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Abstract. The peculiarities of the widely applied in practice sprayed water droplets phase transition
cycle are discussed in this article. Theoretical fundamentals of droplets heat and mass transfer
modelling by combined analytical-numerical method and numerical simulation peculiarities are
outlined. Water droplet phase transitions were modelled on the energy flow balance condition basis.
The control mechanism of iterative scheme used to determine the droplet surface temperature was
highlighted. The optimal finite number of members in the infinite integral equation set for droplet
temperature field and its gradient parameter calculation was defined by the numerical experiment.
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1 Introduction

Water in the form of droplets is widely observed in natural phenomena and applied in
technologies. Dispersed in the gas liquid has developed contact surface which ensures
intensive heat and mass transfer between the liquid and gaseous phases. Therefore, water
injection is a powerful tool to suppress the fire front, to regulate the thermal state in the gas
scrubbers, turbochargers, steam superheaters and flame of burners or to protect the surface
from the intense heat flux by biphasic flow curtains, to utilize the latent heat of flue gas by
condensing economizer, to improve operation of various other widely adaptable devices
in thermal technologies.

The definition of heat exchange and mass transfer intensity between dispersed water
and gaseous surrounding is directly related with research of the droplet thermal state and
phase transitions on it’s surface. This droplet problem can already be considered as a clas-
sic [2], but its versatility in thermal technology aspect and very broad variety of trans-
fer processes in droplets and their surrounding still provides researcher’s attention [12].
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In today’s droplet problem research phase, the widely used theoretical studies of transfer
processes are based on analytical and numerical analysis of fundamental equations the
control of which is based on the results of the experimental studies. Droplet problem has
significant components of external and internal tasks. Intensity of heat exchange between
the droplet and its surrounding as well as the phase transitions speed on droplet surface
are defined by solutions of external task.

Whereas these parameters are essential to define the vapour flow pervasive from
evaporating droplet (which is very important parameter for determining the efficiency
of the thermal technologies), therefore external task traditionally is considered to be the
main. Evaluation problem of Stefan’s hydrodynamic flow influence on heat exchange and
the phase transitions intensity raises by solving it. Its solution has old traditions [2], in
which a droplet of convective heat exchange and evaporation tasks are successfully solved
by models based on the similarity theory [1, 10, 11, 14]. It is promising to simulate the
evaporation process by using vapour flux density algebraic solutions that were obtained
analytically [4, 13]. Holistically droplet external task can be considered as unambigu-
ously described if droplet surface temperature temporal function is known TR(τ) and the
parameters of droplets surrounding are determined [8].

The essential role of the function TR(τ) for the liquid droplet phase transition se-
quence in droplet life cycle, which begins at the moment τ = 0 when the liquid is
sprayed of and ends at the moment τf of vaporized droplet extinction, should be taken into
account. When the temperature of sprayed water is lower when the dew point temperature
of surrounding air, the life cycle of water droplets 0 ÷ τf can be splitted into condens-
ing τco , unsteady τue = τuf − τco and equilibrium evaporation phase τee = τf − τuf
transition regimes

0÷ τco ÷ τuf ÷ τf . (1)

The driving force in the condensation phase transition regime can be reflected by dif-
ference between water vapour partial pressure in droplet surrounding gas and near the
droplet surface ∆pv = pv,∞ − pv,R = pv,∞ − ps(TR). During the condensation regime,
the droplet surface warms to the dew point temperature. Unsteady evaporation phase
transition regime starts when the droplet surface heats up to dew point temperature.
During it the droplet temperature increases until it reaches the temperature of equilib-
rium evaporation Tee(τ = τee). At this temperature, condition q+

Σ → q+
ee is satisfied.

The warming droplet thermal state is approaching asymptotically to the state defined by
temperature Tee so unsteady evaporation regime duration τue = τuf − τco can be defined
conditionally agreed on the terms which define the beginning of equilibrium evaporation
regime [7]. However, uncertainty of τue does not cause confusion in cycle (1) modelling,
because intensity of the transfer processes at the end of droplet unsteady evaporation
regime and at the beginning of the equilibrium evaporation regime are close to each
other [6]. Duration of the equilibrium evaporation regime τee = τf −τuf is defined by the
moment of droplet disappearance R(τ → τf ) → 0, and the peculiarities of the function
TR(τ = τuf ÷ τf ) are affected by the droplet heating method [5].

Therefore, the definition of the droplet surface function TR(τ) is the key for droplet
problem solve. It is impossible to define droplet surface temperature in the unsteady phase
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regime only according to solutions of droplet external task. This requires a complex anal-
ysis for transfer processes inside the droplet and its surrounding. The surface temperature
of the droplet can be defined by the energy flux balance condition on the droplet surface,
which requires the matching of the energy flux that approach surface (both from the liquid
and droplet surroundings) with energy flux that leak from it (both to the liquid in the
droplet and the surroundings). Assuming that the droplet is a spherical semitransparent
body with assumed inner and outer surfaces and its inner surface is defined by the radius
R− and the outer by R+ (|R+| = |R−| = R). The symmetrical heat exchange energy
flux balance condition, in the assumptions frame of quasi stationary transfer processes,
can be described by the formal expression

−→q +
Σ

(
R+, τ

)
+−→q −Σ

(
R−, τ

)
+−→q +

f

(
R+, τ

)
= 0. (2)

On the whole, expression (2) is a transcendental equation, because it requires a known re-
lated external and internal droplet problem solution. In order to concretize expression (2),
it is necessary to solve the following problems [6]: the first problem is related with the
description of the intensity of droplet phase transitionsm+

v and the intensity of convective
heating q+

c , considering the influence of Stefan’s hydrodynamic flow; the second is related
to the evaluation of spectral radiation absorption in semitransparent liquid and the optical
effects on the surface of the droplet, while calculating the integral intensity of the radiation
flux qr; the third problem is caused by the need to calculate the unsteady temperature field
gradient in the droplet gradTr=R in the conditions of combined heat exchange processes
in the droplet. These problems are related. In general, the heat fluxes in expression (2)
are described by the system of nonlinear integro-differential equations. Its solution can be
defined by iterative methods.

In the articles cycle, it is expected to reveal the regularities of interaction of water
droplet combined heat and mass transfer processes and to highlight the effect of droplet
heat exchange conditions impact. The aim of this work is to reveal the essence of com-
bined analytical-numerical research methods used in modelling of the droplet problem
and to highlight the control and optimization aspects of the iterative numerical scheme.

2 Methodology of droplet problem solving

The methodology is based on the droplet surface temperature iterative calculations by
equation (2). Equation (2) is concretized by expressing it in a form of integro-differential
equations system that is further transformed to a system of algebraic and integral equa-
tions. Such system is solved numerically. Temporal functions of droplet surface tem-
perature and other heat and mass transfer parameters P (τ) are defined. The combined
analytical and numerical droplet problem method basics are developed in works [5, 11].
The main advantage of this method is to ensure the stability of numerical schemes in the
integral type expression (2) and easily controlled convergence.

There are two development trends of combined analytical and numerical methods used
in solving the droplet problem. They are separated by the researcher’s relationship with
the methodology of calculating the droplet surface temperature function TR(τ).
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In the first trend, the idea of droplet surface temperature calculation using iterative
methods is developed [5]. Despite the susceptibility of machine computing time, the
iterative method allows to seek numerical results that are close to analytical.

In the second case, the idea of replacing droplet surface temperature to effective
temperature Tef is developed [11]. The latter is described by empirical expressions in
algebraic form by known parameters of the droplet and its surroundings. Afterwards,
numerical research schemes that are not very susceptible to computation time are formed.
They are easily adapted in complex numerical modelling schemes of dispersed liquid
combustion processes in thermal equipment. However, droplet models that are based on
temperature Tef allow to approximate calculations of≈ P (τ) functions, which reliability
is evaluated by comparative analysis by experiment or, in the first case, with defined P (τ)
functions.

This article continues the direction of research of droplet internal task developed
in article [5]. Phase transition flux is considered to be positive in liquid evaporation
regime. The heat flux vectors on the surface of the droplet are defined by the temperature
difference ∆TR+ = Tg − TR and droplet temperature gradient gradTr=R− . The energy
balance condition (2) is rewritten as follows:

(q+
r − q−r ) +

λvgNuf

2R
(Tg − TR)−m+

v L− k−c λl
∂Tr
∂r

∣∣∣∣
r=R−

= 0. (3)

The first member of expression (3) reflects the radiation flux on the surface of the droplet,
defined by model [16]. It is granted by the thermal emission in the part of the spectrum
where the light absorption coefficient χω is very high (χω > 106 m−1). Assuming that
q+
r −q−r ∼= 0, seems that radiation flux does not effect on the function TR(τ), but radiative

energy that is absorbed inside the droplet change temperature field inside it.
External convective heat flux is evaluated by using Nuselt number for solid parti-

cle. Influence of Stefan’s hydrodynamic flow is evaluated by using corrective function
fBT

based on Spalding transfer parameter BT [15]. Depending on droplet movement
conditions classical function fBT

= ln(1 + BT )/BT or empirical correlation fBT
=

(1 +BT )−0.7 can be applied. Combined them model of Abramzon and Sirignano [1] was
applied at present paper.

Heat flux on the surface of the droplet caused by phase transition is defined by the
analytical water vapor flux density m+

v model [4]

q+
f = m+

v L

= L
Dvgµv

Tvg,RRµR

[
pv,R − pv,∞ +

µv
µg

(
p ln

p− pv,∞
p− pv,R

− pv,R + pv,∞

)]
, (4)

where Dvg – mass diffusivity; L – latent heat of evaporation; µv , µg – molecular mass
of water vapour and surrounding gas; Rµ – universal gas constant; R – droplet radius;
p, pv,R, pv,∞ – pressure of surrounding, vapour on the droplet surface and far from it,
respectively. The main problem in expression (3) is the definition of droplet unsteady
temperature field gradient. The main case of heat exchange in the droplet is defined by
a system of the following equations: the integro-differential energy equation as well as
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Navier–Stocks differential equations. In the case of convective heat transfer, this system
is not solved analytically and its numerical solution is complicated. Therefore, alternative
solutions are searched for. In the droplet problem, these solutions are complex analytical
and numerical research methods. Often, they are based on by the model of radiative-
conductive heat spread in the droplet. A possible effect of liquid circulation on the heat
spread in the droplet is evaluated by the effective heat conductivity coefficient λef =
λl · k−c . The convection corrective coefficient k−c is, in turn, described by the empirical
dependence from the Peclet number for the liquid k−c = fc(Pel) [1].

The non-stationary temperature field in a droplet heated by conduction and radiation
that is described by the energy equation

ρlcp,l
∂T

∂τ
=

1

r2

∂

∂r

(
r2λl

∂T

∂r

)
+ Fqr , (5)

where ρl, cp,l, λl – liquid density, mass specific heat and thermal conductivity. Source
function in expression (5) takes into account the effect of semitransparent liquid absorbing
radiation heat on the thermal state of the droplet. The expression of function Fqr depends
on the model of radiation flux. Usually, models qr are based on theories of geometrical
optics or electromagnetic waves. In the first case, the density of local radiation flux in the
droplet is described, while in the second case, the description of heat flux in the volume
of the droplet is deemed satisfactory [16]. The local radiative flux in the droplet described
by integro-differential equation:

qr = 2π

∞∫
0

π∫
0

Iω sinϕ cosϕdϕdω,
dIω
ds

= χω
(
n2
ωIω0 − Iω

)
, (6)

where ϕ – characteristic angle of thermal radiation in sphere (rad); ω – wave number; Iω ,
Iω0 – intensity of radiation of a grey and a black body; nω – spectral index of refraction;
s – freely selected direction. The system of equations (5), (6) can be solved only by
numerical iterative method. Numerical scheme for qr(r) calculation was established ac-
cording to equation (6) integral solution [9]. When forming the iterative numerical solu-
tion scheme of the droplet problem, the local radiative flux qr,i,j,it in droplet at iteration
it is defined by the temperature field Tr,i,j,it−1 calculated in the previous iteration it − 1.
Here i – index of time in a numerical scheme, j – index of radial coordinate, it – index of
iteration. Radiative flux source function

Fqr = − 1

r2

∂

∂r

(
r2qr

)
. (7)

is considered to by defined.
Initial conditions for system (5), (7) are R(τ = 0) = R0, T (r, τ = 0) = T0.

Boundary condition is formulated by unknown function of droplet surface temperature
TR(τ):

T (r = R, τ) = TR(τ). (8)
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Assuming thermal diffusivity λ/(cpρ) = a = a2
1 and ∂λl(r)/∂r ≈ 0, and by using

variable Θ = r(T −TR) system (5), (7), (8) is easily reformed to Dirichlet carryover task
with a defined source function [4]

∂Θ

∂τ
= a2

1

∂2Θ

∂r2
+ Fsor , (9)

where Fsor = −(1/cρ,lρlr)(∂(r2qr)/∂r)− r(dTR/dτ). Then, the unsteady temperature
field of the droplet is defined by the infinite series of integral equations

T (r, τ) = TR(τ) +
2

r

∞∑
n=1

sin
nπr

R

τ∫
0

fn exp

[
−a
(
nπ

R

)2

(τ − τ∗)
]

dτ∗, (10)

in which, the function of member fn of the infinite sum evaluates the rate of heating and
intensity of radiation absorption within the droplet [5]:

fn = (−1)n
R

nπ

dTR
dτ

+
1

Rcp,lρl

R∫
0

qr

(
nπr

R
cos

nπr

R
− sin

nπr

R

)
dr. (11)

Differentiating expression (10) and using the condition r = R, an integral equation for
calculating the temperature field gradient in expression (3) is formed:

T (r, τ)

∂r

∣∣∣∣
r=R−

=
2π

R2

∞∑
n=1

(−1)nn

τ∫
0

fn exp

[
−a
(
nπ

R

)2

(τ − τ∗)
]

dτ∗. (12)

The rate at which the mass of the droplet changes is determined by the changing water
vapour flux during phase transitions:

dMl

dτ
= −4πR2m+

v . (13)

Volume of the droplet is changing also because of thermal expansion.
System (3), (4), (8), (10)–(13) is finally defined by using for the droplet Nu number

description that is known from empirical equations [1] for hard particles. For the droplet
being heated by conduction (k heat transfer) Nuf = 2fBT

. In the case of complex
heat transfer by radiation and conduction (k + r heat transfer), the system needs to be
supplemented by the local radiation flux for the droplet model [5, 9].

System (3), (4), (8), (10)–(13) is solved numerically. During phase transitions the
droplet diameter changes. Therefore, the complex heat transfer carryover is conveniently
analyzed in coordinates Fo and η = r/R, ensuring the unit duration of the phase transition
mode that’s under observation as well as a constant unit radius η = (r = R)/R = 1 of
the droplet within selected regime. Non-dimensional droplet phase transition interval is
defined by a modified Fourier number

Fo =
Fo

Fofv ,k
. (14)
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The time grid of the numerical scheme is graded based on the modified Fourier number
coordinate, changing i from 1 to I − 1:

Fo =
i− 1

I − 1
, when

I∑
i=2

(Foi − Foi−1) = 1. (15)

The Fourier number Fo = (aet/R
2
0)τ is calculated in respect of standard liquid – water

at 278 K temperature [6]. The Fourier number is calculated in respect of standard liquid
Fo = (aet/R

2
0)τ . As the normalizing number Fofv ,k can be used any Fourier number

evaluated in the droplet life cycle characteristic moments.
In the non-dimensional unit radius of the droplet η = 0÷1, the integer J of spherically

symmetrical cuts is adopted and the numerical scheme radial coordinate grid is graded by
changing j from j = 1 to j = J − 1:

ηj =
j − 1

J − 1
, when

J∑
j=2

(ηj − ηj−1) = 1. (16)

When calculating the non-stationary temperature field and its gradient by expres-
sions (10) and (12), it is necessary to decide on the number N , which is the number
of assessable finite members in the infinity integral equation series.

Then, the integrals in expressions (10)–(12) can be changed to finite integral sums:

R

J∑
j=2

qjr

ηj∫
ηj−1

(
nπη cos(nπη)− sin(nπη)

)
dη, (17)

R2
0

aet

I∑
i=2

f in

Foi∫
Foi−1

exp

[
−(nπ)2 a

aet

R2
0

R2
(Fo− Fo∗)

]
dFo∗. (18)

Integrals in sums of expressions (17), (18) are easily solved analytically, when

qjr =
qr,j−1 + qr,j

2
, f in =

fn,i−1 + fn,i
2

. (19)

For each Foi>1 moment in time, the iterative it cycle is executed in order to define the
surface temperature TR,i,it of the droplet. In order to do that, expression (3) is minimized.
Method of steepest descent is applied. It is considered that TR,i = TR,i,it=IT and the it-
erative cycle ends, when in the iteration it = IT the calculated approaching and receding
heat flux on the surface of the droplet meet the condition[

1−
q−Σ,it + q+

f ,it

q+
Σ,it

]
· 100% < δacc . (20)

In this condition, (20) heat flux that spreads towards the droplet surface is considered
to be positive. In each iterative cycle, the droplet parameters in Fourier P (Foi) and in
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real time P (τi) scales are calculated. To ensure the stability of the numerical scheme, in
the iterative it cycle, the diameter of the droplet is not changed: 2Ri,it = 2Ri−1. The
change of droplet dimension ∆Ri = Ri − Ri−1 is calculated by expression (13), when
the temperature TR,i is already defined in the iterative cycle. A new iterative cycle begins
after making the step ∆Foi. The numerical experiment ends when planed iterative cycles
are completed, the cycle it i=1 or, when the radius of the vaporizing droplet becomes
Ri < 5 · 10−6 m. Geometrical optics theory is not valid for smaller droplets and it is
necessary to evaluate the influence of the Knudsen layer for their heat exchange and phase
transitions. In the droplet model, under discussion the influence of the Knudsen layer is
not assessed.

The reliability of the numerical scheme depends on the quality of its grid. It is very
important to properly choose the dimensionless coordinates. When calculating the non-
stationary temperature field and its gradient by expressions (10) and (12), it is necessary
to decide on the number N , which is the number of assessable members in the infinity
integral equation series. Thus before η and Fo grid optimisation the optimal number of
infinite sum members Nop should be defined. The numerical scheme control system and
defined optimal number of infinite sum members N = Nop are presented in this paper.
These results allow further optimization of the numerical scheme.

3 Control of numerical schemes and definition of Nop

For the control mechanism of the numerical scheme and defining the optimal number
of members in the infinite sum, water droplet unsteady phase transition cycle in the heat
exchange k and k+r cases was analysed. Heating by conduction was modelled following
presumption that qr,j = 0 and Nu = 2. Physical properties of vapour gas mixture were se-
lected depending on the temperature which satisfies the 1/3 rule: T = TR+(Tg−TR)/3.
In the case of combined heating by conduction and radiation, an assumption of absolutely
black external radiation source of the droplet surrounding temperature was used. The
local radiation flux inside the droplet was calculated according to the methodology [5].
Optical effects on droplet surface and complex refraction index peculiarities in radiation
spectrum [3] were taken into account.

Unsteady phase transitions of water droplet with initial diameter of 150 · 10−6 m and
temperature T0 = 290 K sprayed in the dry (pv,∞ = pv,∞/p = 0) and wet (pv,∞ =
0.25) air with parameters (pressure 0.1 MPa and temperature 1000 K) were modelled.
Values of parameters J = 81 and I = 41 were assumed in the numerical scheme grid,
when Fouf ,k = 0.7. Considering the thermal radiation, the spectrum range quantified by
wave numbers ω = 1/lb from ω1 = 104 m−1 to ω2 = 1.25 · 106 m−1 was selected. The
linear grid of the radiation flux calculation scheme

∑M−1
m=1 (ωm+1−ωm) = ω2−ω1 ensures

heightened attention on short-wave area. In this area, the spectral radiation is intensive
and sufficient changes in water optical properties occur [3]. The details of radiation flux
calculations will be revealed more in depth in further article of this cycle.

The physical properties of water and air, that are necessary for modelling are defined
by linearly interpolating already known array of experimental data of properties. The
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saturated water vapor pressure and temperature function ps(T ), in the interval of droplet
surface temperature change 0 ÷ 95 ◦C is defined by an accurate Gerry empirical cor-
relation. Coefficient of water vapor diffusion in the air is defined by known empirical
expressions:

D =

{
5.385 · 10−10 · T 1.88, T < 400 K;

1.732 · 10−9 · T 1.685, T > 400 K.
(21)

In thermal parameter calculation schemes, the number of assessed members of the infinite
sum is changed freely.

3.1 Control of numerical iterative scheme

During the iterative calculations, the functional formed on expression (3) basis is mini-
mized by the method of steepest descent in respect to the droplet temperature TR,i,it . This
temperature is freely chosen by a specialized sub-program from the temperature interval
defined by primary conditions. For each TR,i,it value, heat fuxs on the surface of the
droplet that match each one, are calculated and their compliance to condition (20) are
tested.

During the numerical experiment, the process of each iterative cycle it = 1 ÷ IT is
controlled (Fig. 1). When iterations are nearing the temperature TR,i,it=IT (Fig. 1a) that
meets the balance condition, the heat flux imbalance δ decreases (Fig. 1b). Practically, the
condition δ = 0 cannot be ensured, because δ approaches to zero when Ti,J,it−Ti,J → 0.
This would require to assess temperature changes of around 10−4 what is not reasonable
in the physical sense (Fig. 1a). In the iterative cycles, the balance of heat flux on the
surface condition |δacc | = 0.02% was satisfied. The droplet heat and mass exchange

Figure 1. Control of iterative cycle of droplet surface temperature TR,i defining: (a) deviation of surface
temperature; (b) imbalance of heat flux. TR,i,k: (4) 302.424 K, (9) 312.421 K, (41) 332.686 K; TR,i,k+r :
(4) 303.397 K, (9) 314.399 K, (41) 335 K; ∆Ti,it = 0.001 + |Ti,J,it − Ti,J,IT |; p = 0; N = 151.

Nonlinear Anal. Model. Control, 21(1):135–151
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Figure 2. Imbalance of heat flux on the droplet surface at iteration it = IT , when temperature TR,i is defined:
(a) conductive heating; (b) combined heating.

Figure 3. The droplet heat and mass parameters P change during the iterative cycle. P meaning: (1) TR,
(2) m+

v , (3) q+k , (4) q−k ; TR,i = 312.421 K; m+
v,i = 0.04702 kg/(m2s); q+k,i = 373.943 kW/m2; q−k,i =

261.511 kW/m2; N = 151.

parameters sensitivity to change of assumed in the iterative cycle TR,it is quite different
(Fig. 3). However, an imbalance of heat flux approaching and receding from the surface
of the droplet lower than ±0.02% was ensured independently from the chosen number of
members N of the infinite sum (Fig. 2).

3.2 The optimal number of evaluated members in the infinite sum

In order to define the optimal number Nop of assessable members of the infinite sum,
an in-depth analysis of droplet heat and mass transfer thermal parameters PT (Fo, N)
function has been accomplished. It is justified that Nop worth to associate with the al-
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Figure 4. Droplet warming method influence on its thermal state: (a) in non-stationary evaporation phase; (b) in
its final stage. Fo: (1) 0.075, (2) 0.2, (3) 0.325, (4) 0.5, (5) 0.875, (6) 1.

lowed error of the numerical experiment. For that, a graph of the droplet non-stationary
temperature field function T (η,Fo) was formed for different N values was used.

By the additional numerical experiment was justified that the effect of function fn
calculated with (11) to infinite sums in expressions (10) and (12) is insignificant when
n > 150. Therefore, for function T (η,Fo, N) comparative analysis, the supporting func-
tions consider to be T (η,Fo, N = 151), were used. The influence of the heating method
on supporting functions is obvious (Fig. 4).

For comparative analysis the time moments Foi=9 = 0.2 and Foi=41 = 1 were chosen
(Figs. 6–8). The first moment in time Foi=9 = 0.2 represents the primary intensive droplet
warming stage (Fig. 6a). Absorbed heat flux cause only quantitative changes in droplet
thermal state (Fig. 4a), but temperature field type doesn’t change qualitatively: minimal
temperature occur in the center of the droplet Tmin = TC and maximal on the surface
Tmax = TR. Therefore in the initial heating stage gradient of temperature field is positive.

The other chosen moment in time Foi=41 = 1 represents the final modeled phase
transition regime stage (Fig. 4b). In this stage, the droplet’s thermal condition depends
on the method of droplet heating. In the case of conductive heating (k heat transfer case),
temperature field gradient in the droplet consider to be positive when the droplet’s thermal
state consistently approaches to closely isothermal (Fig. 4b).

In the case of complex heating (k + r heat transfer), the radiation flux absorbed
by the droplet qualitatively affects the droplet’s thermal state in the final non-stationary
evaporation stage and a negative temperature field gradient is formed within the droplet
(Fig. 4). That forms premises for the radiation flux that is absorbed by the droplet to act
in the liquid evaporation process [8].

When researching the effect of the number of assessable members in the infinite sum
on functions Ti,k(η) and Ti,k+r(η), the number of members N was gradually increased
from 5 to 151. Selected numberN has a significant impact on droplet thermal state during
modelled phase transitions. When N is closer to chosen for supporting functions value

Nonlinear Anal. Model. Control, 21(1):135–151



146 G. Miliauskas et al.

Figure 5. Deviation of function T (η,Fo, N) versus T (η,Fo, N = 151) in the outer layers of the droplet.
Heating moment: (a) Fo = 0.2; (b) Fo = 1. ∆Tη = T (η,N)− T (η,N = 151).

Figure 6. Influence of chosen number of evaluated members N in infinite sum on calculated droplet thermal
parameters, when N < 52: (a) Fo = 0.2; Tη,k(η = 1, N = 151) = 312.421 K; Tη,k+r(η = 1, N =

151) = 314.39 K; (b) Fo = 1; Tη,k(η = 1, N = 151) = 332.686 K; Tη,k+r(η = 1, N = 151) =
335.117 K.

N = 151 temperature field graph became closer to T (η,Fo, N = 151). Deviation of
functions T (η,Fo, N) versus T (η,Fo, N = 151) is evaluated by difference ∆TFo,N (η) =
T (η,Fo, N)− T (η,Fo, N = 151). This difference inside the droplet depends on heating
duration and type (Fig. 5).

In the primary warming phase, a smaller number of assessable members N of the
infinite sum determine a higher calculated droplet temperature for model k and k+r cases
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Figure 7. Influence of N on calculated characteristic temperatures: (a) conductive heating k; (b) combined
k + r heating.

(Fig. 6). In the final k warming phase stage, a smaller number of assessable members N
of the infinite sum also determine a higher calculated temperature, however, in the case
of k + r heating, we already notice a lower calculated droplet temperature (Fig. 6b).

Analysis of distribution of functions ∆T k
Fo,N

(η) and ∆T k+r

Fo,N
(η) in graphs has shown

that the choice of Nop is associated with the strictness of requirements that are posed for
the solving of droplet problem. The primary, engineering and strict scientific cases of the
droplet problem solutions evaluations were distinguished.

In the model of droplet problem under development, the essential role is played by the
droplet surface temperature TR, because it is determines phase transition regime and most
mass of the droplet is accumulated in the surface layers of the droplet. Detailed analyses
of N influence on temperature field were provided (Fig. 5). Looking for optimal N it is
reasonable to evaluate its influence on other characteristic temperatures too (Fig. 7).

For the first evaluation stage results of modelling with N < 55 were analysed.
Case with Nop = 51 was assessed as acceptable, because its ensured les then 0.15 K
deviation in initial stage of evaporation and less then |±0.05| K deviation in final stage of
TR,N , TC,N and Tm,N from TR,N=151, TC,N=151 and Tm,N=151. The accuracy of surface
temperature calculation allows the assertion that number Nop = 51 will ensure that
condition (20) will be met in five percent reliability in the first evaluation stage (Fig. 1).

Range of 55 < N < 105 for engineering evaluation was selected. Case with Nop =
101 was assessed as acceptable, because its ensured les then 0.04 K deviation in initial
stage of evaporation and less then |±0.02|K deviation in final stage (Fig. 7). ValueNop =
100 will ensure condition (20) to be met in half percent reliability in the engineering
evaluation of the droplet problem.

Half percent reliability is acceptable in scientific analysis too. When tenths of percent
reliability of (20) condition is requested, the changes of droplet surface temperature less
than 10−2 K should be taken into account (Fig. 1). Number Nop = 121 was selected
(Fig. 7). The gradient of non-stationary temperature field in the evaporating droplet is
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Figure 8. Influence of N on calculated temperature gradient: (a) inside the droplet, (b) in the surface layers
of the droplet. (1) Fo = 0.2; (2) Fo = 1. gradT η = gradT (η,N)/gradT (η = 1, N = 151).
gradTk(η = 1, N = 151), K/m: (1) 412142.1, (2) 41457.2; gradTk+r(η = 1, N = 151), K/m:
(1) 386942.2, (2) −28314.7.

calculated with high precision (Fig. 8). This gradient is essential for determining the heat
transfer by conduction. By the peculiarities of gradTη is it possible to justify the moment
of transition from non-stationary evaporation to balanced evaporation stage: in the case
of k, heat transfer gradTr=R,k(Fo→ Foe)→ 0, while in the case of complex heating, it
must ensure the output of radiation, which was absorbed by the droplet, by conduction to
the surface of the droplet

gradTr=R,k+r(Fo→ Foe) · λl → q−r (Fo→ Foe). (22)

Among the many parameters that influence the droplet heat and mass transfer, the exclu-
sive role belongs to the droplet surrounding gas temperature Tg and vapour concentration
pv,∞ there. The temperature difference Tg − TR is unimportant characteristic of the
environmental impact on a droplet, which determines the rate of droplet heating and
evaporation intensity. When the partial vapour pressure in the droplet surround gas is
pv,∞ > 0 condensing phase transitions regime is possible on the surface of the droplet
and droplet is heated up to a higher temperature in unsteady evaporation regime compared
to pv,∞ = 0 case (Fig. 9).

The droplet thermal state change can be defined by temporal functions TR(τ), TC(τ)
and Tm(τ). According to the function TR(τ) can be unambiguously defined phase transi-
tion regime: condensing when TR(τ) < Tdp , unsteady evaporation when Tdp < TR(τ) <
Tee , and equilibrium evaporation when TR(τ) = Tee . Temperature difference between the
droplet surface and its centre |TR − TC | reflects the thermal conditions in which oppor-
tunity of spontaneous fluid circulation inside the droplet can be defined. Thermal state
of non-isothermal droplet can be integrally evaluated by the mass average temperature
Tm =

∫ R
0
ρl,rTrr

3 dr/
∫ R

0
ρl,rr

3 dr.
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Figure 9. Influence of air humidity on droplet heating: (a) in real time, (b) in Fourier number scale. The case
of conductive heating. Tg = 1000 K, T0 = 290 K, N = 121, J = 81, I = 61, R0 · 106 m: (1) 50, (2) 70,
(3) 100.

Figure 10. Influence of air humidity on the non-stationary temperature field gradient of the droplet: (a) in real
time, (b) in Fourier number scale. The case of conductive heating. Tg = 1000 K, T0 = 290 K, N = 121,
J = 81, I = 61, R0 · 106 m: (1) 50, (2) 70, (3) 100.

In thermal technologies, droplet flows of different dispersivity are met. In the general
case, the function T (r, τ) for droplets in these flows is determined by numerical experi-
ments, taking into account their size within the whole diameter spectrum.

In the case of k heat transfer, the extent of the experiments can be reduced by calcu-
lating phase transfers of a freely chosen one diameter droplet. In order to do that, the real
time and droplet dimension function Tk(r, τ) must be transformed into a universal time
and universal droplet dimension coordinates Tk(η,Fo). Functions TR,k(Fo), TC,k(Fo)
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and Tm,k(Fo) are insensibil to droplet dispersivity (Fig. 9b), in the case defined by pa-
rameters Tg , pv,∞ and Tl,0.

By analogy, insensitive to droplet dispersivity, gradient functions of temperature
field within the droplet (Fig. 10) can be formed, using the dimensionless function
gradTR(Fo) = gradTR(Fo)/gradTR,0 (Fig. 10b). Here, it is necessary to discuss the
conception of the primary gradient gradTR,0. In strict assessment, the isothermal primary
regime gradient within the droplet is zero. In this case as the primary gradient is taken
gradTR,0 = (q+

Σ,0 + q+
co)/λl,0 which is calculated at the primary moment of interaction

between the droplet and surrounding.
When the parameters Tg , pv,∞ and Tl,0 are defined, functions that are independent

from droplet dispersivity P k(Fo) = Pk(Fo)/P0 can be formed by the results of modelling
heat and mass transfer of a droplet with a freely chosen size. These functions can be used
to evaluate influence of more complicated heating than k heat transfer case for droplet
phase transition processes.

4 Conclusion

In this article, the droplet heat and mass transfer model is provided, which allows to define
numerically variation of the droplet’s thermal state and phase transitions in the whole
droplet life cycle, from liquid spraying to full evaporation. The peculiarities of forming
the numerical scheme grid are discussed. The control mechanism, based on the condition
of energy flow balance on droplet surface, is highlight.

Non-stationary phase transitions of water droplets in the air, in conduction and com-
plex heating cases have been modelled.

The optimal for the primary, engineering and strict scientific cases of the droplet
problem solutions number of a finite number of members in the infinite integral equations
for droplet temperature field and its gradient parameters calculations was defined by the
numerical experiment (Nop = 51, 101 and 121 accordingly). These results allow further
droplet problem numerical scheme optimization.
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