u,Ru).

If pα(u,Ru) = 0, then by Lemma 2 we have u = gu ∈ (Ru)α and so u is a fuzzy fixed
point. If pα(u,Ru) > 0, then there exist ε0 > 0 and N ∈ N such that, for every n ∈ N
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with n > N , we have pα(gnx,Ru) > ε0 > 0. This implies that

F2

(
pα
(
gnx,Ru

))
6 F2

(
Dα

(
R
(
gn−1x

)
, Ru

))
− τ

6 F2

(
ψ

(
max

{
d
(
gnx, gu

)
, pα
(
gnx,Rgn−1x

)
, pα(gu,Ru),

pα(gu,Rg
n−1x) + pα(g

nx,Ru)

2

})
×max

{
d
(
gnx, gu

)
, pα
(
gnx,Rgn−1x

)
, pα(gu,Ru)

})
− τ

6 F2

(
ψ

(
max

{
d
(
gnx, gu

)
, d
(
gnx, gnx

)
, d(gu,Ru),

d(gu, gnx) + pα(g
nx,Ru)

2

})
×max

{
d
(
gnx, gu

)
, d
(
gnx, gnx

)
, pα(gu,Ru)

})
− τ

for all n > N . Since F2 is strictly increasing, then we get

pα
(
gnx,Ru

)
6 ψ

(
max

{
d
(
gnx, gu

)
, 0, d(gu,Ru),

d(gu, gnx) + pα(g
nx,Ru)

2

})
×max

{
d
(
gnx, gu

)
, 0, pα(gu,Ru)

}
.

On taking limit as n tends to +∞, we have

pα(gu,Ru) 6 lim
n→+∞

ψ
(
Mg,R
α

(
gn−1x, u

))
pα(gu,Ru),

which implies
1 6 lim

n→+∞
ψ
(
Mg,R
α

(
gn−1x, u

))
6 1.

Since ψ ∈ S, then

lim
n→+∞

Mg,R
α

(
gn−1x, u

)
= pα(gu,Ru) = 0,

which is a contradiction. Thus, u = gu ∈ (Ru)α, and hence, uα is a common fuzzy fixed
point of R and g.

Suppose that (ii) holds; that is, for some x ∈ Cα(R, g), g is R-fuzzy weakly commut-
ing and g2x = gx, then

gx = g2x ∈ (Rgx)α.

Hence, (gx)α is a common fuzzy fixed point of R and g.
Finally, suppose that (iii) holds; that is, for some x ∈ Cα(R, g) and for some u ∈ X ,

limn→+∞ gnu = x. By the continuity of g at x, we get x = gx ∈ (Rx)α, then the
result.
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3.2 Feng–Liu type fixed point theorem

We give a theorem inspired by [7], to suggest a direction for further research. Let (X, d)
be a complete metric space and R : X → Wα(X) be a fuzzy mapping; for a positive
constant r ∈ (0, 1] and each x ∈ X , define the set

Jxr :=
{
y ∈ (Rx)α: r d(x, y) 6 pα(x,Rx)

}
.

We recall that a function f : X → R is lower semicontinuous, if for each sequence
{xn} ⊂ X and x ∈ X , we have

lim
n→+∞

xn = x =⇒ fx 6 lim inf
n→+∞

fxn.

Theorem 9. Let (X, d) be a complete metric space and R : X → Wα(X) be a fuzzy
mapping. Suppose that there exists q ∈ (0, r), with r ∈ (0, 1], such that, for any x ∈ X ,
there is y ∈ Jxr satisfying the condition pα(y,Ry) 6 q d(x, y). Then F ixα (R) is nonempty,
provided that the function pα(y,Ry) is lower semicontinuous.

Proof. Since (Rx)α is a nonempty compact set for any x ∈ X , then Jxr is a nonempty set
for any r ∈ (0, 1]. Now, for a fixed point u0 ∈ X , there exists u1 ∈ Ju0

r such that

pα(u1, Ru1
) 6 qd(u0, u1).

If u1 is not a fuzzy fixed point of R, we choose u2 ∈ Ju1
r such that

pα(u2, Ru2
) 6 qd(u1, u2).

Again, if u2 is not a fuzzy fixed point of R (and so on), by iterating this procedure, we
can get an iterative sequence {un}, where un+1 ∈ Junr and

pα(un+1, Run+1) 6 qd(un, un+1) for all n ∈ N ∪ {0}. (9)

On the other hand, un+1 ∈ Junr implies

rd(un, un+1) 6 pα(un, Run) for all n ∈ N ∪ {0}. (10)

The next step of the proof is to show that the sequence {un} is a Cauchy sequence.
Using (9) and (10), we get

d(un+1, un+2) 6
q

r
d(un, un+1) for all n ∈ N ∪ {0}.

This implies
d(un, un+1) 6 knd(u0, u1) for all n ∈ N,

where k = q/r < 1.
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For m ∈ N with m > n, we write

d(un, um) 6 d(un, un+1) + d(un+1, um)

6 d(un, un+1) + d(un+1, un+2) + d(un+2, um)

6 d(un, un+1) + d(un+1, un+2) + · · ·+ d(um−2, um−1) + d(um−1, um)

6 knd(u0, u1) + kn+1d(u0, u1) + · · ·+ km−2d(u0, u1) + km−1d(u0, u1)

= knd(u0, u1)
[
1 + k + k2 + · · ·+ km−n−1

]
6

kn

1− k
d(u0, u1).

Consequently, since

lim
n→+∞

kn

1− k
d(u0, u1) = 0,

we deduce that {xn} is a Cauchy sequence and so, by completeness of the space (X, d),
limn→+∞ d(un, z) = 0 for some z ∈ X . Now we claim that z is a fuzzy fixed point of
R. Again, by (9) and (10), we write

pα(un+1, Run+1) 6 kpα(un, Run) for all n ∈ N ∪ {0},

which implies
pα(un, Run) 6 knpα(u0, Ru0) for all n ∈ N,

where k = q/r < 1. Consequently, by the semicontinuity of function pα(y,Ry), we get

0 6 pα(z,Rz) 6 lim
n→+∞

pα(un, Run) = 0

and so
pα(z,Rz) = 0.

By Lemma 2, we get that zα ⊂ Rz .

3.3 Application to the domain of words

By adapting some ideas in the recent literature [16, 17], we apply Theorem 4 to solve
a typical problem in theoretical computer science. Precisely, denote by Σ a nonempty
alphabet and by Σ∞ the set of all finite and infinite sequences over Σ. Also, we denote
the empty sequence by ∅ and assume that ∅ ∈ Σ∞. Moreover, on Σ∞, we consider the
prefix order v given by:

x v y if and only if x is a prefix of y.

Now, for any sequence x 6= ∅ in Σ∞, let l(x) ∈ [1,+∞] be the length of x and assume
that l(∅) = 0. Then, if x ∈ Σ∞ has length n < +∞, we have x := x1x2 · · ·xn, otherwise
x := x1x2 · · · in the case of infinite sequence.
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Next, if x, y ∈ Σ∞, then xu y is the common prefix of x and y. Clearly, x = y if and
only if x v y and y v x and l(x) = l(y).

Consider the Baire metric dv : Σ∞ ×Σ∞ → [0,+∞) given by

dv(x, y) =

{
0 if x = y,

2−l(xuy) otherwise.

so that the metric space (Σ∞, dv) is complete. Finally, we refer to the average case
time complexity analysis of the Quicksort divide-and-conquer sorting algorithm in [17].
Precisely, we consider the following recurrence relation:

T (1) = 0,

T (n) =
2(n− 1)

n
+
n+ 1

n
T (n− 1), n ∈ N \ {1}.

(11)

ForΣ = R+, which is the set of all nonnegative real numbers, we introduce the functional
φ : Σ∞ → Σ∞ that associates φ(x) := (φ(x))1(φ(x))2 · · · to x := x1x2 · · · and is
given by: (

φ(x)
)
1
= 0,(

φ(x)
)
n
=

2(n− 1)

n
+
n+ 1

n
xn−1.

It follows that l((φ(x))) = l(x) + 1 for all x ∈ Σ∞ and l((φ(x))) = +∞, whenever
l(x) = +∞.

We will show that the functional φ has a fixed point by an application of Theorem 4.
Let R : Σ∞ →Wα(Σ

∞) be the fuzzy mapping given by

Rx =
(
φ(x)

)
α

for all x ∈ Σ∞

and distinguish the following two cases:

Case 1. If x = y, then we write

Dv
((
φ(x)

)
α
,
(
φ(x)

)
α

)
= 0 = dv(x, x).

Case 2. If x 6= y, then we write

Dv
((
φ(x)

)
α
,
(
φ(y)

)
α

)
= dv

((
φ(x)

)
α
,
(
φ(y)

)
α

)
= 2−(l((φ(x))αuφ(φ(y))α))

6 2−(l(φ(xuy))) = 2−(l(xuy)+1)

=
1

2
2−l(xuy) =

1

2
dv(x, y) =

1√
2

1√
2
dv(x, y).

It is immediate to conclude that all the conditions of Theorem 4 are satisfied with ψ(t) =
2−1/2, F2(t) = ln(t) and e−τ = 2−1/2. Consequently, the fuzzy mapping R has a fuzzy
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fixed point z = z1z2 · · · , that is, z ∈ (Rz)α. Also, in view of the definition of R, z is
a fixed point of φ, and hence, z solves the recurrence relation (11); we have

z1 = 0,

zn =
2(n− 1)

n
+
n+ 1

n
zn−1, n ∈ N \ {1}.

Conclusion

In this paper, we introduced the generalized F2-Geraghty type fuzzy mappings and extend
the Geraghty type fixed point theorems [8] to fuzzy mappings. These results generalize,
unify and extend comparable results in [6,8,12,15,21,22]. As an application of Theorem
4, the existence of coincidence fuzzy points and common fuzzy fixed points of a hybrid
pair of a single-valued self-mapping and a fuzzy mapping is obtained. A Feng–Liu type
fixed point theorem and an application to the domain of words conclude the paper.
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