ISSN 1392-5113 Nonlinear Analysis: Modelling and Control, 2016, Vol. 21, No. 1, 40-56
http://dx.doi.org/10.15388/NA.2016.1.3

On fixed point results for a-implicit contractions
in quasi-metric spaces and consequences”

Hassen Aydi®, Manel Jellali®, Erdal Karapmar®

#Department of Mathematics, University of Dammam
PO 12020, Industrial Jubail 31961, Saudi Arabia
hmaydi @ud.edu.sa; majellali@ud.edu.sa

bDepart}nent of Mathematics, Atilim University,
06836, Incek, Ankara, Turkey
erdalkarapinar @yahoo.com; ekarapinar @atilim.edu.tr

Received: April 30, 2014 / Revised: September 19, 2014 / Published online: November 16, 2015

Abstract. In this paper, we prove some fixed point results involving a-implicit contractions in
quasi-metric spaces. Moreover, we provide some known results on G-metric spaces. An example
and an application on a solution of a nonlinear integral equation are also presented.
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1 Introduction and preliminaries

It is well known that passing from metric spaces to quasi-metric spaces, (i.e. dropping
the requirement that the metric function d : X x X — R verifies d(z,y) = d(y, z))
carries with it immediate consequences to the general theory. For instance, the topological
notions of quasi-metric spaces, such as, limit, continuity, completeness, Cauchyness all
should be re-considered under the left and right approaches since the quasi-metric is not
symmetric. Furthermore, uniqueness of limit of a sequence should be examined carefully
since one can easily consider a sequence which has a left limit and right limit which are
not equal to the each other. That’s why a few results on fixed points in such spaces are
considered.
The definition of a quasi-metric is given as follows:

Definition 1. Let X be a non-empty and let d : X x X — [0, 00) be a function which
satisfies:

(dl) d(z,y) = 0if and only if z = y;

(d2) d(z,y) < d(z,z) +d(z,y).

Then d is called a quasi-metric and the pair (X, d) is called a quasi-metric space.
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Remark 1. Any metric space is a quasi-metric space, but the converse is not true in
general.

Now, we give convergence, completeness and continuity on quasi-metric spaces.

Definition 2. Let (X, d) be a quasi-metric space, {z,} be a sequence in X, and z € X.
The sequence {z,,} converges to x if and only if

lim d(z,,z) = lim d(z,z,)=0. (1)

n— oo n—oo

Example 1. (See[1].) Let X be a subset of R containing [0, 1] and define, forallz,y € X,

(2,1) z—y ifz>y,
x’ = .
asy 1 otherwise.

Then (X, q) is a quasi-metric space. Notice that {¢(1/n,0)} — 0but {¢(0,1/n)} — 1.
Therefore, {1/n} right-converges to 0 but it does not converge from the left. We also
point out that this quasi-metric verifies the following property: if a sequence {x,} has
a right-limit «, then it is unique.

Remark 2. A quasi-metric space is Hausdorff, that is, we have the uniqueness of limit of
a convergent sequence.

Definition 3. Let (X, d) be a quasi-metric space and {z,,} be a sequence in X. We say
that {x,,} is left-Cauchy if and only if for every £ > 0 there exists a positive integer
N = N(e) such that d(z, x,,) < e foralln > m > N.

Definition 4. Let (X, d) be a quasi-metric space and {x,,} be a sequence in X. We say
that {x,,} is right-Cauchy if and only if for every ¢ > 0 there exists a positive integer
N = N(e) such that d(z,, x,,) < € forallm >n > N.

Definition 5. Let (X, d) be a quasi-metric space and {x,,} be a sequence in X. We say
that {z,, } is Cauchy if and only if for every ¢ > 0 there exists a positive integer N = N ()
such that d(x,,, z,n,) < ¢ forallm,n > N.

Remark 3. A sequence {z,,} in a quasi-metric space is Cauchy if and only if it is left-
Cauchy and right-Cauchy.

Definition 6. Let (X, d) be a quasi-metric space. We say that:

1. (X,d) is left-complete if and only if each left-Cauchy sequence in X is convergent.

2. (X, d) is right-complete if and only if each right-Cauchy sequence in X is conver-
gent.

3. (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Definition 7. Let (X, d) be a quasi-metric space. The map f : X — X is continuous if
for each sequence {x,,} in X converging to z € X, the sequence { fx,,} converges to fz,
that is,

lim d(fx,, fr) = nh_}rr;o d(fz, fx,) =0. ()

n—oo
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On the other hand, the study of fixed point for mappings satisfying an implicit relation
is initiated and studied by Popa [19] and [20]. It leads to interesting known fixed points
results. Following Popa’s approach, many authors proved some fixed point, common fixed
point and coincidence point results in various ambient spaces, see [3,6,9,21,23].

In the literature, there are several types of implicit contraction mappings where many
nice consequences of fixed point theorems could be derived. First, denote ¥ the set of
functions ¢ : [0, 00) — [0, 00) satisfying:

(x1) 1 is nondecreasing,
W2) Y07 ™(t) < oo foreach ¢ € R, where )" is the nth iterate of ).

Remark 4. Tt is easy to see that if ) € ¥ , then ¢(¢) < ¢ for any ¢ > 0.
We introduce the following definition.

Definition 8. Let I" be the set of all continuous functions F'(t1,...,tg) : RS — R such
that:

(F1) F isnondecreasing in variable ¢; and nonincreasing in variable ts;

(F2) There exists h; € ¥ such that for all u,v > 0, F(u,v,v,u, u+v,0) < 0 implies
u < hy(v);

(F3) There exists ho € ¥ such that for all ¢,s > 0, F(,t,0,0,t,s) < O implies
t < hg(s).

Note that in Definition 8 and with respect to Popa and Patriciu [22], we did not take
the same hypotheses on iy and he and we also add the fact that F' is nondecreasing in
variable t;.

As in [22], we give the following examples.

Example 2. F(t1,...,ts) = t1 — aty — btz — ctq — dt5 — etg, where a,b,¢,d,e > 0,
a+b+c+2d+e<l.

Example 3. F(t1,...,t¢) = t1 — kmax{ta,...,ts}, where k € [0,1/2).

Some other examples could be derived from [22].

Very recently, Samet et al. [25] introduced the concept of a-admissible maps and
suggested a very interesting class of mapping, a1 contraction mappings, to investigate
the existence and uniqueness of a fixed point.

Definition 9. (See [25].) For a nonempty set X,let7 : X — X anda : X x X — [0, 00)
be mappings. We say that the self-mapping 7" on X is c-admissible if for all z,y € X,
we have

alz,y) 21 = aTz,Ty) > 1. 3)

Many papers dealing with above notion have been considered to prove some (com-
mon) fixed point results (for example, see [2, 10, 11, 13,15, 16]).

Now, we introduce the concept of a-implicit contractive mappings in the setting of
quasi-metric spaces.
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Definition 10. Let (X, d) be a quasi-metric space and f : X — X be a given map-
ping. We say that f is an a-implicit contractive mapping if there exist two functions «a :
X x X — [0,00) and F' € I such that

F(a(z,y)d(fz, fy), d(z,y), d(z, fz),d(y, fy), d(z, fy),d(y, fx)) <O (4
forallz,y € X.

In this paper, we provide some fixed point results involving a-implicit contractions
on quasi-metric spaces. As consequences of our obtained results, we also prove some
existing fixed point results on G-metric spaces. We also provide an illustrated example
and an application on a solution of a nonlinear integral equation.

2 Fixed point theorems

In this section, we shall state and prove our main results.

Theorem 1. Let (X,d) be a complete quasi-metric space and f : X — X be an a-
implicit contractive mapping. Suppose that:

(1) f is a-admissible;
(ii) there exists xg € X such that a(xg, fzo) = 1 and a(fxo, z0) = 1;
(iii) f is continuous.

Then there exists a u € X such that fu = u.

Proof. By assumption (ii), there exists a point zo € X such that «(zo, fzo) > 1 and
a(fzo,z0) = 1. We define a sequence {z,,} in X by z,.1 = fx, = f*Tlxg for
all n > 0. Suppose that z,,, = 2,41 for some ng. So the proof is completed since
U = Tpy = Tpg+1 = fTn, = fu. Consequently, throughout the proof, we assume that

Ty # Tpyp forall m. (®))
Since f is a-admissible and a(xg, 1) = @z, fzo) > 1, so observe that
afxg, fr1) = a(xy,x2) = 1.
By repeating the process above, we derive that
a(xy,Tpy1) =1 forallm=0,1,.... (6)

Now consider the case where «(fzo,zo) > 1. By using the same technique above, we
get that
a(Tpy1,o,) =1 forallm=0,1,.... 7

From (4), we have

F(O‘(xn—hxn) (fxn lafxn) (xn 17$n),d($n 17fxn 1)
d(znafxn)vd(xn—lyfxn) 'Tnafxn 1 )
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that is,

F(a(xnfl»xn)d(xnﬁbn%»l);d(xnflaxn)ad(xnflaxn)a
d(xn7xn+1)7d(xn717$n+1)70) < 0.

By (6) and (d2) in the fifth variable, we have using (F1)

F(d(xru xn—&-l); d(xn—la (En), d(xn—la CEn), d(l‘n, zUn—i—l)a
d(xnflyxn) + d(ifn,l'n+1),0) < 0 (8)

Due to (F2), we obtain
d(Tpn, Tpt1) < b (d(xn_l,:cn)). 9)
If we go on like this, we get
d(Tn, Tpy1) < hY(d(zo,21)). (10)

Now, we shall prove that {x,, } is a Cauchy sequence in the quasi-metric space (X, d).
Take m > n. By using (d2),

d(xna xm) g d(l‘ny anrl) + d(anrla xn+2) + -+ d(xmfla xm)
< (AP + R 4+ ) (d(o, 1))
<> R (d(wo, 21)) (1)
k=n

which implies that d(z,,, z,,) — 0 as n,m — oo since hy € ¥. It follows that {x,,} is
a right-Cauchy sequence.
Similarly, by (4) we have

F(a(xnymnfl)d(fxnvf$n71)7d(mnyxnfl)7d(fxnflu(Enfl)vd(fmnyxn)a
d(fxn7xn—1)ad(fxn—laxn)) < Oa

that is, using (7) and (F'1), we have
F(d($n+17 xn); d(fI;n7 xn71)7 d(x'ru "L"nfl)7 d(x’nr‘rl? xn)7 d(mn+17 xn71)7 O) < 0.
Using again (F1) and (d2),

F(d($n+1» xn); d(.’tn, xnfl)a d(.’En, mnfl)a d(xn+17 l'n)a
d(xn+17xn) + d(xnyxnfl)vo) < 0. (12)

By (F2), we obtain
d(Tpt1,Tn) < by (d(l’n,xn_l)). (13)
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If we go on like this, we get
d(Tn1,20) < RY(d(z1,20)). (14)

Thus, by using (d2), for n > m,

d(l‘n) xm) < d(x’ru xn—l) + d(mn—h xn—Q) + -+ d(xm-i-h xm)
< (R RY 24+ AT (d(21, 0))
<> hb(d(zr,20)) (15)
k=m

which implies that d(z,,, z,,) — 0 as n,m — oo since hy € ¥. It follows that {x,,} is
a left-Cauchy sequence.

Thus, {x,} is a Cauchy sequence in (X, d). Since (X, d) is quasi-complete, so there
exists a point v in X such that x,, — u as n — oo, that is, from Definition 2,

lim d(z,,z) = lim d(z,z,)=0. (16)

n—oo n—roo

We shall prove that fu = u.
Since f is continuous, we obtain

lim d(zp41, fu) = lim d(fz,, fu) =0 17)
n— o0 n—oo
and
lim d(fu,xp+1) = lim d(fu, fx,) =0, (18)
n—oo n—oo

that is, lim, oo ,+1 = fu. Taking Remark 2 into account, that is due the uniqueness of
limit, we conclude that fu = u, that is, u is a fixed point of f. O

Note that in Theorem 1, the continuity hypothesis of F' is not required. But this
hypothesis is essential for Theorem 2. In the next result, we drop the continuity hypothesis
of f and we replace it by the following:

(H) If {x,} is a sequence in X such that oz, xn 1) = 1 for all n and x,, —
r € X asn — oo, then there exists a subsequence {z,x)} of {z,} such that
a(Zn(k), ) = 1 forall k.

Theorem 2. Let (X, d) be a complete quasi-metric space and f : X — X be an a-im-
plicit contractive mapping. Suppose that:

(1) f is a—admissible;
(ii) there exists xo € X such that a(xg, fxo) = 1 and o fxg, z0) > 1;
(i) (H) is verified.

Then there exists a v € X such that fu = u.
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Proof. Following the proof of Theorem 1, we know that the sequence {x,} defined by
Tpt1 = fap forall n > 01is Cauchy and converges to some © € X. From condition (iii),
there exists a subsequence {2y} of {x,} such that a(2,,(xy, u) > 1 for all k. We shall
show that fu = u.

By (4), we have successively

F(a(@ng)—1, Wd(fTny—1, fu), d(@n—1, 1), d(@pk)—1, fTn)—1), d(u, fu),
d(xn(k)—l, fu), d(u, fmn(k)fl)) < 0.
Using (F1) and a(2y,(3)—1,u) = 1, we get
F(d(mn(k),fu),d(:vn(k),l,u),d(xn(k),l,xn(k)Ld(uju),
d(a:n(k),l,fu),d(u,xn(k))) <0.
Letting k tend to infinity and using continuity of F', we have
F(d(u, fu),0,0,d(u,fu),d(u,fu),()) <0.
By (F2), it follows that d(u, fu) < 0 which implies u = fu. O

For the uniqueness, we need an additional condition:

(U) For all 2,y € Fix(f), we have a(x,y) > 1, where Fix(f) denotes the set of
fixed points of f.

Theorem 3. Adding condition (U) to the hypotheses of Theorem 1 (resp. Theorem 2), we
obtain that u is the unique fixed point of f.

Proof. We argue by contradiction, that is, there exist u,v € X such that v = fu and
v = fov with u # v. By (4), we get

F(a(u,v)d(fu,fv),d(u,v),d(u,fu),d(v,fv),d(u,fv),d(v,u)) <0,

F(a(u,v)d(u,v),d(u,v), 0,0,d(u,v),d(v, u)) <0.
Due to the fact that a(u, v) > 1, so by (F1), we get
F(d(u,v),d(u,v),0,0,d(u,v),d(v,u)) <0.

Since F satisfies property (F3), so

d(u,v) < ha(d(v,u)). (19)
Analogously, we obtain
d(v,u) < hy(d(u,v)). (20)
Combining (19) to (20), we get
d(u,v) < ha(d(v,w)) < h3(d(u,v) < d(u,v)). (1)
It is a contradiction. Hence u = v. O
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In the sequel, we present the following corollaries as consequences of Theorem 1
(resp. Theorem 2).

Corollary 1. Let (X, d) be a complete quasi-metric space and [ : X — X be such that

oz, y)d(fz, fy) < ad(z,y) + bd(z, fz) + cd(y, fy) + dd(z, fy) + ed(y, fz) (22)
forall x,y € X, where a,b,c,d,e > 0and a + b+ d + 2d + e < 1. Suppose that:

(1) f is a-admissible;
(ii) there exists xo € X such that a(xg, fzo) = 1 and o fzg, z0) > 1;
(iii) f is continuous or (H) is verified.

Then there exists a v € X such that fu = u.

Proof. 1t suffices to take F' in Theorem 1 (resp. Theorem 2) as given in Example 3, that
is, F'(t1,...,t) = t1 — aty — bt — cty — dt5 — etlg, where a,b,¢,d,e > 0and a + b +
c+2d+e<1. O

Corollary 2. Let (X, d) be a complete quasi-metric space and [ : X — X be such that

a(z,y)d(fz, fy) < kmax{d(z,y),d(z, fx),d(y, fy),d(z, fy),d(y, fr)}  (23)
forall x,y € X, where k € [0,1/2). Suppose that:

(1) f is a-admissible;
(ii) there exists xo € X such that a(xg, fxo) = 1 and o fxg, z0) > 1;
(iil) f is continuous or (H) is verified.

Then there exists a v € X such that fu = u.

Proof. 1t suffices to take F' in Theorem 1 (resp. Theorem 2) as given in Example 3, that
is, F(t1,...,ts) = t1 — kmax{ts,...,ts}, where k € [0,1/2). O

We present the following example illustrating Corollary 2.
Example 4. Let X = [0, 00) endowed with the quasi-metric
d(z,y) =l|z| ifx#y and d(z,y)=0 ifzx=y.

Itis clear that (X, d) is a complete quasi-metric space. Consider the mapping T : X — X
defined by

22 -3z 42 ifx>2
Tx = )
z/3 ifx € [0,2].

At first, we observe that the Banach contraction principle for do(x,y) = |x — y| cannot
be applied in this case since we have

do(T0,T4) = 6 > 4 = dy(0,4).

Nonlinear Anal. Model. Control, 21(1):40-56
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Now, we define the mapping o : X x X — [0, 00) by

(1) 1 ifax,y€]0,1],
alxz,y) = )
4 0 otherwise.

If 2,y € [0,1] and = # y, we have

0(a,y)d(T, Ty) = d(T2, Ty) < T2 = = Zd(z.)
< kmax{d(z,y),d(z, Tz),d(y, Ty),d(z,Ty),d(y, Tx)}, (24)

where & = 1/3. Similarly, it is obvious that (24) holds in the cases (z,y € [0, 1] with
x = y) and (z or y is not in [0, 1]). Now, we shall prove that the hypothesis (H) is satisfied.
Let {x, } be a sequence in X such that o(z,,z,+1) > 1 forallnand z,, - = € X as
n — co. Then by definition of «, we get

(Tn, Tnt1) € [0,1] x [0,1] for all n.

Assume that > 1. Then z,, # « for all n. Since z, — © € X, sod(x,z,) = |z| — 0,
which is a contradiction. Thus, x € [0, 1]. We get that

(xn,x) €10,1] x [0,1] foralln,
that is, a(x,, x) = 1, i.e., (H) is verified. Take zo = 1. We have

1 1
Oé((ﬂ(],T.’E()) = O[(]., 3) =1 and O[(TZL'(),IL‘()) = Ck(g7 ].) =1.

The mapping 7' is a-admissible. In fact, let z,y € X such that a(z,y) > 1,s0 z,y €
[0,1]. Then

373
All hypotheses of Corollary 2 hold and the mapping 7" has a fixed point in X. Note that
in this case, we have two fixed points of 7" which are u = 0 and v = 2 + V2.

a(Tz, Ty) = oz(x y) ~ 1.

3 Consequences

In this section, we give some consequences of our main results.

3.1 Standard fixed point theorems
We start with the following corollary.

Corollary 3. Ler (X,d) be a complete quasi-metric space and f : (X,d) — (X, d) be
agiven mapping. Suppose that

F(d(fz, fy),d(z,y), d(z, fx),d(y, fy),d(z, fy),d(y, fz)) <O (25)
forall x,y € X, where F' € I'. Then f has a unique fixed point.
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Proof. Tt suffices to take a(x,y) = 1 for all z,y € X in Theorem 2. Notice that the
hypothesis (U) is satisfied, so we apply Theorem 3. O

The following corollary is a Ciri¢ contraction type [8].

Corollary 4. Let (X, d) be a complete quasi-metric space and | : (X,d) — (X, d) be
a given mapping such that

d(fz, fy) < kmax{d(z,y),d(z, fx),d(y, fy),d(z, fy),d(y, fz)}  (26)
forall x,y € X, where k € [0,1/2). Then f has a unique fixed point.
Proof. 1t suffices to take F' as given in Example 3, that is, F'(t1,...,ts) = t1 — k X

max{ta,...,ts}, where k € [0,1/2). Then, we apply Corollary 3. O

3.2 Fixed point theorems on metric spaces endowed with a partial order

Definition 11. Let (X, <) be a partially ordered set and f : X — X be a given mapping.
We say that f is nondecreasing with respect to < if

ryeX, zxy = fr<fy

Definition 12. Let (X, <) be a partially ordered set. A sequence {x,,} C X is said to be
nondecreasing with respect to < if z,, < x,,41 for all n.

Definition 13. Let (X, <) be a partially ordered set and d be a quasi-metric on X. We
say that (X, %, d) is regular if for every nondecreasing sequence {z,} C X such that
T, — x € X asn — oo, there exists a subsequence {z,,(x) } of {z, } such that z,,;,y <
for all k.

We state the following result.

Corollary 5. Let (X, <) be a partially ordered set and d be a quasi-metric on X such
that (X, d) is complete. Let f : X — X be a nondecreasing mapping with respect to <.
Suppose that there exists a function F' € I' such that

F(d(f, fy),d(x,y),d(z, f),d(y, fy),d(z, fy),d(y, fz)) <O, @7
forall x,y € X with x = y. Suppose also that the following conditions hold:

(i) there exists xq € X such that xog < fxg or fxg < xo;
(ii) f is continuous or (X, <, d) is regular.

Then f has a fixed point. Moreover, if Fix(f) is well-ordered, we have uniqueness of the
fixed point.

Nonlinear Anal. Model. Control, 21(1):40-56
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Proof. Define the mapping o : X x X — [0, 00) by

(2,1) 1 ifzexyorx =y,
alx =
i 0 otherwise.

Clearly, f is an a-implicit contractive mapping, that is,

F(o(z,y)d(fz, fy),d(z,y),d(z, fx),d(y, fy),d(z, fy),d(y, fz)) <O

for all 2,y € X. From condition (i), we have a(xq, fzo) > 1 and a(fxo,z9) > 1.
Moreover, for all z,y € X, from the monotone property of f, we have

alr,y) 21 = z=y or z=xy
= fr=fy or frxfy
= a(fz, fy) > 1.

Thus, f is a-admissible. Now, if f is continuous, the existence of a fixed point follows
from Theorem 1. Suppose now that (X, <, d) is regular. Let {z,,} be a sequence in X
such that a(xy,, p41) = 1 forall n and z,, - = € X as n — oo. From the regularity
hypothesis, there exists a subsequence {x(;)} of {,} such that ,,;) < = for all k.
This implies from the definition of o that a(xy,(yy,2) > 1 for all k. In this case, the
existence of a fixed point follows from Theorem 2. To show the uniqueness, let z,y € X.
By hypothesis, there exists z € X such that # < z and y < z, which implies from the
definition of « that a(z, z) > 1 and a(y, z) > 1. Thus, we deduce the uniqueness of the
fixed point by Theorem 3. O

3.3 Fixed point theorems in the context of G-metric spaces
Before all, we need the following definitions and concepts.

Definition 14. (See [17].) Let X be a non-empty set, G : X x X x X — R™ be a function
satisfying the following properties:

(Gl G(z,y,2) =0ifz =y =2z

(G2) 0 < G(z,x,y) forall x,y € X with x # y;

(G3) G(z,z,y) < G(z,y,z) forall z,y, z € X withy # z;

(G4 G(z,y,2) = Gz, z,y) = G(y,z,x) = --- (symmetry in all three variables);

(G5) G(z,y,2) < G(x,a,a)+G(a,y, z) (rectangle inequality) for all z, y, z,a € X.
Then the function G is called a generalized metric, or, more specifically, a G-metric on X,
and the pair (X, G) is called a G-metric space.

Definition 15. (See [17]). A G-metric space (X, G) is said to be symmetric if G(x, y, y)=
G(y,z,z) forallz,y € X.

In their initial paper, Mustafa and Sims [17] also defined the basic topological con-
cepts in G-metric spaces as follows:
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Definition 16. (See [17].) Let (X, G) be a G-metric space, and let {x,,} be a sequence
of points of X. We say that {x,,} is G-convergent to x € X if

lim G(x,2n,Tm) =0
n7m_>+oo ( b ns m) b

that is, for any £ > 0, there exists N € N such that G(z, z,,, z,,) < € forall n,m > N.
We call « the limit of the sequence and write x,, — x or lim,_, 4 - =, = 2.

Proposition 1. (See [17].) Let (X, G) be a G-metric space. The following are equivalent:
(i) {xn} is G-convergent to x;
(i) G(zpn,Tn,x) = 0asn — 4o0;
(i) G(zp,x,x) = 0asn — +oo.
Definition 17. (See [17].) Let (X, G) be a G-metric space. A sequence {x,,} is called

a G-Cauchy sequence if, for any & > 0, there exists N € N such that G(x,,, T, 27) < €
forall m,n,l > N, thatis, G(xp, Tm,x;) — 0as n,m,l — +oo.

Proposition 2. (See [17].) Let (X,G) be a G-metric space. Then the followings are
equivalent:

(i) the sequence {x,} is G-Cauchy;
(ii) for any ¢ > 0, there exists N € N such that G(xp, Tm,Tm) < € for all
m,n = N.

Definition 18. (See [17].) A G-metric space (X, ) is called G-complete if every
G-Cauchy sequence is G-convergent in (X, G).

Notice that any G-metric space (X, G) induces a metric dg on X defined by
de(z,y) = G(z,y,y) + Gy, z,z) forallz,y € X. (28)

Furthermore, (X, G) is G-complete if and only if (X, d¢) is complete.
Recently, Jleli and Samet [12] gave the following theorems.

Theorem 4. (See [12].) Let (X, G) be a G-metric space. Let d : X x X — [0,00) be
the function defined by d(x,y) = G(x,y,y). Then:
(i) (X,d) is a quasi-metric space;
(ii) {z,} C X is G-convergent to x € X if and only if {x,} is convergent to x in
(X, d);

(1) {zn} C X is G-Cauchy if and only if {x,} is Cauchy in (X, d);

(iv) (X, G) is G-complete if and only if (X, d) is complete.

Every quasi-metric induces a metric, that is, if (X, d) is a quasi-metric space, then the
function § : X x X — [0, 00) defined by

6(x,y) = max{d(z,y),d(y,z)} (29)

is a metric on X [12].
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Theorem 5. (See [12].) Let (X, G) be a G-metric space. Let § : X X X — [0, 00) be the
function defined by 0(x,y) = max{G(z,y,y), G(y,x,z)}. Then:

(i) (X,0) is a metric space;
(i) {xn} C X is G-convergent to x € X if and only if {x,} is convergent to x in
(X, 4);
(iil) {zn} C X is G-Cauchy if and only if {x,} is Cauchy in (X, 6);
(iv) (X, G) is G-complete if and only if (X, 0) is complete.

We need the following definition of Alghamdi and Karapinar [4,5] which is the analog
of Definition 9.

Definition 19. (See [4].) For a nonempty set X, let7 : X — X and 3 : X3 — [0, 00)
be mappings. We say that the self-mapping 7" on X is S-admissible if for all z,y € X,
we have

Blz,y,y) 21 = p(Tx,Ty,Ty) > 1. (30)

It is also known the following.

Lemma 1. (See [4,5].) Let f : X — X, where X is non-empty set. It is clear that the
self-mapping f is B-admissible if and only if f is a-admissible.

Now, we can give the following results on G-metric spaces.
Theorem 6. Let (X, G) be a complete G-metric space and [ : X — X be such that
F(B(z,y,9)G(fx, fy, fy),G(x,y.y),G(x, fz, f2), Gy, fy, [y),
G(x, fy, fv), Gy, fx, fz)) <0 31
forall z,y € X, where 3 : X3 —|0,00) and F € I'. Suppose that:

(1) f is B-admissible;
(ii) there exists xg € X such that 3(xo, fxo, fzo) = 1 and B(fxg, xo,x0) = 1;
(iii) f is continuous.

Then there exists a v € X such that fu = u.

Proof. Tt suffices to take the quasi-metric d(x,y) = G(z,y,y) and a(z, y) = B(x,y,y).
Due to (31), we get (4). Then due to Lemma 1, the result follows from Theorem 1. ]

Alghamdi and Karapmar [4,5] also defined the following hypothesis.

(W) If {z,,} is a sequence in X such that 3(z,,zp+1,Tny1) = 1 for all n and
r, — x € X as n — oo, then there exists a subsequence {x,,()} of {z,} such
that (2, k), z, ) > 1 for all k.

Theorem 7. Let (X, G) be a complete G-metric space and f : X — X be such that

F(B(z,y,9)G(fz, fy, fy),G(z,y,y), G(z, fz, fx), Gy, fy, [y),
G(z, fy, fy), Gy, fx, fx)) <0 (32)
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forall x,y € X, where 3 : X® — |0,00) and F € I'. Suppose that:

(1) f is B-admissible;
(ii) there exists xo € X such that 3(xg, fxo, fxo) = 1 and B(fxo, x0,x0) = 1;
(iit) (W) is verified.

Then there exists a u € X such that fu = u.

Proof. As in the proof of Theorem 6, we derive the result from Theorem 2. O
Corollary 6. Let (X, G) be a complete G-metric space and f : X — X be such that

B(x,y,y)G(fx, fy, fy) < kmax{G(x,y,y),G(z, fz, fz),G(y, fy, [y),
G(z, fy, fy), Gy, fz, fz)} (33)

forall x,y € X, where k € [0,1/2). Suppose that:

(1) f is B-admissible;
(ii) there exists xg € X such that 3(xg, fxo, fzo) = 1 and B(fxg, xo,x0) = 1;
(iii) f is continuous or (W) is verified.

Then, there exists a u € X such that fu = u.

Proof. 1t is similarly as Corollary 2. It follows from Theorem 6 and Theorem 7. O

Corollary 7. Let (X, G) be a complete G-metric space and f : X — X be a mapping.
Suppose that there exists a function F' € I' such that

F(G(fz, fy, fy),G(z,y,y), Gz, fz, fx), Gy, [y, fy), G(z, [y, [y),
Gy, fz, fx)) <0 (34)

forall x,y € X. Then f has a unique fixed point.

Proof. Consider the case where 3(z,y,y) = 1 for all z,y € X in Theorem 7. The
uniqueness follows from Theorem 3. O

As Corollary 4, we obtain from Corollary 7 the following:

Corollary 8. Let (X, G) be a complete G-metric space and f : X — X a given mapping.
Suppose that

G(fz, fy, fy) < kmax{G(z,y,y),G(z, fz, fx),G(y, fy, [y),
G(z, fy, fy), Gy, fz, fx)} (35)

forallz,y € X, where k € [0,1/2). Then f has a unique fixed point.
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4 Application

In this section, we provide an application to solve the nonlinear integral equation

x(t) = /K(t,s,x(s)) ds, (36)

where t € J = [a,b] and K : J x J x R — Ris continuous. Let X = C(J,R) with the
usual supremum norm, that is,

|l = max(t)]

Note that the existence for the unique solution of (36) is based on Corollary 4.
Theorem 8. Suppose the following conditions hold:
(i) there exists a continuous function p : J x J — R such that

p(t, s)
b—a

K (t,s,u)| < |ul

foreacht,s € Jandu € R;
(i) if u,v € X with u # v, we have fi K(t,s,u(s))ds # f; K(t,s,v(s))ds for
eacht € J;
(iii) sup,e;p(t,s) =k <1/2.
Then the integral equation (36) has a unique solution x € C(J,R).
Proof. Consider the quasi-metric d : X x X — [0, c0) defined by
d(z,y) =||z|| ifz#y and d(z,y)=0 ifz=y.

It is clear that (X, d) is a complete quasi-metric space. Consider the mapping T : X — X
defined by

Tx(t) = /K(t,s,x(s)) ds

for all x € X. We have to prove that T" has a unique fixed point.
For all x € X, we have

t b b
t, k
|Ta(t)| < / |K (t,s,2(s))|ds < /%’x(sﬂds < ||33H/mds = k|||,

so | Tx| < k||z||. For all z,y € X with x # y, we get under assumption that Tz # T'y.
Thus,

d(Tz,Ty) = |[Tz| < kx|l = kd(z,y)
< kmax{d(z,y), d(z, Tz),d(y, Ty),d(z, Ty),d(y. Tx)}.  (37)

http://www.mii.lt/NA



On fixed point results for a-implicit contractions 55

On the other hand, obviously (37) holds in the case x = y. So all hypotheses of Corol-
lary 4 are satisfied, and so 7" has a unique fixed point, that is, the problem (36) has a unique
solution. O
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