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Abstract. A one-to-one relation between a variable-coefficient (3 + 1)-dimensional nonlinear
Schrödinger equation with linear and parabolic potentials and the standard nonlinear Schrödinger
equation is presented, and then superposed rogue-wave-like breather solution is obtained. These
explicit expressions, describing the evolution of the amplitude, width, center and phase, imply that
the diffraction, nonlinearity and gain/loss parameters interplay together to influence evolutional
characteristics above. Moreover, the controllable mechanism for fast excitation, maintenance,
restraint and recurrence of breather is studied. We also provide an experimental scheme to observe
these phenomena in future experiments.

Keywords: nonlinear Schrödinger equation, spatiotemporal superposed rogue-wave-like breathers,
controllable mechanism.

1 Introduction

The investigation of soliton solutions for nonlinear evolutional equations [6, 24] is an
essential and important issue in nonlinear science. As a ubiquitous and significant nonlin-
ear evolutional model, nonlinear Schrödinger equation (NLSE) appears in various fields
of physics and engineering from nonlinear optics [36], plasmas [33], fluid dynamics [25]
to Bose–Einstein condensations (BECs) [27]. Abundant structures of NLSE, such as light
bullets [11], solitons [36], similaritons [10], rogue waves [37] and breathers [12] etc., play
important roles in many branches of physics.

Among these structures, rogue waves (RWs, also known as freak waves, monster
waves and extreme waves) from ocean sometimes can be more times higher than the

∗This work was supported by the National Natural Science Foundation of China (grant No. 11375079).

c© Vilnius University, 2016

mailto:zhp63521@126.com


78 H.-P. Zhu, Y.-J. Chen

average wave crests. The rational solution (also called Peregrine soliton [26]) of NLSE
is the most common prototype to describe the dynamics of RWs. RW events appear
from nowhere and disappear without a trace [1]. RWs in higher-order NLSE were also
discussed [3]. Akhmediev et al. reported how to excite a rogue wave [2]. Experimentally,
Solli et al. [32] reported a randomly created optical rogue wave in a photonic crystal
fiber. Dudley et al. [15] investigated the harnessing and control of optical rogue waves in
supercontinuum generation. Chabchoub et al. [4] observed rogue wave in a water wave
tank. These processes in ocean and nonlinear optics need the controllable RWs, thus many
authors theoretically investigated the controllable behaviors of RWs. The management
and control of self-similar picosecond [8, 34] and femtosecond [13] RWs has been dis-
cussed respectively. Moreover, controllable RW triplets have been reported [7].

However, all investigations above based on the theoretical analysis to rational solu-
tions [7, 8, 13, 34]. In fact, besides the rational solution, breather [12] (periodic in time
or space and localized in space or time) is also regarded as a potential prototype to
describe the possible formation mechanisms for RWs. Breather solutions have played
vital roles in the electronic, magnetic, vibrational and transport properties of the systems.
Recently, researchers have also found breathers in the experiments [14, 18]. Analytical
and numerical evidence has also demonstrated that the management of breathers can be
achieved [23]. Therefore, controlling and making use of breathers are also needed.

All controllable behaviors for RWs based on rational solutions are studied in
(1 + 1)-dimensional (1D) cases [7,8,13,34]. Rational solutions are some special cases of
breather solutions [19]. The real world is higher dimensional case, thus direct knowledge
of the control for RWs, especially based on breathers, in higher dimension would be more
helpful in terms of understanding the physical phenomena related to RWs. Although Yan
et al. [35] and Ma et al. [22] studied dynamical behaviors of 3D RWs, they have not
discussed the important controllable behaviors of RWs, which will be investigated here.
The novelty of this paper lies in: (i) Spatiotemporal superposed breather solution built
from first-order and second-order RWs is firstly obtained, and (ii) the manipulation for
higher dimensional RWs based on breathers such as fast excitation, maintenance, restraint
and recurrence is firstly reported.

In this work, we consider the 3D variable-coefficient (vc) NLSE with linear and
parabolic potentials

iut +
β(t)

2
∆u+ χ(t)|u|2u+ V (t, x, y, z)u = iγ(t)u, (1)

where u(t, x, y, z) is the order parameter in BECs or the complex envelope of the elec-
trical field in optical communication, t denotes time for BECs or propagation distance in
a nonuniform single-mode fiber, ∆ = ∂2x + ∂2y + ∂2z is the three dimensional Laplacian.
The functions β(t), χ(t) and γ(t) stand for the diffraction, nonlinearity and gain/loss
coefficients, respectively. Potential V = V1(t)(x+ y+ z) +V2(t)Y 2 with the strength of
the linear and parabolic potentials V1(t) and V2(t), and Y 2 = x2 + y2 + z2. It is strictly
assumed that V1(t) and V2(t) are not zero, otherwise, Eq. (1) is back to the 3D NLSE
in [11, 21, 28, 29].
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2 Superposed RW-like breather solution

At first, we construct one-to-one correspondence between u in Eq. (1) and U in Eq. (5) as
follows:

u =

√
l2
W

√
β

χ
U(T,X) exp

[
iφ(t, x, y, z)

]
, (2)

where the similarity variable, width, center, accumulated time and phase:

X =
ξ − ξc
W (t)

, W (t) =
3χ exp(2Γ )

β
,

ξc(t) = −l1W (t)

t∫
0

β(τ)b(τ)

W (τ)
dτ, T =

t∫
0

l2β(τ)

W 2(τ)
dτ, (3)

φ =
Wt

2βW
Y 2 − b(x+ y + z)− 3

2

t∫
0

β(τ)b2(τ) dτ (4)

with ξ = px+ qy + rz, Γ (t) =
∫ t

0
γ(τ) dτ , l1 = p+ q + r and l2 = p2 + q2 + r2. Via

this relation, Eq. (1) can be transformed into the traceable NLSE

iUT +
1

2
UXX + |U |2U = 0. (5)

Moreover, function b(t) and system functions V1(t), V2(t), β(t), χ(t) and γ(t) satisfy

V1 = −bt − b
(

2γ +
χt

χ
+
βt
β

)
, V2 =

βWtt − βtWt

2β2W
. (6)

Note that this relation (2) with solutions of Eq. (5) includes many known solitonic
solutions in [11], [21,28,29]. Without external potentials, we have W = 1+2a0

∫ t

0
β dτ ,

and the last expression of Eq. (3) is Eq. (23) in [11] when t and z are exchanged here.
When V1 = 0, choosing W (t) = exp(2

∫ t

0
βadτ) here yields solution expressed as (5)

in [21]. If W (t) = (1 + Cept)/[(1 + C)ept/2], solutions in [28] can be regained. When
V2 = 0, Eq. (3) gives the value α in solution expressed as (17) and (18) in [29]. Also
note that the similarity transformation (2) here is different from that in [22]. Here U is
a complex function satisfying the complex NLSE (5), while variables P and Q in [22] are
both real functions in the rational forms. Moreover, phase φ has different form compared
with that in [22].

In the following, we focus on new type of breather for Eq. (1). Via relation (2)
and Darboux transformation (DT) method [19] for Eq. (5), an analytical expression for
breather solution for Eq. (1) reads

u =

√
l2
W

√
β

χ

[
1 +

G+ iH

F

]
exp(iΦ), (7)
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where

Φ =

(
1− v2

2

)
(T − T0) + v(X −X0) + φ,

G = −k12
[
k21δ2 cosh(δ1Ts1) cos(k2X

′
s2)

k2
− k22δ1 cosh(δ2Ts2) cos(k1X

′
s1)

k1

− k12 cosh(δ1Ts1) cosh(δ2Ts2)

]
,

H = −2k12

[
δ1δ2 sinh(δ1Ts1) cos(k2X

′
s2)

k2
− sinh(δ2Ts2) cos(k1X

′
s1)δ2δ1

k1

− δ1 sinh(δ1Ts1) cosh(δ2Ts2) + δ2 cosh(δ1Ts1) sinh(δ2Ts2)

]
,

F =
2(k21 + k22)δ1δ2 cos(k1X

′
s1) cos(k2X

′
s2)

k1k2

−
(
2k21 − k21k22 + 2k22

)
cosh(δ1Ts1) cosh(δ2Ts2)

+ 4δ1δ2
[
sin(k1X

′
s1) sin(k2X

′
s2) + sinh(δ1Ts1) sinh(δ2Ts2)

]
− 2k12

[
δ1 cos(k1X

′
s1) cosh(δ2Ts2)

k1
− δ2 cos(k2X

′
s2) cosh(δ1Ts1)

k2

]
with

Ts1 = T − T ′0, Ts2 = T − T0, Xsj = X −Xj ,

X ′s1 = Xs1 − vT, X ′s2 = Xs2 − vT, δj = 0.5kj

√
4− k2j ,

k12 = k21 − k22, k1 = 2
√

1 + n21, k2 = 2
√

1 + n22.

Here X and T satisfy Eq. (3), φ is given by Eq. (4), v is an arbitrary constant, nj are
complex eigenvalues in DT, T0, T ′0 and Xj determine the center of solution in (T,X)
coordinates.

For simplicity, we firstly analyze breather solution (7) in the framework of the standard
NLSE (5), and the dynamical properties of solution (7) for Eq. (1) will be discussed in
the next section. In fact, breather solution (7) in the framework of the standard NLSE (5)
is two breathers built from first-order RWs [19], and two kinds of structures is demon-
strated in Fig. 1. Figures 1a and 1b show two parallel breathers, whose number of RWs
determined by the ratio of k1 and k2. Here we choose k1 : k2 = 2 : 3, thus the ratio of
the numbers of RWs in breathers is also 2 : 3.

In Figs. 1a and 1b, one array of two breathers has different positions in X direction,
that is, the centers of breathers at T = −6 in Figs. 1a and 1b are same but those at T = 6
are different with (a) X2 = 5 and (b) X2 = 3. This difference produces different kinds
of superposed RW-like breathers shown in Figs. 1c and 1d when two arrays of breathers
share the same origin.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) and (b) Two breathers with different positions in T direction; Nonlinear superposition of (c)
second-order RWs and first-order RW-pairs and (d) RW triplets and first-order RW-pairs for Eq. (5) in the
(T,X) coordinates; (e) and (f) Sectional view at different T corresponding to (c) and (d), respectively. The
parameters are chosen as k1 = 0.8, k2 = 1.2, T0 = T ′0 = 6, v = 0.2 with (a), (c), (e) X1 = X2 = 5 and
(b), (d), (f) X1 = 5, X2 = 3. For (a) and (b), T0 = −6, T ′0 = 6. (Online version in color.)
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Next we analyze the conformation from Figs. 1a to 1c and from Figs. 1b to 1d. In
Figs. 1a–1d, there are white lines to separate figures into two similar parts. In the left
part of Fig. 1a, two RWs near white line possess the same X value, and other three RWs
generate a triangular distribution. When five RWs share the same origin (cf. Fig. 1c),
two RWs have not overlapped but produced RW-pair, and other three first-order RWs
recombine into a second-order RW. Five RWs in the right part of Fig. 1a have similar case.
In each part of Fig. 1b, when five RWs share the same origin (cf. Fig. 1d), RW triplets
and RW-pair generate respectively. Note that there exists X-directional shift together for
RWs during the process of nonlinear superposition. To comprehend these two kinds of
superposed RW-like breathers, we show sectional view at different T corresponding to
Figs. 1c and 1d in Figs. 1e and 1f.

3 Controllable superposed RW-like breathers

From solution (7), the peak is modulated by (
√
l2/W )

√
β/χ, the width W (t) and center

position ξc(t) are given in (5). The chirp of phase and phase shift are determined by
Wt/(2βW ) and (3/2)

∫ t

0
β(τ)b2(τ) dτ with linear phase b(t) existing constraint in (3).

From these expressions, we know that the diffraction β(t), nonlinearity χ(t) and gain/loss
γ(t) parameters interplay together to impact evolutional characteristics such as the ampli-
tude, width, center and phase.

Besides these controllable factors above, a vital factor for the propagation type is the
relation (5) between the accumulated time T and the real time t, where the diffraction,
nonlinearity and gain/loss coefficients play an important role. In the following, we discuss
this kind control for the propagation type in two systems. The first system is the diffraction
decreasing medium (DDM) with the Logarithmic profile [5, 17][

β(t)
χ(t)

]
=

(
β0
χ0

)
ln

{
e +

t

L

[
exp

(
1

C

)
− e

]}
, (8)

where 1/C describes the compression ratio, and L is the setting time in BECs or length
of the medium in nonlinear optics with the natural logarithm e, constants β0 and χ0

describe initial diffraction and nonlinearity, and the gain/loss parameter γ = γ0 (const).
The second one is a periodic diffraction amplification system (PDAS) [16, 37]

β(t) = β0 exp(−σt) cos(δt), χ = χ0 exp(−λt) cos(δt), (9)

where β0 and χ0 are the parameters related to the initial diffraction and nonlinearity in
system, and σ, λ and δ are the parameters about varying degree of diffraction and non-
linearity. In particular, when δ = 0, Eq. (9) corresponds to the exponentially modulated
control parameters [9, 31], which is a typical case in DDM for σ > 0.

Note that the similarity variable X and the accumulated time T are not real spatial
and time variables x, y, z, t. Specially, from Eq. (4), choosing different diffraction and
nonlinearity coefficient, different dynamical behaviors for superposed RW-like breathers
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(a) (b)

Figure 2. Comparison between the maximum accumulated time Tm and the accumulated time T0 with the
center of RWs in the (a) Logarithmic and (b) PDAS. Parameters are chosen as (a) χ0 = 0.5, p = r = 0.1,
q = 0.2, L = 50, C = 4 with β0 = 0.2 (red cross), 0.78 (blue circle) and 1.2 (gold dash); and (b) χ0 = δ =
0.5, σ = 0.1, λ = 0.05, γ0 = −0.005, p = 0.5, q = 0.4, r = 0.6 with β0 = 0.25 (red cross) and 0.9 (blue
dash). (Online version in color.)

in Fig. 1 will appear. Figure 2 exhibits the integral relation between T and t in Logarithmic
DDM (8) and PDAS (9). Two different systems have a common property, that is, the
accumulated time T exists a maximum value Tm. In the framework of Eq. (5), T can
choose arbitrary values and breathers reach their maximum amplitudes at T = T0 and
then disappear. Therefore, we can adjust the relation between Tm and T0 to realize the
control for superposed breathers.

In the Logarithmic DDM (8), from the second expression in Eq. (3), the accumu-
lated time T has the relation to time t with T = 9(p2 + q2 + r2)χ2

0{1 − ln[(te1/C +
(L− t)e)/L]}{eL/[e− e1/C ]− t}/β0, which indicates that T exists a maximal value Tm
(see Fig. 2a). When t = L(e− 1)/(e− e1/C), T → Tm = (p2 + q2 + r2)χ2

0L/[β0(e−
e1/C)]. The propagation behaviors of breather are controlled by modulating the relation
between Tm and T0.

When Tm is remarkably bigger than T0 (see the red cross in Fig. 2a), the full second-
order RWs and first-order RW-pairs are excited quickly (cf. Figs. 3a and 1c). The pattern
at a trap in (x, y) plane is shown in Fig. 3b, where the trap from Eq. (6) slopes from
the upper left to bottom-right corner. If Tm = T0, second-order RWs in breathers can
maintain a long time, and their amplitude and width self-similarly vary (cf. Fig. 3c).
Moreover, a RW in first-order RW-pair also sustain its shape but another disappears. At
last, if Tm < T0, wave in the framework of Eq. (1) have not sufficient time to excite
second-order RWs, and restraint of second-order RWs will happen (cf. Fig. 3d). Only part
of second-order RWs and one RW in first-order RW-pair are produced, and another in
first-order RW-pair is annihilated.

For another kind of superposed breather in Fig. 1d, there are some similar results.
When Tm is notably bigger than T0 (see the red cross in Fig. 2a), the full RW triplets
and first-order RW-pairs are excited quickly (cf. Figs. 4a and 1d). The pattern at a trap in
(x, y) plane is shown in Fig. 4b, where the trap is same as that in Fig. 3b. If Tm = T0,
two RWs in triplets and one RW in first-order RW-pair maintain a long lasting time in

Nonlinear Anal. Model. Control, 21(1):77–91
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(a) (b)

(c) (d)

Figure 3. (a) Fast excitation, (c) maintenance and (d) restraint of self-similar RW-like breathers in Fig. 1a in the
Logarithmic DDM, (b) quickly excited RW-like breathers corresponding to (a) in a trap at t = 9.5, z = 2 in
(x, y) coordinates. Parameters in (a), (c) and (d) correspond to β0 = 0.2 (red cross), β0 = 0.78 (blue circle)
and β0 = 1.2 (gold dash) in Fig. 2a. Other parameters are chosen as b0 = 0.5, γ0 = −0.005. (Online version
in color.)

a self-similar manner but one RW in triplets and one RW in RW-pair both annihilate. At
last, if Tm < T0, the threshold of exciting triplets and pairs are both never reached and
the excitations of them are both restrained (cf. Fig. 4d). Only part of superposed RW-like
breather is produced.

Different from the controllable behaviors in the Logarithmic DDM (8), breather in the
PDAS (9) can happen recurrence behavior. In the PDAS (9), from the second expression
in Eq. (3), we have

T =
9(p2 + q2 + r2)χ2

0{∆[δ sin(δt)−∆ sin(δt)] exp(−∆t)}
β0[4(2γ0 − λ)(σ − λ+ 2γ0)] + σ2 + δ2
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(a) (b)

(c) (d)

Figure 4. (a)–(d) all cases are corresponding to Fig. 3 except for this control to breathers in Fig. 1b. (Online
version in color.)

with ∆ = 2λ− 4γ0 − σ. This relation indicates that T changes within the domain

|T | 6 Tmax =
9(p2 + q2 + r2)χ2

0{∆ + δ exp[−∆π/(2δ)]}
β0[4(2γ0 − λ)(σ − λ+ 2γ0)] + σ2 + δ2

.

Thus, as shown in Fig. 2b, the value of T decreases periodically with oscillating behavior
and the maximum Tm appears in the first period. This periodic change of T can produce
recurrence of breather.

Here we discuss two different cases: Tm > T0 and Tm < T0. For these two differ-
ent cases, breathers will demonstrate different dynamical behaviors, and can realize the
dynamical manipulation. This controllability for breather in the PDAS (9) is remarkably
different from that in the Logarithmic DDM. For breather in Fig. 1c, when Tm > T0 (red

Nonlinear Anal. Model. Control, 21(1):77–91
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(a) (b)

(c) (d)

Figure 5. (a) Recurrence and (d) restraint of RW-like breathers in Fig. 1a in the PDAS, (b) the evolution of
center and width for breather, and (c) RW-like breather corresponding to (a) in a trap at t = 5.6, z = 2 in (x, y)
coordinates. Parameters in (a) and (d) correspond to β0 = 0.25 (red cross) and 0.9 (blue dash) in Fig. 2b with
b0 = 0.5. (Online version in color.)

cross in Fig. 2b), breather will recur periodically (cf. Fig. 5a). It exhibits this recurred
behavior of breather in detail, the gap between second-order RWs and first-order RW-
pairs decreases, and RWs become concentrated with the increase of time t. Fig. 5b shows
the evolution of center and width for breather. The center oscillates some periods and
gradually tends to a fixed value, and width decreases by degrees when t adds. Different
from Figs. 3b and 4b, there is a parabolic trap from Eq. (6) in Fig. 5c, where the layout
of second-order RWs and first-order RW-pairs appears in (x, y) plane under the action
of this trap. If Tm < T0, wave in the framework of Eq. (1) have not sufficient time to
be excited. As shown in Fig. 5d, second-order RWs are completely restrained, and only
initial M-shaped part are produced. Moreover, RW-pairs are also only excited to one RW.
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(a) (b)

(c) (d)

Figure 6. (a) Recurrence and (c) restraint of self-similar RW-like breathers in Fig. 1b in the PDAS, (b) and
(d) different domain views for (a) and (c), respectively. Parameters are same as Fig. 5. (Online version in color.)

Similarly, when t adds, restrained superposed breather becomes concentrated, and its
amplitude dies out quickly.

Similar cases happen for the second kind of superposed breather. When Tm > T0,
breather also recurs periodically in Fig. 6a. From the enlarged plot in Fig. 6b, RW triplets
and pairs both periodically appear, and the space between them gradually reduces. When
Tm < T0, the threshold of exciting full triplets and pairs are both never reached and the
excitations of them are both restrained. Only one RW in RW-pairs is excited (cf. Fig. 6c
and Fig. 1d). From the enlarged plot in Fig. 6d, RWs in breather are remarkably restrained
when t adds.

Nonlinear Anal. Model. Control, 21(1):77–91
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4 Stability and possible observation

The stability of analytical solutions is important in the realistic application, namely, how
they evolve with time when they are disturbed from their analytically given forms. We
perform direct numerical simulations with initial white noise for Eq. (1) using split-step
pulse propagation method, with initial fields coming from Eq. (7) in DDM and PDAS.
Numerical calculations show no collapse. Instead, stable propagation with a long time
is observed. Two examples of such behaviors are displayed in Fig. 7, which essentially
presents a numerical rerun of Figs. 3c and 5a.

Moreover, we consider the comparison between 1D and 3D cases. Note that the transi-
tion from 3D to 1D NLSE is well established in nonlinear optics and BECs [27]. Solutions
are similar to (7) except for the width W1D = β/(χ exp(2Γ )) from the calculation for
1D case of Eq. (1). From Fig. 7, the 1D case is stable and has smaller period along x-axis
than 3D case, and the amplitude’s oscillation in parts between RWs in 3D case is more
severe than that in 1D case. The white noise has more obviously impact for 3D case in
DDM than that in PDAS.

This difference for stability implies that 3D breather is observed more difficult than 1D
case. In nonlinear optics, Dudley et al. [14] observed breather in the experiment by putting
the initial 1ns pulse at 1064 nm with the power P0 = 43 W into fiber with parameters
β = −75 ps2 km−1, χ = 60 W−1km−1. However, waves here carry infinite energy
because

∫ +∞
−∞ |u(x, y, z, t)|2 dxdy dz diverges. Thus an aperture at the source plane is

required to observe the proposed solutions in a laboratory. Similar to method for realizing
linear optical bullets [30], we use the envelope of u0 in the source plane in the form
u0 = Θ(Lx − |x|)Θ(Ly − |y|)u(px+ qy + rz), where Θ(ζ) is a unit step-function, 2Lx

and 2Ly are the dimensions of the source aperture. The Fourier transform and inverse
transform with the Fresnel diffraction theory make a finite aperture do not significantly
affect their intensity profiles of idealized (infinite-energy) breathers. Thus, we can use this
experimental protocol to create breathers here.

(a) (b)

Figure 7. Comparison of stability between 1D and 3D cases: (a) maintenance for Figs. 3c and 3b recurrence
corresponding to Fig. 5a. Only the dependence on x is shown for 3D case. An added 5% white noise are added
to the initial values. (Online version in color.)
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5 Conclusions

In short, we review the main points offered in this paper:

• Spatiotemporal superposed breather solution built from first-order and second-order
RWs are obtained.
3D vcNLSE with linear and parabolic potentials is investigated. A relation be-
tween this equation and the standard NLSE is found, and exact spatiotemporal
breather solution is obtained. Superposed breathers are constructed when two par-
allel breathers with different numbers of RWs, decided by ratio of k1 and k2, share
the origin. When choosing k1 : k2 = 2 : 3, two kinds of superposed RW-like
breathers are constructed, that is, breathers constructed by second-order RWs or
RW triplets and first-order RW-pairs.

• Controllable behaviors of these breathers in different systems can be studied by
modulating the relation between the maximum accumulated time Tm from the
integral relation and the accumulated time T0 with the center of RW-like breathers.
These results are listed in Table 1. We also give an experimental protocol to observe
these phenomena in future experiments.

Table 1. Controllable behaviors in different systems.

— Logarithmic DDM Periodic system
Tm > T0 Fast excitation Recurrence
Tm = T0 Maintenance —
Tm < T0 Restraint Restraint

These results add to our comprehension on the manipulation for breather, and stimu-
late novel experiments in the context of the optical communications, plasma physics and
Bose–Einstein condensations, and so on.
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