
ISSN 1392-5113
http://dx.doi.org/10.15388/NA.2016.1.6

Nonlinear Analysis: Modelling and Control, 2016, Vol. 21, No. 1, 92–102

Projection error evaluation for large multidimensional
data sets

Kotryna Paulauskienė, Olga Kurasova

Institute of Mathematics and Informatics, Vilnius University,
Akademijos str. 4, LT-08663 Vilnius
kotryna.paulauskiene@mii.vu.lt; olga.kurasova@mii.vu.lt

Received: September 12, 2014 / Revised: October 20, 2015 / Published online: November 20, 2015

Abstract. This research deals with projection error evaluation for large data sets using only
a personal computer without any particular technologies for high performance computing.
A shortcoming of basic projection error calculation ways is such that they require a large amount
of computer memory or computation time is not acceptable when large data sets are analyzed. This
paper proposes two ways for projection error evaluation: the first one is based on calculating the
projection error for not full data set, but only for representative data sample, the second one obtains
the projection error by dividing a data set into the smaller data sets. The experiments have been
carried out with twelve real and artificial data sets. The computational efficiency of the projection
error evaluation ways is confirmed by a comprehensive set of comparisons. We demonstrate that
dividing data set into the smaller data sets allows us to calculate the projection error for large data
sets.

Keywords: dimensionality reduction, projection error, large data set, representative sample.

1 Introduction

The capability of generating and collecting data is increasing every day. Real-world data,
such as speech signals, images, biomedical, financial, telecommunication and other data
usually have a high dimensionality. Each data instance (point) is characterized by some
features. Feature reduction is a fundamental step before applying data analysis methods
[12,13,14]. High dimensionality data can be efficiently reduced to a much smaller number
of variables (features) without a significant loss of information. The mathematical pro-
cedures making possible this reduction are called dimensionality reduction (projection)
techniques; they have widely been developed in fields like statistics or machine learning,
and are currently a hot research topic [18]. Dimensionality reduction deals with one
special setting: a set of high-dimensional data points is mapped into low dimensionality
such that data structure is preserved as much as possible [6]. Dimensionality reduction
methods can also be thought of as a principled way to understand high-dimensional
data [21]. They extract essential information from the high-dimensional data by mapping
points from m-dimensional space to a d-dimensional space (d < m).

c© Vilnius University, 2016

mailto:kotryna.paulauskiene@mii.vu.lt
mailto:olga.kurasova@mii.vu.lt

Projection error evaluation for large multidimensional data sets 93

When the projection of high-dimensional points is found, it is necessary to estimate
its quality. Most dimensionality reduction methods involve the optimization of a certain
criterion. One way to assess the projection quality is to evaluate the value of this criterion.
The problem arises, when the projections obtained by different methods needs to be
compared. Then other measures reflecting various characteristics of the data must be
used. The following measures for projection evaluation are found in the papers: stress
function [3], Spearman’s rho [11], Konig’s topology measure [11], silhouette [9], Renyi
entropy [7], etc.

When calculating all these measures, the distances between points are involved into
the calculation. Dealing with large data sets, the problem of estimating the projection
error arises, huge distance matrices (or vectors) are used and they require large memory
resources [16]. Dimensionality reduction by different methods, e.g. principal component
analysis [19], partly linear multidimensional projection [17], random projection [2], is
very quick even for large enough data sets, but the evaluation of the projection error
still remains a complicated problem. The solution of this problem could be the usage
of technologies which are developed specially for big data. With the fast development
of networking, data storage, and the data collection capacity, big data are now rapidly
expanding in all science and engineering domains [20]. Distributed and parallel com-
puting allows processing of larger volumes of data, most notably through applications
of Google’s MapReduce [15]. MapReduce provides an interface that allows distributed
computing and parallelization on clusters of computers. Hadoop is an open source ver-
sion of MapReduce. To overcome the shortcomings of traditional systems, public and/or
private clouds can be also used for data management, integration and analytics. They
allow us to off-load computing tasks while saving IT costs and resources [4]. However,
specific knowledge is needed for those tricky techniques, there is the lack of user-friendly
management tools to handle the distributed and parallel computing, especially for inves-
tigation of dimensionality reduction. So, researchers are not able to exploit effectively
these modern computing technologies and often they are restricted to the capabilities of
personal computers.

The goal of the paper is to present and explore the projection error calculation ways
for large data sets using only a common personal computer without parallel programming.
Here large data are considered to be the one which can be analyzed in an appropriate
time by a personal computer without using the special methods and technologies such as
parallel and distributed or cloud computing.

The paper is organized as follows. Section 2 introduces the projection error calculation
ways. Section 3 shows some experimental results. Section 4 draws the conclusions.

2 Projection error calculation

Usually, dimensionality reduction can be evaluated using the projection error given in [3]:

E =

∑
ij(d(Xi, Xj) − d(Yi, Yj))

2∑
ij(d(Xi, Xj))2

, (1)

Nonlinear Anal. Model. Control, 21(1):92–102

94 K. Paulauskienė, O. Kurasova

where d(Xi, Xj) and d(Yi, Yj) are distances between instances (points) in the initial
(m-dimensional) and the reduced dimensionality (d-dimensional) spaces, respectively.
The projection error, called stress function E, indicates how accurate the distances are
preserved between the data points when the dimensionality is reduced.

In the paper, capabilities of MATLAB for projection error calculation are investi-
gated, however, the proposed and explored ways could be applied for other programming
environment. MATLAB is the high-level language and interactive environment used by
millions of engineers and scientists worldwide. MATLAB provides a range of numerical
computation methods for analyzing data, developing algorithms, and creating models.
One of the key features of MATLAB is that it uses processor-optimized libraries for fast
execution of matrix and vector computations. MATLAB function parfor executes the loop
iterations in parallel. It should be noted that a parfor-loop can provide significantly better
performance than its analogous for-loop, but in this research we confine to sequential
programming and use no parallelization. There are several well known basic ways for
projection error calculation using MATLAB:

• to calculate the projection error using the loop for each data point (usually FOR) by
the formula (1);

• to use MATLAB function pdist to compute distances for the high-dimensional data
set and for the data set of the reduced dimensionality, then to apply the formula (1).

An advantage of the first way is that huge distance matrices are not used. In such a way,
the memory resources are saved. Instead of distance matrices the projection error is
calculated using the loop for each data point summing the nominator and the denominator
of the formula (1). The second way uses MATLAB function pdist which computes the
Euclidean distance between pairs of objects in m by n data matrix X and in m by d
reduced dimensionality matrix Y . To save memory space and computation time, pairwise
distances are formed not as a matrix, but as a vector. The vector contains only unique
distances between the data points. The analysis of large data sets has shown that, in the
first case (when the loop is used), the computation time with 250 000 instances is about
2 hours, in the second case (when the function pdist is used), the computation time is very
fast, but with more than 30 000 instances it runs out of computer memory (12 GB) [16].
Hence it is necessary to search ways to reduce memory usage and computation time
needed for calculation of distances.

Pseudo-code for projection error calculation using the loop for each data point is as
follows:

Input: data, proj, ndata - multidimensional points, points of reduced
dimensionality, the number of points.

Output: stress - projection error.
BEGIN
nominator = 0; denominator = 0
FOR i=1:ndata-1
//Euclidean distances for multidimensional points are calculated
distanceN=sum((data(1:ndata-i,:)-data(1+i:ndata,:)).^2,2)
//Euclidean distances for points of reduced dimensionality
//are calculated

http://www.mii.lt/NA

Projection error evaluation for large multidimensional data sets 95

distanceP=sum((proj(1:ndata-i,:)-proj(1+i:ndata,:)).^2,2)
//The nominator and the denominator of the formula (1) are calculated
nominator = nominator + sum((distanceN.^0.5-distanceP.^0.5).^2)
denominator = denominator + sum(distanceN)

END
//Projection error is calculated
stress = nominator/denominator
END

Pseudo-code for projection error calculation (distances are obtained using MATLAB
function pdist) is as follows:

Input: data, proj - multidimensional points,
points of reduced dimensionality.

Output: stress - projection error.
BEGIN
//Euclidean distances for multidimensional points are calculated
distanceN=pdist(data)
//Euclidean distances for points of reduced dimensionality
//are calculated
distanceP=pdist(proj)
//Projection error is calculated
stress=(sum((distanceN-distanceP).^2))/sum(distanceN.^2)
END

In this paper, we propose two efficient solutions of projection error evaluation for
large data sets:

• to calculate the projection error not for the full data set, but only for the representa-
tive data sample;

• to calculate the projection error for the full data set, but dividing the data set into
the smaller data sets.

The proposed ways are described detail in Sections 2.1–2.2.

2.1 Obtaining the representative data sample

In the first way, the projection error evaluation is based on the representative data sample.
Usually in statistics, the data population is too large for the researcher to attempt to
analyze all of its members. A small, but carefully chosen sample can be used to represent
the population. The representative sample reflects the characteristics of the population
from which it is drawn. So, in order to save the computation time and to reduce the usage
of operating memory, the projection error can be evaluated only for a representative data
sample. The formula for calculation of a representative sample size is as follows [1]:

n =
z2s2

∆2
, (2)

where n is a sample size, z is value of z-score, s2 is a variance, ∆ is a margin of error. The
margin of error expresses the maximum expected difference between the true population
parameter and a sample estimate of that parameter. In the work, the 99% confidence

Nonlinear Anal. Model. Control, 21(1):92–102

96 K. Paulauskienė, O. Kurasova

interval is chosen, so z-score is equal to 2.575, several margin of error values ∆ can
be analyzed, the variance s2 is calculated for each data set feature. The sample size is
calculated for each data set feature, then the biggest sample size n is selected and data
sample of this size is considered as representative sample. In this paper, two sampling
methods are applied: random sampling and stratified sampling, where relevant stratums
are identified using k-means method [8].

Having the representative sample, the projection error is calculated by the formula (1)
not for full data set, but only for representative sample. Depending on a size of rep-
resentative sample the projection error might be calculated in ways which have been
discussed in the beginning of the Section 2. In experimental investigation of this research,
the projection error for data samples is calculated using MATLAB function pdist.

2.2 Dividing the data set into the smaller data sets

The second proposed way calculates the projection error for divided data set. The algo-
rithm for calculating the projection error when the data set is divided into the smaller data
sets can be summarized as follows (pseudo-code is presented below):

1. The initial data set and the data set of the reduced dimensionality are divided into
the smaller data sets, e.g. we have 100 000 points (instances) and divide them into
10 sets of the size 10 000 points.

2. Euclidean distances between pairs of the instances for each smaller data set in
the high-dimensional and the reduced dimensionality spaces are calculated. The
distances are calculated using MATLAB function pdist.

3. For each smaller data set the nominator and the denominator of the formula (1) are
calculated.

4. Euclidean distances between the instances of each of two smaller data sets in
the high-dimensional and the reduced dimensionality spaces are calculated using
MATLAB function pdist2 (this function computes pairwise distances between two
sets of instances).

5. For each possible pairs of smaller data set the nominator and the denominator of
the formula (1) are calculated.

6. Projection error is calculated dividing the sum of nominators by the sum of de-
nominators obtained in steps 3 and 5.

Dividing the data set into the smaller data sets allows us to avoid running out of
a computer memory. As MATLAB functions pdist and pdist2 are used, therefore the
distances between points are found very fast. It is necessary to emphasize that this way
of projection error evaluation does not influence the projection error value i.e., it remains
the same as it would be calculated for not divided data set.

Pseudo-code for projection error calculation dividing the data set into the smaller data
sets is as follows:

Input: data, proj, A, groups - multidimensional points, points
of reduced dimensionality, two-column matrix (the elements

http://www.mii.lt/NA

Projection error evaluation for large multidimensional data sets 97

of the first (second) column indicate the data index,
corresponding to the beginning (end) of the smaller data sets),
the number of the smaller data sets.

Output: stress - projection error.
BEGIN
//For each smaller data set
FOR i=1:groups

data_temp=pdist(data(A(i,1):A(i,2),:))
proj_temp=pdist(proj(A(i,1):A(i,2),:))
nomin_temp(i)=sum((data_temp-proj_temp).^2)
denom_temp(i)=sum(data_temp.^2)

END
//For the instances of each of two smaller data sets
nominator=0; denominator=0
FOR i=1:groups
FOR j=i+1:groups

data=(pdist2(data(A(i,1):A(i,2),:),data(A(j,1):A(j,2),:)))
proj=(pdist2(proj(A(i,1):A(i,2),:),proj(A(j,1):A(j,2),:)))
nominator=nominator+sum(sum((data-proj).^2))
denominator=denominator+sum(sum(data.^2))

END
END
//Projection error is calculated
stress=(nominator+sum(nomin_temp))/(denominator+sum(denom_temp))
END

3 Experimental results

Twelve real and artificial data sets are used in the experimental investigations. The Image
segmentation, Waveform, Mammals, MAGIC gamma telescope, Skin segmentation, Shut-
tle, Dspatialnetwork data sets are taken from UCI Machine Learning Repository,
Twinpeaks, Helix, Swiss roll are generated by us using the MATLAB Toolbox for Di-

mensionality Reduction. Functions for generating Crescent and full moon, Corners
data sets are taken from MATLAB Central File Exchange. Each data set has some
specific characteristics. The short descriptions of the data sets are presented in Table 1.

Table 1. Data sets (n – number of instances, m – number of features).

Name Type of data set n m
Image segmentation Real 2 100 19
Waveform Artificial 5 000 21
Mammals Artificial 16 384 72
MAGIC gamma telescope Artificial 19 020 10
Twinpeaks Artificial 30 000 3
Skin segmentation Real 51 444 3
Shuttle Real 58 000 9
Helix Artificial 250 000 3
Swiss roll Artificial 250 000 3
Crescent and full moon Artificial 300 000 4
Dspatialnetwork Real 434 874 3
Corners Artificial 450 000 4

Nonlinear Anal. Model. Control, 21(1):92–102

http://archive.ics.uci.edu/ml/
http://lvdmaaten.github.io/drtoolbox/
http://lvdmaaten.github.io/drtoolbox/
http://www.mathworks.com/matlabcentral/fileexchange/41459-6-functions-for-\generating-artificial-datasets/

98 K. Paulauskienė, O. Kurasova

A personal computer (Intel i5-3317U CPU 1.7 GHz (Max Turbo 2.6 GHz), with
2 cores and 12 GB of RAM memory) is used for the experimental investigation. The
explored ways of the projection error calculation are implemented in MATLAB R2012b.
When using a computer with other characteristics, absolute values of the computation
time would change, but the same ratio value between different ways would remain, while
the accuracy of projections will be the same. It is evident that if a computer with other
amount of memory is used, memory resources would run out analyzing larger (or smaller)
data sets (depending on the amount of memory). The principal component analysis is used
to reduce the dimensionality of the initial data set. The main idea of principal component
analysis is to reduce the dimensionality of data by performing a linear transformation and
rejecting a part of the components, variances of which are the smallest ones [5]. A detailed
and rigorous mathematical derivation of this method can be found in [10].

Table 2 shows the results of projecting the data samples of twelve data sets by the
principal component analysis when the projection error is calculated for the representative
data sample by the proposed first way. Different values of margin of error (∆) and two
sampling (random (RS) and stratified (SS)) methods are analyzed. The dimensionality
of data is reduced to two (d = 2). The projection error values for the full data sets are
also obtained and presented in bold. Some of data sets contained more than 30 000 points
therefore the projection error for these data sets was calculated by the proposed second
way (see Section 2.2), because other ways are not so efficient (memory shortage or long
calculation time) for large data sets. The differences between the projection error values
for the data samples of various size and for the full data are not significant when all the
data sets are analyzed, even size of representative sample is more less than one of the
full data set. From Table 2, one can clearly see that as the margin of error decreases, the
data sample size increases. Moreover the difference between stress values of data samples
is not essential analyzing all data sets. However the computation time obviously differs,
especially for large (containing more than 250 000 points) data sets. For example, the
projection error of the Corners data set is calculated in about 1 hour 14 minutes, that
of its random sample (22 144 points) in about 9.98 seconds while the projection error
values are 0.0632 and 0.0633, respectively. The comparison of two sampling methods
shows that it is unimportant how the sample was obtained, i.e., the projection error values
are similar in both cases. For example, the projection error of the full Helix data set is
0.0115, that of its random sample (1 494 points) is 0.0117, that of the stratified sample
(1 494 points) is 0.0112. While analyzing data samples of 23 906 points, the projection
error values are the same as for the full data set and for its samples and equal to 0.0115.
The visualization of the Helix data set and its data samples, when their dimensionality
is reduced by the principal component analysis, is presented in Fig. 1. The images show
that the distribution of the points of random and stratified data samples is similar to that
of the initial data set. It can be emphasized that the loss of projection error accuracy is
not significant compared to the computation time we save. The experimental results show
that the projection error can be evaluated for the representative sample when large data
sets are analyzed.

Table 3 shows the computation time results of the second way, i.e., the projection error
is obtained using the full data set which is divided into the smaller data sets.

http://www.mii.lt/NA

Projection error evaluation for large multidimensional data sets 99

Table 2. Projection error E and computation time values in seconds (s) for twelve
different data sets (n – sample size, ∆ – margin of error).

Data set n ∆ E (RS*) E (SS**) Time (s)
Image 2100 0.1738 0.1738 0.12

1 164 5.5 0.1679 0.1797 0.04
833 6.5 0.1456 0.1563 0.02
626 7.5 0.1466 0.1610 0.01

Waveform 5000 0.0852 0.0852 0.67
2 702 0.1 0.0854 0.0853 0.20
1 201 0.15 0.0851 0.0855 0.04

432 0.25 0.0833 0.0843 0.01

Mammals 16384 0.00159 0.00159 16.20
11 459 0.75 0.00159 0.00159 7.9
3 509 1.0 0.00160 0.00157 0.73
1 745 1.5 0.00157 0.00163 0.70

MAGIC 19020 0.0665 0.0665 8.17
gamma 12 092 1.75 0.0652 0.0647 3.38
telescope 5 925 2.5 0.0620 0.0645 0.79

1 481 5.0 0.0630 0.0659 0.05

Twinpeaks 30000 0.00057 0.00057 19.75
9 922 0.15 0.00051 0.00059 2.11
3 572 0.25 0.00057 0.00061 0.33
1 103 0.45 0.00052 0.00050 0.04

Skin 51444 0.0093 0.0093 54.80
segmentation 17 449 1.5 0.0099 0.0092 6.15

9 814 2.0 0.0098 0.0097 1.9
2 454 4.0 0.0093 0.0094 0.13

Shuttle 58000 0.0470 0.0470 79.86
25 629 3.5 0.0372 0.03017 15.50
15 504 4.5 0.0469 0.03405 5.48
6 407 7.0 0.0453 0.04123 0.98

Helix 250000 0.0115 0.0115 1396.80
23 906 0.025 0.0115 0.0115 11.13
5 976 0.05 0.0120 0.0117 0.71
1 494 0.1 0.0112 0.0117 0.05

Swiss roll 250000 0.0561 0.0561 1363.80
22 015 0.15 0.0560 0.0565 9.54
7 925 0.25 0.0565 0.0563 1.29
1 981 0.5 0.0593 0.0569 0.08

Crescent 300000 0.0676 0.0676 2007.80
and full 20 262 0.15 0.0692 0.0683 9.02
moon 7 294 0.25 0.0688 0.0651 1.14

1 824 0.5 0.0637 0.0664 0.07

Dspatial- 434874 9.1534 · 10−7 9.1534 · 10−7 4610.50
network 25 537 0.3 9.3307 · 10−7 9.2215 · 10−7 13.45

18 762 0.35 9.2122 · 10−7 9.2528 · 10−7 7.15
9 194 0.5 9.1453 · 10−7 9.3172 · 10−7 1.71

Corners 450000 0.00633 0.00633 4455.40
22 144 0.1 0.00632 0.00633 9.98
9 842 0.15 0.00630 0.00630 1.91
3 543 0.25 0.00654 0.00606 0.26

* – random sampling (RS)
** – startified sampling (SS)

Nonlinear Anal. Model. Control, 21(1):92–102

100 K. Paulauskienė, O. Kurasova

Table 3. Computation time values in seconds (s) of projection error for
twelve different data sets: (a) data set is divided (the second way); (b) the
loop for each data point is used; (c) distances are found using MATLAB
function pdist.

Data set (a) (b) (c)
Image segmentation 0.35 0.41 0.12
Waveform 2.13 2.93 0.67
Mammals 48.61 233.47 16.20
MAGIC gamma telescope 8.92 45.04 8.17
Twinpeaks 50.70 40.53 19.75
Skin segmentation 54.80 153.72 X
Shuttle 74.60 510.59 X
Helix 1396.80 7184.00 X
Swiss roll 1363.80 7010.70 X
Crescent and full moon 2007.80 10855.00 X
Dspatialnetwork 4610.50 19957.00 X
Corners 4455.40 26280.00 X

X – memory resources run out

Figure 1. Visualization of the Helix data set and the data samples. Projection error values are shown in the
bottom left corner.

Here the data sets are divided into the data sets of the size 10 000 points (for small
data sets the size is 500 points). In addition the computation time of projection error, when
distances between points are found using the pdist function and using the loop for each
data point is presented in Table 3. The results have shown that the fastest way to calculate
the projection error is to use the pdist function for not divided data set or to use the pdist
and the pdist2 functions for divided data set (the second way). Fast computation time
is caused particularity of the MATLAB language which provides native support for the
vector and matrix operations, enabling fast development and execution. However using
the pdist function for not divided data set causes the computer to run out of memory
resources (12 GB) when data sets of more than 30 000 are analyzed. The most time
consuming way to calculate the projection error is to use the loop for each data point,
but this way does not require much computer memory. The analysis of 450 000 instances
has shown that the projection error is calculated in about 7 hours and 18 minutes. So this
calculation way is not appropriate for very large data sets. Dividing the data set into the
smaller data sets allows us to process the data set of 450 000 instances in an appropriate
time (1 hour and 14 minutes).

http://www.mii.lt/NA

Projection error evaluation for large multidimensional data sets 101

4 Conclusions

In the paper, we have proposed and explored two ways for projection error evaluation,
when large data sets are analyzed using a personal computer without any particular pro-
gramming and technologies for high performance computing. The first way calculates the
projection error for representative data sample, the second way divides the data set into
the smaller data sets.

The experimental investigation with twelve real and artificial data sets has shown that
in order to decrease computation time, the projection error can be evaluated precisely
using only representative data sample, but not full data set. The differences between the
projection error values of the data samples and the full data are not significant analyzing
all data sets. Furthermore the projection error calculation for the representative data sam-
ple significantly saves computation time. The results have shown that dividing data set
into the smaller data sets allows us to calculate the projection error for data of 450 000
instances in an appropriate time and is capable to process larger data sets. Results indicate
that the combination of these proposed ways would allow us to calculate the projection
error for very large data sets which representative data sample would contain 450 000
points or even more, the projection would be sufficiently precise, the projection error
evaluation would be obtained in an appropriate time, and computer memory problem
would not arise. The combination could be implemented in this way: first of all, having
a large volume data set, the representative data sample should be chosen, and then by
dividing the representative data sample into the smaller sets, the projection error could be
calculated.

References

1. E.J. Bartlett, J.W. Kotrlik, C.C. Higgins, Organizational research: Determining appropriate
sample size in survey research, Information Technology, Learning, and Performance Journal,
19(1):43–50, 2001.

2. E. Bingham, H. Mannila, Random projection in dimensionality reduction: Applications to
image and text data, in Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM Press, New York, 2001, pp. 245–250.

3. I. Borg, P. Groenen, Modern Multidimensional Scaling: Theory and Applications, 2 ed.,
Springer, New York, 2005.

4. N. Choudhary, P. Singh, Cloud computing and big data analytics, International Journal of
Engineering Research and Technology, 2(12):2700–2704, 2013.

5. G. Dzemyda, O. Kurasova, J. Žilinskas, Multidimensional Data Visualization: Methods and
Applications, 1 ed., Springer, New York, 2013.

6. A. Gisbrecht, B. Hammer, Data visualization by nonlinear dimensionality reduction, Data
Mining and Knowledge Discovery, 5(2):51–73, 2015.

7. A. Gupta, R. Bowden, Evaluating dimensionality reduction techniques for visual category
recognition using renyi entropy, in 19th European Signal Processing Conference (EUSIPCO
2011), IEEE, Barcelona, 2011, pp. 913–917.

Nonlinear Anal. Model. Control, 21(1):92–102

102 K. Paulauskienė, O. Kurasova

8. J. Han, M. Kamber, Data Mining Concepts and Techniques, 2 ed., Morgan Kaufman Publishers,
San Francisco, 2006.

9. P. Joia, F.V. Paulovich, D. Coimbra, J.A. Cuminato, L.G. Nonato, Local affine multidi-
mensional projection, IEEE Transactions on Visualization and Computer Graphics, 17(12):
2563–2571, 2011.

10. I. Joliffe, Principle Component Analysis, 2 ed., Springer, New York, 2002.

11. O. Kurasova, A. Molytė, Quality of quantization and visualization of vectors obtained by neural
gas and self-organizing map, Informatica, 22(1):115–134, 2011.

12. Q. Liu, A.H. Sung, B. Ribeiro, D. Suryakumar, Mining the big data: The critical feature
dimension problem, in 2014 IIAI 3rd International Conference on Advanced Applied Infor-
matics (IIAI-AAI 2014), IEEE, Kitakyushu, 2014, pp. 499–504.

13. V. Medvedev, G. Dzemyda, O. Kurasova, V. Marcinkevičius, Efficient data projection for visual
analysis of large data sets using neural networks, Informatica, 22(4):507–520, 2011.

14. B. Mwangi, T.S. Tian, J.C. Soares, A review of feature reduction techniques in neuroimaging,
Neuroinformatics, 12(2):229–244, 2014.

15. D. O’Leary, Artificial intelligence and big data, IEEE Intelligent Systems, 28(2):96–99, 2013.

16. K. Paulauskienė, O. Kurasova, Analysis of dimensionality reduction methods for various
volume data, in Information Technology. 19th Interuniversity Conference on Information
Society and University Studies (IVUS 2014), Technologija, Kaunas, 2014, pp. 114–121 (in
Lithuanian).

17. F.V. Paulovich, C.T. Silva, L.G. Nonato, Two-phase mapping for projecting massive data sets,
IEEE Transactions on Visualization and Computer Graphics, 16(6):1281–1290, 2010.

18. C. Sorzano, J. Vargas, A. Pascual-Monato, A survey of dimensionality reduction techniques,
Computing Research Repository, 2014, http://arxiv.org/ftp/arxiv/papers/
1403/1403.2877.pdf.

19. L.P.J. van der Maaten, E.O. Postma, H.J. van den Herik, Dimensionality reduction: A com-
parative review, 2009, http://www.iai.uni-bonn.de/~jz/dimensionality_
reduction_a_comparative_review.pdf.

20. X. Wu, X. Zhu, G. Wu, W. Ding, Data mining with big data, IEEE Transactions on Knowledge
and Data Engineering, 26(1):97–107, 2014.

21. F. Xie, Y. Fan, M. Zhou, Dimensionality reduction by weighted connections between
neighborhoods, Abstract and Applied Analysis, 2014:1–5, 2014.

http://www.mii.lt/NA

http://arxiv.org/ftp/arxiv/papers/1403/1403.2877.pdf
http://arxiv.org/ftp/arxiv/papers/1403/1403.2877.pdf
http://www.iai.uni-bonn.de/~jz/dimensionality_reduction_a_comparative_review.pdf
http://www.iai.uni-bonn.de/~jz/dimensionality_reduction_a_comparative_review.pdf

	Introduction
	Projection error calculation
	Obtaining the representative data sample
	Dividing the data set into the smaller data sets

	Experimental results
	Conclusions
	References

