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Abstract. In this paper, we give two sufficient conditions for the existence of a fixed point for
a Kannan type contraction in a p-complete separated uniform space endowed with a graph and
equipped with an A- or an E-distance p. We also discuss the uniqueness of the fixed point and show
that Banach and Kannan type contractions are independent.
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1 Introduction and preliminaries

In [9, 10], Kannan investigated the existence and uniqueness of fixed points for map-
pings T defined on a (not necessarily complete) metric space (X, d) satisfying

d(Tx, Ty) 6 αd(x, Tx) + βd(y, Ty) (1)

for all x, y ∈ X , where α, β > 0 and α + β < 1. In fact, in [9], Kannan showed that in
a complete metric space (X, d), a mapping T : X → X satisfying (1) is a Picard operator,
i.e. T has a unique fixed point x∗ ∈ X and Tnx → x∗ for all x ∈ X , but in [10], he
omitted the completeness of (X, d) and added some new hypotheses such as continuity
of T at a single point of X and then proved the existence and uniqueness of a fixed point
for T . Since the contractive condition (1) is independent of

d(Tx, Ty) 6 αd(x, y) (x, y ∈ X),

where α ∈ [0, 1), used in the well-known Banach contraction principle, it follows that
Kannan’s results are neither a generalization nor a special case of the Banach contraction
principle.

Recently in [8], Jachymski investigated the Banach contraction principle in metric
spaces with a graph and generalized the same results in metric and partially ordered metric
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spaces simultaneously. This idea was followed by Bojor for Kannan contractions (see [6])
and by the authors in uniform and modular spaces (see [2, 3, 4, 5]). In [1], the concepts
of A- and E-distances were introduced in uniform spaces as a generalization of a metric
and a w-distance for rewriting different types of nonlinear contractions in uniform spaces,
especially those which cannot be presented via entourages.

The main purpose of the present work is studying Kannan contractions in uniform
spaces endowed with a graph using A- and E-distances and investigating the existence
and uniqueness of fixed points for them. Our main result generalizes Kannan’s fixed point
theorem in metric spaces and it is a new version of Theorem 3 in [6] in uniform spaces
endowed with a graph and equipped with an A- or an E-distance.

We start with some basic notions about uniformities and uniform spaces which are
used in this paper. For more details, the reader is referred to [11].

By a uniform space, we mean a pair (X,U ), briefly denoted by X , where X is
a nonempty set and U is a uniformity on X (see [11, Def. 35.2]). The members of U are
called the entourages of X .

It is well known that a uniformity U on a nonempty set X is separating if the inter-
section of all entourages of X coincides with the diagonal ∆(X) = {(x, x): x ∈ X}.
Moreover, if U is a separating uniformity on a nonempty set X , then the uniform space
X is called separated.

In particular, if (X, d) is a metric space, then the family Ud consisting of all supersets
of the sets {

(x, y) ∈ X ×X: d(x, y) < ε
}

(ε > 0)

is a uniformity on X called the uniformity induced by the metric d. It is clear that the
uniform space (X,Ud) is separated.

We next recall the definition of an A- and an E-distance on a uniform space as well
as the new notions of convergence, Cauchyness and completeness using A-distances.

Definition 1. (See [1].) If X is a uniform space, then a function p : X ×X → [0,+∞)
is called an A-distance on X whenever for all entourages U ∈ U , there exists a δ > 0
such that p(z, x) 6 δ and p(z, y) 6 δ imply (x, y) ∈ U for all x, y, z ∈ X . If, further,
p satisfies the triangular inequality, then p is called an E-distance on X .

An A-distance p on a uniform space X is called symmetric if p(x, y) = p(y, x) for
all x, y ∈ X .

Consider the set X = [0,+∞) with the uniformity induced by the usual metric. Then
it is not difficult to verify that all the three functions p1, p2, p3 : X × X → [0,+∞)
defined by the rules

p1(x, y) = y, p2(x, y) = max{x, y} and p3(x, y) = ax+ by (x, y ∈ X),

where a > 0 and b > 0, are E-distances on X . As seen, none of these three functions
fulfills p(x, x) = 0 for all x ∈ X , and just p2 is symmetric.

Remark 1. Note that even a symmetric E-distance on a uniform space is not a metric
or even a pseudometric in general, i.e. a symmetric E-distance may not be vanished on
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the diagonal. For instance, if (X, d) is a metric space and c > 0, then the function p :
X × X → [0,+∞) defined by the rule p(x, y) = d(x, y) + c for all x, y ∈ X is
a symmetricE-distance on the uniform space (X,Ud). Indeed, the symmetry of p and the
triangular inequality for p follow immediately from the symmetry of d and the triangular
inequality for d, respectively. Furthermore, given any ε > 0, it suffices to put δ = c/2
in the definition of an A-distance. But p vanishes nowhere on the diagonal of X because
p(x, x) = c > 0 for all x ∈ X .

A sequence {xn} inX is called p-convergent to an x ∈ X , denoted by xn
p→ x, when-

ever p(xn, x) → 0 as n → ∞, and p-Cauchy whenever p(xm, xn) → 0 as m,n → ∞.
Finally, the uniform space X is said to be p-complete if each p-Cauchy sequence in X is
p-convergent to a point of X .

In the next lemma, a useful property of A-distances is given in separated uniform
spaces.

Lemma 1. (See [1].) Let p be an A-distance on a separated uniform space X and {xn}
be a sequence in X . If xn

p→ x ∈ X and xn
p→ y ∈ X , then x = y. In particular, if

x, y, z ∈ X and p(z, x) = p(z, y) = 0, then x = y.

We are now going to recall some notions in graph theory as well as the way that
a uniform space is endowed with a directed graph. For more details, the reader is referred
to [7, 8].

Let X be a uniform space and G be a directed graph such that the set V (G) of the
vertices of G coincides with X , i.e. V (G) = X , and the set E(G) of the edges of G
contains all loops, i.e. E(G) ⊇ ∆(X), but no parallel edges. In this case, the graphG can
be simply denoted by the pair G = (V (G), E(G)) = (X,E(G)). If G is such a graph,
then it is said that the uniform space X is endowed with the graph G.

By the notation G̃, it is meant the undirected graph obtained from G by ignoring the
directions of the edges of G, i.e.

V (G̃) = X and E(G̃) =
{
(x, y) ∈ X ×X: (x, y) ∈ E(G) ∨ (y, x) ∈ E(G)

}
.

A graph G = (V (G), E(G)) is said to be symmetric if (x, y) ∈ E(G) implies
(y, x) ∈ E(G) for all x, y ∈ V (G). It is clear that the undirected graph G̃ is symmetric.

A graph H = (V (H), E(H)) is said to be a subgraph of G = (V (G), E(G))
whenever V (H) ⊆ V (G), E(H) ⊆ E(G), and if (x, y) ∈ E(H), then we have x, y ∈
V (H) for all x, y ∈ V (G).

Finally, if x and y are two vertices of a graph G = (V (G), E(G)), then a finite
sequence (xj)

N
j=0 of N + 1 vertices of G is called a path in G from x to y of length N

whenever x0 = x, xN = y and (xj−1, xj) ∈ E(G) for j = 1, . . . , N . The graph G is
called weakly connected if there exists a path in G̃ between each two vertices of G.

2 Main results

Suppose that X is a uniform space endowed with a graph G and T : X → X is any
arbitrary mapping. Throughout this section, the set of all fixed points of T is denoted by
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Fix(T ), and by CT , it is meant the set of all points x ∈ X such that (Tmx, Tnx) ∈ E(G̃)
for all integers m,n > 0. According to these notations, it is clear that Fix(T ) ⊆ CT .

We first introduce the concept of KannanG-p-contractions in uniform spaces endowed
with a graph using an A-distance.

Definition 2. Let p be an A-distance on a uniform space X endowed with a graph G. We
say that a mapping T : X → X is a Kannan G-p-contraction if

(K1) T preserves the egdes of G, i.e. (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for
all x, y ∈ X;

(K2) there exist α, β > 0 with α+ β < 1 such that

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty)

for all x, y ∈ X with (x, y) ∈ E(G).

If T : X → X is a Kannan G-p-contraction, then we call α and β in (K2) the contractive
constants of T .

Remark 2. Let p be a symmetric A-distance on a uniform space X endowed with a sym-
metric graph G and T : X → X be a Kannan G-p-contraction. If x, y ∈ X are such that
(x, y) ∈ E(G), then by the symmetry of G, we have (y, x) ∈ E(G), and so from (K2),
we get

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty)

and
p(Ty, Tx) 6 αp(y, Ty) + βp(x, Tx),

where α, β > 0 are the contractive constants of T . Because p is symmetric, we have

p(Tx, Ty) 6
α+ β

2

[
p(x, Tx) + p(y, Ty)

]
.

Since T preserves the edges of G, it follows that T is a Kannan G-p-contraction whose
contractive constants are equal. Note that since α + β < 1, it follows that the new
contractive constant (α+ β)/2 belongs to [0, 1/2).

Hence, whenever the A-distance p and the graph G are both symmetric, one can as-
sume without loss of generality that every Kannan G-p-contraction has equal contractive
constants.

We now give some examples of Kannan G-p-contractions in metric and uniform
spaces endowed with a graph.

Example 1. Let p be anA-distance on an arbitrary uniform spaceX endowed with a graph
G and x0 be a point in X such that p(x0, x0) = 0. Since (x0, x0) ∈ E(G), it follows
that the constant mapping x T7→ x0 preserves the edges of G, and since p(x0, x0) = 0,
it follows that T satisfies (K2) for any arbitrary α, β > 0 with α + β < 1. Hence T
is a Kannan G-p-contraction whose contractive constants are any α, β > 0 satisfying
α+ β < 1. In fact, each constant mapping on X is a Kannan G-p-contraction if and only
if p(x, x) = 0 for all x ∈ X , i.e. p vanishes on the diagonal of X .
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Example 2. Let (X, d) be a metric space and T : X → X be a mapping satisfying

d(Tx, Ty) 6 αd(x, Tx) + βd(y, Ty) (x, y ∈ X),

where α, β > 0 and α + β < 1. If we consider the E-distance d on the uniform space
(X,Ud), then T is a Kannan G0-d-contraction, where G0 is the complete graph with
V (G0) = X , i.e. E(G0) = X ×X . Moreover, since the E-distance d and the complete
graph G0 are both symmetric, it follows by Remark 2 that one can assume without
loss of generality that α = β, i.e. T has equal contractive constants. Hence Kannan
G-p-contractions are a generalization of Kannan contractions from metric to uniform
spaces endowed with a graph. The existence and uniqueness of fixed points for Kannan
contractions were investigated by Kannan in the 1960s (see [9, 10]).

Example 3. Let p be an A-distance on a partially ordered uniform space X , i.e. a uniform
space X equipped with a partial order 4, and define the poset graphs G1 and G2 by

V (G1) = X and E(G1) =
{
(x, y) ∈ X ×X: x 4 y

}
,

and G2 = G̃1. Then Kannan G1-p-contractions are precisely the ordered Kannan p-con-
tractions, i.e. the nondecreasing mappings T : X → X for which there exist α, β > 0
with α+ β < 1 such that

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty)

for all x, y ∈ X with x 4 y. Also, Kannan G2-p-contractions are precisely the mappings
T : X → X which are order-preserving (i.e. the mappings which map comparable
elements of X onto comparable elements), and there exist α, β > 0 with α + β < 1
such that

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty)

for all comparable elements x, y ∈ X .

Remark 3. Let X be a uniform space and T : X → X be any arbitrary mapping. If X is
endowed with the complete graph G0, then CT = X . Also, if X is endowed with either
G1 or G2 induced by a partial order 4, then the set CT consists of all elements x ∈ X
such that Tmx and Tnx are comparable for all integersm,n > 0. In particular, whenever
T is either monotone nondecreasing or monotone nonincreasing, then an x ∈ X belongs
to CT if and only if it satisfies either x 4 Tx or Tx 4 x.

The concept of Banach G-p-contractions can be defined in uniform spaces endowed
with a graph using an A-distance as a counterpart of Banach G-contractions in metric
spaces endowed with a graph introduced by Jachymski (see [8, Def. 2.1]). Indeed, if p is
an A-distance on a uniform space X endowed with a graph G, then an edge-preserving
mapping T : X → X is called a Banach G-p-contraction if there exists an α ∈ [0, 1)
such that p(Tx, Ty) 6 αp(x, y) for all x, y ∈ X with (x, y) ∈ E(G).

In the next example, we see that the concepts of Banach and KannanG-p-contractions
are independent, i.e. there exists a Banach G-p-contraction which fails to be a Kannan
G-p-contraction and vice versa.
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Example 4. Let (X, ‖·‖) be a nontrivial real normed space and uniformize X with the
trivial uniformity, i.e. U = {X ×X}. It is clear that the function p : X ×X → [0,+∞)
defined by

p(x, y) = ‖x− y‖2 (x, y ∈ X)

is an A-distance on X (in fact, each p : X ×X → [0,+∞) defines an A-distance on the
trivial uniform space X). Now, pick a nonzero vector x0 ∈ X and consider the mapping
T : X → X with Tx = (1/2)x0 if x 6= x0, and Tx0 = (1/10)x0. Then T is a Kannan
G0-p-contraction with the contractive constants α = 64/81 and β = 16/81 (note that
α+ β = 80/81 < 1). In fact, given any x, y ∈ X , we have the following three cases:

Case 1. If either x = y = x0 or x, y 6= x0, then p(Tx, Ty) = 0, and so there remains
nothing to prove;

Case 2. If x = x0 and y 6= x0, then we have

p(Tx, Ty) =
4

25
‖x0‖2 6

16

25
‖x0‖2 +

16

81

∥∥∥∥y − 1

2
x0

∥∥∥∥2
=

64

81
p(x, Tx) +

16

81
p(y, Ty);

Case 3. Finally, if x 6= x0 and y = x0, then we have

p(Tx, Ty) =
4

25
‖x0‖2 6

64

81

∥∥∥∥x− 1

2
x0

∥∥∥∥2 + 4

25
‖x0‖2

=
64

81
p(x, Tx) +

16

81
p(y, Ty).

It is worth mentioning that since the A-distance p and the complete graph G0 are
both symmetric, it follows from Remark 2 that T is also a Kannan G0-p-contraction with
the contractive constants α = β = 40/81 ∈ [0, 1/2) (note that 40/81 ∈ [0, 1/2)).
On the other hand, T fails to be a Banach G0-p-contraction because given any arbitrary
α ∈ [0, 1), we have

p

(
Tx0, T

3

5
x0

)
=

4

25
‖x0‖2 >

4α

25
‖x0‖2 = αp

(
x0,

3

5
x0

)
.

Conversely, it is clear that the mapping S : X → X defined by the rule Sx = (2/3)x
for all x ∈ X is a Banach G0-p-contraction with α = 2/3. But given any arbitrary
α, β > 0 with α+ β < 1, we have

p(Sx, S0) =
4

9
‖x‖2 > α

9
‖x‖2 = αp(x, Sx) + βp(0, S0)

(
x ∈ X \ {0}

)
,

i.e. S is not a Kannan G0-p-contraction. More generally, there is no graph G such that
(x, 0) ∈ E(G) for some nonzero vector x ∈ X and the mapping S is a Kannan G-p-
contraction.
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Remark 4. Note that the mapping T in Example 4 is not p-continuous on X , i.e. if {xn}
is a sequence in X p-convergent to an x ∈ X , then we may not have Txn

p→ Tx. For
instance, the sequence {(1 + 1/n)x0} is p-convergent to x0 because

p(xn, x0) =

∥∥∥∥(1 + 1

n

)
x0 − x0

∥∥∥∥2 =
1

n2
‖x0‖2 → 0

as n→∞. But {T (1 + 1/n)x0} fails to p-converge to Tx0 = (1/10)x0 because

p(Txn, Tx0) =

∥∥∥∥ 1

10
x0 −

1

2
x0

∥∥∥∥2 =
4

25
‖x0‖2 > 0

for all integers n > 1. Hence despite Banach G0-p-contractions are all p-continuous
on X , a Kannan G0-p-contraction need not be a p-continuous mapping.

We are now ready to discuss the fixed points of Kannan G-p-contractions. We begin
with an interesting and important property which is needed in the sequel.

Proposition 1. Let p be an A-distance on a uniform space X endowed with a graph G
and T : X → X be a Kannan G-p-contraction. Then p(x, x) = p(y, y) = p(x, y) = 0
for all x, y ∈ Fix(T ) with (x, y) ∈ E(G).

Proof. Suppose that x, y ∈ Fix(T ) are such that (x, y) ∈ E(G). Note first that since
(x, x) ∈ E(G), it follows by (K2) that

p(x, x) = p(Tx, Tx) 6 αp(x, Tx) + βp(x, Tx) = (α+ β)p(x, x),

where α, β > 0 are the contractive constants of T . Since α + β < 1, it follows that
p(x, x) = 0. Similarly, one can show that p(y, y) = 0.

Now, using (K2) once more and the observation above, we have

p(x, y) = p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty) = 0.

Hence p(x, y) = 0.

Remark 5. According to Proposition 1, ifX is a uniform space endowed with a graphG,
p is anA-distance onX , and there exists a KannanG-p-contraction T : X → X such that
x ∈ Fix(T ), then p(x, x) = 0. Moreover, if X is separated, then Proposition 1 ensures
that there is not KannanG-p-contraction with two distinct fixed points x, y ∈ X such that
(x, y) ∈ E(G). Roughly speaking, no Kannan G-p-contraction can keep the vertices of
any edge of G fixed. In particular, in partially ordered separated uniform spaces equipped
with an A-distance p, there is neither an ordered Kannan p-contraction nor a Kannan
G2-p-contraction having two distinct comparable fixed points.

To prove the existence of a fixed point for a Kannan G-p-contraction, the following
lemma is used.
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Lemma 2. Let p be an A-distance on a uniform space X endowed with a graph G and
T : X → X be a Kannan G-p-contraction. Then p(Tnx, Tn+1x)→ 0 as n→∞ for all
x ∈ X such that (x, Tx) ∈ E(G).

Proof. Suppose that x ∈ X is given such that (x, Tx) ∈ E(G). Since T preserves the
edges of G, it follows by induction that (Tnx, Tn+1x) ∈ E(G) for all integers n > 0,
and so by (K2), we have

p
(
Tnx, Tn+1x

)
6 αp

(
Tn−1x, Tnx

)
+ βp

(
Tnx, Tn+1x

)
for all integers n > 1, where α, β > 0 are the contractive constants of T . Because
α+ β < 1, we have α/(1− β) < 1, and hence by induction, we get

p
(
Tnx, Tn+1x

)
6

α

1− β
p
(
Tn−1x, Tnx

)
6 · · ·

6

(
α

1− β

)n

p(x, Tx)→ 0

as n→∞.

Definition 3. Let p be an A-distance on a uniform space X endowed with a graph G and
T : X → X be a mapping. We say that:

(i) T is orbitally p-continuous on X if for all x, y ∈ X and all sequences {an} of
positive integers, T anx

p→ y as n→∞ implies T (T anx)
p→ Ty as n→∞.

(ii) T is orbitally p-G-continuous on X if for all x, y ∈ X and all sequences {an}
of positive integers satisfying (T anx, T an+1x) ∈ E(G) for n = 1, 2, . . . ,
T anx

p→ y as n→∞ implies T (T anx)
p→ Ty as n→∞.

(iii) T is a p-Picard operator if T has a unique fixed point x∗ ∈ X and Tnx
p→ x∗ for

all x ∈ X .
(iv) T is a weakly p-Picard operator if {Tnx} is p-convergent to a fixed point of T

for all x ∈ X .

It is clear that each p-Picard operator is weakly p-Picard but the converse is true if and
only if the fixed point is unique.

Our first main theorem guarantees the existence of a fixed point for a Kannan G̃-p-
contraction T defined on a p-complete separated uniform space X endowed with a graph
G and equipped with an A- or an E-distance p whenever T is orbitally p-G̃-continuous
on X or the triple (X, p,G) has a suitable property.

Theorem 1. Let p be an A-distance on a separated uniform space X endowed with
a graph G such that X is p-complete and T : X → X be a Kannan G̃-p-contraction.
Then T |CT

is a weakly p-Picard operator if one of the following assertions holds:

(i) T is orbitally p-G̃-continuous on X;
(ii) p is a symmetric E-distance on X and the triple (X, p,G) satisfies the following

property:
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(?) If {xn} is a sequence inX , p-convergent to an x ∈ X such that (xn, xn+1) ∈
E(G̃) for all integers n > 1, then there exists a subsequence {xnk

} of {xn}
such that (xnk

, x) ∈ E(G̃) for all integers k > 1.

In particular, whenever (i) or (ii) holds, then Fix(T ) 6= ∅ if and only if CT 6= ∅.

Proof. If CT = ∅, then there remains nothing to prove. Otherwise, note first that since
T preserves the edges of G̃, it follows immediately that CT is T -invariant, i.e. T maps
CT into itself.

Now, suppose that x ∈ CT is given. We are first going to show that the sequence
{Tnx} is p-Cauchy. To this end, note that by (K2), we have

p
(
Tmx, Tnx

)
6 αp

(
Tm−1x, Tmx

)
+ βp

(
Tn−1x, Tnx

)
for all integers m,n > 1, where α, β > 0 are the contractive constants of T . Since
(x, Tx) ∈ E(G̃) and T is a Kannan G̃-p- contraction, it follows immediately by Lemma 2
that p(Tm−1x, Tmx) → 0 as m → ∞ and p(Tn−1x, Tnx) → 0 as n → ∞. Hence
p(Tmx, Tnx)→∞ asm,n→∞, i.e. {Tnx} is p-Cauchy. SinceX is p-complete, there
exists an x∗ ∈ X (depends on x) such that Tnx

p→ x∗ as n→∞.
We shall show that x∗ is a fixed point for T . So, suppose first that T is orbitally p-G̃-

continuous on X . Because x ∈ CT , we have (Tnx, Tn+1x) ∈ E(G̃) for all integers
n > 0, and so Tn+1x

p→ Tx∗ as n → ∞. Therefore, because X is separated, Lemma 1
implies that Tx∗ = x∗.

On the other hand, if p is a symmetric E-distance on X and the triple (X, p,G)
satisfies Property (?), then there exists a strictly increasing sequence {nk} of positive
integers such that (Tnkx, x∗) ∈ E(G̃) for all integers k > 1. Therefore, from (K2), we
get

p
(
Tnk+1x, Tx∗

)
6 αp

(
Tnkx, Tnk+1x

)
+ βp(x∗, Tx∗)

6 αp
(
Tnkx, Tnk+1x

)
+ β

(
p
(
x∗, Tnk+1x

)
+ p
(
Tnk+1x, Tx∗

))
= αp

(
Tnkx, Tnk+1x

)
+ β

(
p
(
Tnk+1x, x∗

)
+ p
(
Tnk+1x, Tx∗

))
for all integers k > 1. Hence

p
(
Tnk+1x, Tx∗

)
6

α

1− β
p
(
Tnkx, Tnk+1x

)
+

β

1− β
p
(
Tnk+1x, x∗

)
(k > 1).

Because (x, Tx) ∈ E(G̃), letting k → ∞, we find from Lemma 2 that p(Tnkx,
Tnk+1x) → 0. So Tnk+1x

p→ Tx∗. Since X is separated, Lemma 1 implies again that
Tx∗ = x∗.

Finally, it is clear that x∗ ∈ Fix(T ) ⊆ CT , and consequently, T |CT
is a weakly

p-Picard operator.

Setting G = G0 in Theorem 1, we obtain the following generalization of Kannan’s
fixed point theorem [9] from metric uniform spaces equipped with anA- or anE-distance.
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Corollary 1. Let p be an A-distance on a separated uniform space X such that X is
p-complete and a mapping T : X → X satisfies

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty) (2)

for all x, y ∈ X , where α, β > 0 and α+ β < 1. Then T is a p-Picard operator if either
T is orbitally p-continuous (in particular, p-continuous) or p is a symmetric E-distance
on X .

Proof. The setCT is nonempty becauseCT = X . Therefore, by Theorem 1, the mapping
T = T |CT

is a weakly p-Picard operator. In particular, T has a fixed point in X . To show
that T is a p-Picard operator, we prove that the fixed point of T is unique. To this end,
suppose that x∗, y∗ ∈ X are two fixed points for T . Then by (2) and Proposition 1, we
have p(x∗, x∗) = p(x∗, y∗) = 0. Since X is separated, it follows by Lemma 1 that
x∗ = y∗.

Since G̃1 = G̃2 = G2, setting G = G1 or G = G2 in Theorem 1, we obtain
the ordered version of Kannan’s fixed point theorem in partially ordered uniform spaces
equipped with an A- or an E-distance as follows:

Corollary 2. Let p be an A-distance on a partially ordered separated uniform space X
such that X is p-complete and a mapping T : X → X satisfies

p(Tx, Ty) 6 αp(x, Tx) + βp(y, Ty)

for all comparable elements x, y ∈ X , where α, β > 0 and α + β < 1. Then the
restriction of T to the set of all elements x ∈ X such that Tmx and Tnx are comparable
for all integers m,n > 0 is a weakly p-Picard operator if one of the following assertions
holds:

(i) T is orbitally p-G2-continuous on X;
(ii) p is a symmetric E-distance on X and the partially ordered uniform space X

satisfies the following property:
If {xn} is a sequence in X with successive comparable terms, p-convergent to
an x ∈ X , then there exists a subsequence of {xn} whose terms are compara-
ble to x.

In particular, whenever (i) or (ii) holds, then Fix(T ) 6= ∅ if and only if there exists an
x ∈ X such that Tmx and Tnx are comparable for all integers m,n > 0.

Now, we give two sufficient conditions for the uniqueness of the fixed point for
a Kannan G̃-p-contraction.

Theorem 2. Let p be an A-distance on a separated uniform space X endowed with
a graph G and T : X → X be a Kannan G̃-p-contraction. If either for all x, y ∈ X there
exists a z ∈ X such that (z, Tz), (z, x), (z, y) ∈ E(G̃), or the subgraph of G with the
vertices Fix(T ) is weakly connected, then T has at most one fixed point in X .

http://www.mii.lt/NA
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Proof. Suppose that x∗, y∗ ∈ X are two fixed points for T . If there exists a z ∈ X such
that (z, Tz), (z, x∗), (z, y∗) ∈ E(G̃), then by (K2), Proposition 1 and Lemma 2, we have

p
(
Tnz, x∗

)
= p
(
Tnz, Tnx∗

)
6 αp

(
Tn−1z, Tnz

)
+ βp

(
Tn−1x∗, Tnx∗

)
= αp

(
Tn−1z, Tnz

)
→ 0

as n → ∞, where α, β > 0 are the contractive constants of T . Therefore, Tnz
p→ x∗.

Similarly, one can show that Tnz
p→ y∗, and because X is separated, Lemma 1 ensures

that x∗ = y∗.
On the other hand, if the subgraph ofG with the vertices Fix(T ) is weakly connected,

then there exists a path (xj)
N
j=0 in G̃ from x∗ to y∗ such that x1, . . . , xN−1 ∈ Fix(T ),

i.e. x0 = x∗, xN = y∗ and (xj−1, xj) ∈ E(G̃) for j = 1, . . . , N . Since E(G̃) contains
all loops, one may assume without loss of generality that the length of (xj)Nj=0, i.e. the
integer N is even. Moreover, by Proposition 1, we have

p(xj−1, xj) = p(xj , xj−1) = 0 for j = 1, . . . , N.

Because N is even, using Lemma 1 finitely many times, we get x∗ = x0 = x2 = · · · =
xN = y∗. Consequently, T has at most one fixed point in X .
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