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Abstract. In real-world ecosystem, studies on the mechanisms of spatiotemporal pattern formation
in a system of interacting populations deserve special attention for its own importance in
contemporary theoretical ecology. The present investigation deals with the spatial dynamical
system of a two-dimensional continuous diffusive predator–prey model involving the influence of
intra-species competition among predators with the incorporation of a constant proportion of prey
refuge. The linear stability analysis has been carried out and the appropriate condition of Turing
instability around the unique positive interior equilibrium point of the present model system has
been determined. Furthermore, the existence of the various spatial patterns through diffusion-driven
instability and the Turing space in the spatial domain have been explored thoroughly. The results
of numerical simulations reveal the dynamics of population density variation in the formation of
isolated groups, following spotted or stripe-like patterns or coexistence of both the patterns. The
results of the present investigation also point out that the prey refuge does have significant influence
on the pattern formation of the interacting populations of the model under consideration.

Keywords: predator–prey, prey refuge, Turing pattern, diffusion-driven instability.

1 Introduction

In recent times, major attention has been focused on the studies concerning the spatiotem-
poral pattern formation in reaction-diffusion systems in modern mathmatical biology
and ecology because of the most exciting and challenging problems in this domain. In
1952, Alan Turing first showed mathematically in his seminal paper [47] that a system of
coupled nonlinear reaction-diffusion equations could give rise to spatial concentration
patterns of a fixed characteristic length from an arbitrary initial configuration due to
diffusion-driven instability. The model for spatially extended system generally involves
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the interaction between the predator and the prey, that is, the reaction item and the diffu-
sion item comes into being the predator’s “pursuit” and the prey’s “evasion” [3,27,30,39,
40]. Usually, diffusion is considered as a spatial transmission way, which moves from high
concentration to low concentration. Turing suggested that in a reaction-diffusion system
describing the interaction between two species, different diffusion rates can lead to the
destabilization of a constant steady state, followed by the transition to a nonhomogeneous
steady state. According to this result, a steady state is Turing unstable if it is stable as
a solution to the reaction system without diffusion terms, but unstable as a solution of
the full reaction-diffusion system. This mechanism, known as diffusion-driven instability,
leads to the formation of spatial patterns [6, 12, 34, 41, 42, 45]. This remarkable idea has
been playing significant role in theoretical ecology, embryology and other branches of
science [31, 32]. In 1972, Segel and Jackson [37] called attention to the Turing’s ideas
that would be also applicable in population dynamics. During this period of time, Gierer
and Meinhardt [8] provided with a biologically justified formulation of a Turing model
and studied its properties through numerical simulations. Levin and Segel [23] suggested
that the scenario of spatial pattern formation is a possible origin of planktonic patchiness.
Haque [15] investigated the emergence of complex patterns in the Beddington–DeAngelis
predator–prey model and their simulations reveal that the typical dynamics of population
density variation is the formation of isolated groups. In recent years there has been
considerable interest in spatial and temporal behavior of interacting species in ecosystems.
The dynamical behaviour between predator and prey has long been and will continue to be
one of the dominant themes in ecosystems due to its universal existence and importance
[1, 11, 20, 25, 48, 50].

Prey may avoid being killed by predators either by defending themselves or by escap-
ing. One way to escape is to move into a refuge where predation risk is reduced [29, 33].
Recently, several scholars have pointed out that in many situations, there was a constant
proportion of prey which were protected from predation by refuge. Some theoretical
studies through suitable mathematical models and a number of experiments indicated that
refugia had a stabilizing effect on the dynamics of predator–prey interactions and prey
extinction can be prevented by the addition of refuges [9, 17, 27, 35, 38, 46, 49].

Connell [7] recognized an example from nature in which the spatial refuge of the
barnacle Balanus glandula in the higher intertidal may contribute to the stability of its
interaction with the predatory snails Thais. Larvae of western flower thrips Frankliniella
occidentalis use the web produced by spider mites as a refuge from predation by the
predatory mite Neoseiulus cucumeris. Magalhaes et al. [26] tested how the presence of
a refuge affects the population dynamics of western flower thrips (Frankliniella occiden-
talis Pergande) and its predator, the phytoseiid mite Neoseiulus (Amblyseius) cucumeris
(Oudemans) which is a major pest of greenhouse crops. In this way, some fraction of
the prey population is partially protected against predators [10]. Hassel [16] showed that
adding a large refuge to a model, which exhibited divergent oscillations in the absence of
refuge, replaced the oscillatory behaviour with a stable equilibrium. Chen et al. [5] con-
cluded that the prey refuge has no influence on the persistence property of both predator
and prey species and the prey refuge could influence the densities of both prey and preda-
tor species greatly. Ko and Ryu [21] investigated the asymptotic behaviour of spatially
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inhomogeneous solutions and the local existence of periodic solutions of a predator–prey
model incorporating prey refuge under the zero-flux Neumann boundary conditions.

The effect of the use of refuges by the prey population on the temporal dynamics
of a predator–prey model has been investigated by many eminent researchers [5, 18,
21, 22, 28, 36]. However, to the best of our knowledge, little attention has been paid
to the dynamics of a spatiotemporal predator–prey model incorporating prey refuges.
Now, it is usual to inquire how the prey refuge has an effect on the spatiotemporal
dynamics of a reaction–diffusion predator–prey model. Assuming the importance of
constant proportion of prey refuges and Turing spatial pattern formation on predator–
prey model in ecology, an attempt has been made here to investigate the influence of prey
refuges and diffusion in a prey-dependent predator–prey model which is an updation of
the following model studied extensively by Bazykin et al. [4]:

du

dt
= ru

(
1− u

k

)
− auv

u+ c
, (1a)

dv

dt
= −dv + buv

u+ c
− hv2, (1b)

u(0) > 0, v(0) > 0, (1c)

where u, v denote prey and predator population size respectively at any instant t, and
biologically meaningful constants viz. r, k, a, b, c, d, h are all positive. Here r designates
the intrinsic growth rate and k, the carrying capacity of the prey species; a is the predation
rate or capturing rate of prey by predator; b is the maximal predator growth rate; c is the
interference coefficient of the predator; d is the predator natural mortality rate; h is the
predator intra-species competition. Competition among members of the same species,
known as intra-species competition is often observed in ecology. It refers to a decrease
in reproduction or an increase in death rate with an increase in predator density. Models
with intra-species competition have been extensively studied in literature [4,13,15]. How-
ever, the effect of prey refuges on the spatiotemporal dynamics of a reaction–diffusion
predator–prey system has not been reported there. As a result, the main aim of this
investigation is to study the influences of prey refuge on the spatiotemporal dynamics
of a reaction–diffusion system with prey-dependent Holling type II functional response.
This work is an attempt to make a bridge between the effect of prey refuge on the
temporal dynamics of a predator–prey model and the influence of prey refuges on the
spatiotemporal dynamics of a reaction–diffusion predator–prey system through numerical
simulations.

The present article is organized as follows. Basic preliminaries of a spatial predator–
prey model are included in Section 2. In this section, the existence of all possible pos-
itive equilibria and their dependence on the refuge parameter has been investigated. In
Section 3, the stability of the proposed model without diffusion has been analyzed. The
stability of the diffusive model alongwith the mathematical expression for Turing space
has been discussed in Section 4. Section 5 illustrates the emergence of Turing patterns
through numerical simulations. Finally, some conclusions and comments based on numer-
ical simulations exhibiting quantitative response of the system are included in Section 6.
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2 The model and analysis

The above model (1) has been wisely updated in the present study by incorporating
constant proportion of refuge protecting mu of the prey, where m ∈ [0, 1) is constant.
This leaves (1−m)u of the prey available to the predator and hence model (1) has been
modified to the following form:

du

dt
= ru

(
1− u

k

)
− a(1−m)uv

(1−m)u+ c
= f1(u, v), (2a)

dv

dt
= −dv + b(1−m)uv

(1−m)u+ c
− hv2 = f2(u, v), (2b)

u(0) > 0, v(0) > 0. (2c)

In the light of spatial pattern formation of above Bazykin’s [4] model incorporating
a prey refuge, a major step towards development has been performed with the following
reaction–diffusion model:

∂u

∂t
= f1(u, v) +D1∇2u, (3a)

∂v

∂t
= f2(u, v) +D2∇2v, (3b)

u(0, x, y) > 0, v(0, x, y) > 0, (3c)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 the usual Laplacian operator in 2D space; D1, D2 are
the diffusion coefficients for prey and predator, respectively. Assumming that the system
parameters do not depend on space or time, that is, the environment is uniform.

In order to minimize the number of parameters involved in the proposed model (3), it
is extremely useful to write the model in nondimensionalized form. By using the follow-
ing change of variables: ũ = u/k, ṽ = va/(kb), t̃ = tr, x̃ = x/L, ỹ = y/L and the
dimensionless parameters α = c/k, ε = b/r, γ = d/r, δ = hkb/(ar), d1 = D1/(rL

2),
and d2 = D2/(rL

2); L being the characteristic length, one can obtain the nondimensional
form of the system (3) as (after dropping tildes)

∂u

∂t
= F1(u, v) + d1∇2u, (4a)

∂v

∂t
= F2(u, v) + d2∇2v, (4b)

u(0, x, y) > 0, v(0, x, y) > 0, (4c)

where F1(u, v) = u(1 − u) − ε(1 − m)uv/((1 − m)u + α) and F2(u, v) = −γv +
ε(1−m)uv/((1−m)u+ α)− δv2.

Model (4) is to be analyzed under the following zero-flux boundary conditions:

∂u

∂ν
=
∂v

∂ν
= 0, (x, y) ∈ ∂Ω,
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where ∂Ω is the closed boundary of the reaction–diffusion domain Ω and ν is the unit
outward normal vector of the boundary ∂Ω, assuming to be smooth. ∂u/∂ν and ∂v/∂ν
are respectively the normal partial derivatives of u and v on ∂Ω. The main reason for
choosing zero-flux boundary conditions is that we are interested in the self-organisation
of pattern; zero-flux conditions imply no external input from outside.

The non-spatial model, i.e., without the diffusion terms of (4) has at most three
ecologically meaningful equilibria (stationary states), which correspond to spatially ho-
mogeneous equilibria of the full spatial model (4) in R2

+ = [(u, v): u > 0, v > 0] viz.,
(i) e0(0, 0) (total extinction), (ii) e1(1, 0) (extinction of the predator) and (iii) e2(u2, v2)
(coexistence of predator and prey), where v2 = (1 − u2)[(1 −m)u2 + α]/((1 −m)ε);
u2 ∈ (0, 1) and u2 be the roots of the following cubic equation:

a0x
3 + 3a1x

2 + 3a2x+ a3 = 0 (a0 6= 0) (5)

with coefficients

a0 = (1−m)2δ,

3a1 = δ(1−m)
[
2α− (1−m)

]
,

3a2 = (1−m)2
[
ε(ε− γ)− δ

]
+ δ
[
α− (1−m)

]2
,

a3 = −
[
(1−m)γαε+ δα2

]
.

Equation (5) is now reduced to

z3 + 3Hz +G = 0

by the transformation z = a0x + a1. Equation (5) has exactly one real positive root if
G2 + 4H3 > 0, where G = a20a3 − 3a0a1a2 + 2a31, H = a0a2 − a21, and using Cardan’s
method, we obtain that the root is (r1−H/r1−a1)/a0, where r1 denotes one of the three
values of [(−G +

√
G2 + 4H3)/2]1/3. Considering the existence and feasibility of the

interior equilibrium point e2(u2, v2) of non-spatial model of (4), throughout this article,
we assume that α > (1−m)/2 and ε(ε− γ) > δ.

3 Linear stability analysis for non-diffusive system

The non-spatial model, i.e., in the absence of diffusion terms of (4) can be written in the
form Ẋ=F (X, ε) = (F1(u, v), F2(u, v))

T where X = (u, v)T. Here XT represents the
transpose of the matrix X . Now the Jacobian matrix

DF (X, ε) = J = (∇F1,∇F2)
T =

[
∂F1

∂u
∂F2

∂u

∂F1

∂v
∂F2

∂v

]
∈ R2×2,

of the non-spatial model of (4) at any arbitrary point (u, v) is given by

J =

[
1− 2u− ε(1−m)vα

[(1−m)u+α]2
−ε(1−m)u
(1−m)u+α

ε(1−m)vα
[(1−m)u+α]2 −γ − 2δv + ε(1−m)u

(1−m)u+α

]
= (Γij)2×2.

Nonlinear Anal. Model. Control, 20(4):509–527
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We denote Jk = J , the Jacobian evaluated at ek, i = 1, 2; j = 1, 2; k = 0, 1, 2 and the
determinant Jk = det Jk, trace Jk = tr(Jk).

3.1 The dynamical behaviours of the system around the boundary equilibrium
points e0(0,0) and e1(1,0)

Lemma 1.
(i) The equilibrium point e0(0, 0) always exists and it is a saddle point.

(ii) The equilibrium point e0(1, 0) corresponding to extinction of the predator is
a saddle point when (1 − m)ε > γ[(1 − m) + α] or is locally asymptotically
stable in the uv-plane when (1−m)ε < γ[(1−m) + α].

The proof of Lemma 1 is omitted here for the sake of brevity, interested readers are
referred to [19].

3.2 The dynamical behaviour of the system around the interior equilibrium point
e2(u2, v2)

Lemma 2.
(i) The equilibrium point e2(u2, v2) is locally asymptotically stable iff[

(1−m)u2 + α
]2
< Λ1 and Λ2 > 0,

where

Λ1 = 4αu2
2 − εv2mα+ εu2mα+ 2δv2u2

2m2 + 4δv2u2α

− 4δv2u2
2m− 4δv2u2mα− 4u2

3m+ 2u2
3m2 + 2u2α

2

+ γu2
2 + γα2 + 2u2

3 − εu22 − 2γu2mα− 2γu2
2m

+ 2γu2α+ γu2
2m2 − 4u2

2mα+ εv2α+ 2εu2
2m− εu22m2

− εu2α+ 2δv2u2
2 + 2δv2α

2,

Λ2 = −8u23δv2m− εu2mα+ 8u2
2δv2α+ 4u2

3εm+ 4u2
3δv2

− 2u2
3m2ε− 2u2

2αε− 2δv2u2
2m2 − 4δv2u2α+ 4δv2u2

2m

+ 2u2
2αεm+ 4u2

3m2δv2 + 4u2α
2δv2 + 4δv2u2mα− γu22

− γα2 + εu2
2 + 2γu2mα+ 2γu2

2m− 2γu2α− γu22m2

− 2εu2
2m+ εu2

2m2 + εu2α− 2δv2u2
2 − 2δv2α

2 − 2αεv2
2mδ

+ 2αεv2
2δ − 4u2

2mγα+ αεv2γ − 2u2
3ε− 8u2

2mδv2α− 4u2
3γm

+ 4u2
2γα+ 2u2

3m2γ + 2u2α
2γ − αεv2mγ + 2u2

3γ.

(ii) If γ < ε 6 2εδ/(1 −m) and v > 0, then local stability of e2(u2, v2) ensures
its global stability, where v = ((ε − γ)(1 − m)u − αγ)/δ((1 − m)u + α),
u = (1±

√
1− 4εv)/2.
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Fig. 1. Global stability of the non-spatial model of (4) around the positive interior equilibrium point e2.

(iii) The system admits a Hopf-bifurcation around e2(u2, v2) at α = α[HB], where
α[HB] is given by

α[HB] =
1

2

(−2u2 + 4u22 + 4δv2u2 − εu2 + εv2 + 2γu2 −
√
σ)(−1 +m)

γ + 2δv2 − 1 + 2u2
,

σ = ε2u2
2 + ε2v2

2 + 8u2
2εv2 − 2ε2u2v2 − 4u2εv2 + 8δv2

2u2ε+ 4εv2γu2.

Proof. (i) Two eigenvalues of the Jacobian matrix J2 at e2(u2, v2) are given by

1

2
(Γ11 + Γ22)±

√
(Γ11 + Γ22)2 − 4(Γ11Γ22 − Γ12Γ21)

Therefore, by Routh–Hurwitz criteria, the proposed non-spatial model of (4) is locally
asymptotically stable in the uv−plane around the interior equilibrium point e2(u2, v2)
provided tr(J2) = Γ11 + Γ22 < 0 and det J2 = Γ11Γ22 − Γ12Γ21 > 0. Figure 1 depicts
the global stability of the non-spatial model of (4) around the positive interior equilibrium
point e2(0.1165668239, 0.4342664405) for α = 0.3, m = 0.2, γ = 0.02, δ = 0.5 and
ε = 1.0.

(ii) See Appendix.

Nonlinear Anal. Model. Control, 20(4):509–527
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Fig. 2. Hopf-bifurcation of the non-spatial model of (4) around the positive interior equilibrium point e2 at
α = α[HB].

(iii) At the equilibrium point e2(u2, v2), the characteristic equation is given by

µ2 − tr(J2)µ+ det J2 = 0,

where u−u2 ≈ eµt, v− v2 ≈ eµt. If tr(J2) = 0 at α = α[HB], then both the eigenvalues
will be purely imaginary if det J2 > 0. Replacing µ = µ1 + iµ2 into the corresponding
characteristic equation and separating real and imaginary parts, we get(

µ2
1 − µ2

2

)
− tr(J2)µ1 + det J2 = 0, (6a)

2µ1µ2 − tr(J2)µ2 = 0. (6b)

Elementary differentiation of (6a) with respect to α and considering µ1 = 0, we get

dµ1

dα

∣∣∣∣
α=α[HB]

=
−ε(1−m)(u2 + v2)

[(1−m)u2 + α]2
+

2αε(1−m)v2
[(1−m)u2 + α]3

6= 0.

Hence, the system goes through a Hopf-bifurcation at α = α[HB] around e2. Figure 2
depicts the situation for Hopf-bifurcation of the non-spatial model of (4) around e2 corre-
sponding to the parameter values m = 0.2, γ = 0.02, δ = 0.5, ε = 1.0 and α = α[HB] =
0.126.
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4 Turing instability analysis

In this section, we deal with the analysis of Turing instability of the spatially positive
steady state e2(u2, v2) of the present model system (4). To linearize the system (4) around
e2(u2, v2) for small space and time-dependent perturbations, we assume

u(−→q , t) = u2 + u(−→q , t),
∣∣u(−→q , t)∣∣� u2,

v(−→q , t) = v2 + v(−→q , t),
∣∣v(−→q , t)∣∣� v2,

and [
u(−→q , t)
v(−→q , t)

]
=

[
α1

α2

]
eµtei

−→
k −→q ,

−→
k = (kx, ky),

where −→q = (x, y) designates the spatial vector in two dimensions; µ is the fluctuated
growth rate in time t; α1, α2 are the corresponding amplitudes; k ( = |

−→
k | = (k2x+k

2
y)

1/2)
is the wave-number of the solution, and i represents imaginary number. The corresponding
characteristic equation of the system (4) is∣∣J2 − k2d− µI2∣∣ = 0, (7)

J2 =

[
Γ11 Γ12

Γ21 Γ22

]
, d =

[
d1 0
0 d2

]
, I2 =

[
1 0
0 1

]
.

The roots of (7) can be obtained by the following form:

µ±(k) =
−B ±

√
B2 − 4C

2
, (8)

where

B
(
k2
)
= k2(d1 + d2)− tr J2, (9)

C
(
k2
)
= det J2 + k4d1d2 − k2(d1Γ22 + d2Γ11). (10)

System (4) will be unstable if at least one of the roots of (7) is positive. So, diffusion-
driven instability can only be attained if C(k2) < 0 and this condition guarantees that the
coefficient of k2 in (10) is positive, i.e.,

d1Γ22 + d2Γ11 > 0. (11)

We find in equation (10) that C(k2) is a quadratic polynomial in k2 and its extremum is
minimum at

k2min =
d1Γ22 + d2Γ11

2d1d2
> 0. (12)

At k2 = k2min, C(k2) < 0 transforms into

(d1Γ22 + d2Γ11)
2 > 4d1d2(det J2). (13)

Nonlinear Anal. Model. Control, 20(4):509–527
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Fig. 3. Emergence of the Turing instability corresponding to F = (d1Γ22 + d2Γ11) and G =
[(d1Γ22 + d2Γ11)

2 − 4d1d2(det J2)].

We summarize the necessary and sufficient conditions for the emergence of “Turing
space” through diffusion-driven instability as follows:

(i) tr(J2) = (Γ11 + Γ22) < 0, i.e.,
[
(1−m)u2 + α

]2
< Λ1,

(ii) det J2 = (Γ11Γ22 − Γ12Γ21) > 0, i.e., Λ2 > 0,

(iii) (d2Γ11 + d1Γ22) > 0, i.e., Λ3 > 0,

(iv) d2Γ11 + d1Γ22 > 2
√
d1d2(det J2), i.e., Λ3 > 2

[
(1−m)u2 + α

]√
d1d2Λ2,

where

Λ3 = 2d1γu2mα− d1γu22m2 − 2d1γu2α+ d2u2
2 + 2d1γu2

2m− 2d2u2
3 + d2α

2

+ d2εv2mα− d1εu2mα+ 4d1δv2u2
2m− 4d1δv2u2α− 2d1δv2u2

2m2

+ 4d1δv2u2mα− d2εv2α+ 4d2u2
2mα− 2d2u2mα+ d1εu2α− 2d1εu2

2m

+ d1εu2
2m2 − 2d1δv2α

2 − 2d1δv2u2
2 − 2d2u2

2m− 4d2u2
2α+ 4d2u2

3m

+ d2u2
2m2 + 2d2u2α− 2d2u2α

2 − 2d2u2
3m2 + d1εu2

2 − d1γu22 − d1γα2.

In particular, we have C(k2) < 0 ⇔ k21 < k2 < k22 , where k21 and k22 are the finite
boundary wave number [30], can be obtained by the following form:

k22,1 =
(d1Γ22 + d2Γ11)±

√
(d1Γ22 + d2Γ11)2 − 4d1d2(Γ11Γ22 − Γ12Γ21)

2d1d2
.

The results of Fig. 3 signifies that when d2 is larger than the value marked by the red
asterisk point in the figure, the Turing pattern emerges, other parameter values are α =
0.3, m = 0.2, γ = 0.02, δ = 0.5, ε = 1.0, d1 = 0.1. From Fig. 3 one can easily find that
when d2 > 6.93, there is a range of values for k for which C(k2) < 0. This situation is
clear from Fig. 4a and it can be noted that the range of k ∈ (k1, k2) becomes wider with
the increasing values of d2. From Fig. 4b, it is clear that as d2 increases, the available
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(a) (b)

Fig. 4. Dispersion relation for different values of d2 and other parameter values are α = 0.3, m = 0.2,
γ = 0.02, δ = 0.5, ε = 1.0, d1 = 0.1.

Fig. 5. Turing bifurcation diagram corresponding to α=0.3, m=0.2, γ=0.02, δ=0.5, ε=1.0 of model (4).

Turing modes [Re(µ) > 0] also increase. The diffusive instability occurs when d2 > d1
which indicates that diffusivity of predator must be greater than that of the prey.

The Turing bifurcation breaks down the spatial symmetry, leading to the formation
of patterns that are stationary in time and oscillatory in space [48] and occurs when
Im(µ(k)) = 0, Re(µ(k)) = 0 at k = kT 6= 0, where the wave number kT satisfies
k2T =

√
det J2/(d1d2). Figure 5 shows the Turing instability region of system (4) in

d1d2-plane corresponding to α = 0.3, m = 0.2, γ = 0.02, δ = 0.5, ε = 1.0.
The equilibria that can be found in Turing instability region, are stable with respect

to homogeneous perturbations but unstable with respect to perturbations of specific wave
number k and we have plotted contour pictures of Turing spatial pattern in this region.

5 Pattern formation

In earlier section, it has been shown that the non-trivial homogeneous stationary state can
loose its stability when diffusion is taken into consideration. In this section, an extensive
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numerical simulations of the spatially extended model (4) in two-dimensional space has
been carried out and the behaviours of the qualitative results are exhibited through figures.
The Turing pattern may be obtained by conducting appropriate numerical simulations
because of the reason that the dynamic behaviour of the spatial model can not be in-
vestigated in detail by using analytical approaches usually due to various limitations. To
solve a system of partial differential equations numerically, one has to discretize the space
and time of the problem, i.e., transforming it from an infinite-dimensional (continuous)
to a finite-dimensional (discrete) form. In practice, the continuous problem defined by
the reaction–diffusion system in two-dimensional space is solved in a discrete domain
with rectangular or square lattice sites. The present numerical simulations employ the
nonzero initial condition with small random perturbation around homogeneous steady-
state (u2, v2) and Neumann conditions at the domain boundary over a 200 × 200 lattice.
In the present investigation, the diffusive terms in (4) is discretised using five point finite
difference scheme and the forward Euler method has been used for time integration.
For this purpose, the time stepsize has been selected to be dt = 0.001 and the space
stepsize (lattice constant) to be dx = dy = 0.5 based upon the stability criterion for
explicit scheme. In order to avoid numerical artifacts, it has been checked that a further
decrease of the step sizes corresponding to both space and time did not lead to any
significant modification of the results. The simulations were allowed to run until they
reach a stationary state or until they show a behaviour that does not seem to change its
characteristics anymore. In the simulations, different types of dynamics are observed and
it has been found that the distributions of predator and prey are always of the same type.

The following Tables 1–2 symbolize the contour pictures of spatial pattern through
diffusion-driven instability to the system (4) for different values of the diffusion coeffi-
cient d2 and the refuge parameter m. The contour pictures of the time evolution of the
interacting populations at different instants with or without prey refuge are nicely captured
in Figs. 6–7 in order to describe various situations.

In all the cases, starting with a homogeneous steady state, the patterns take a long
time to settle down, with the formation of spotted or stripe-like or coexistence of both
patterns (cf. Figs. 6–7 and Tables 1–2). The results of the panels (a)–(d) of Fig. 6 exhibit
the evolution of the spatial pattern of interacting populations in the absence of refuge
(i.e., m = 0) at t = 200 and 500, with random perturbation of the steady state around
(u2, v2) = (0.071503106322443, 0.34493948021195) at d2 = 10 and 40, respectively.
At the stationary state, regular spots with the same radius prevail over the whole spatial
domain and the dynamics of the system does not undergo any further changes which is

Table 1. The table shows the relevant values of parameters, time and
contour pictures of Turing patterns.

Values of diffusion and refuge parameters Time Contour pictures
d1 = 0.1, d2 = 10.0, m = 0.0 200 Fig. 6a
d1 = 0.1, d2 = 10.0, m = 0.0 500 Fig. 6b
d1 = 0.1, d2 = 40.0, m = 0.0 200 Fig. 6c
d1 = 0.1, d2 = 40.0, m = 0.0 500 Fig. 6d
d1 = 0.1, d2 = 40.0, m = 0.2 200 Fig. 6e
d1 = 0.1, d2 = 40.0, m = 0.2 500 Fig. 6f
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Snapshots of contour pictures of the time evolution of the prey species at different instants with α = 0.3,
γ = 0.02, δ = 0.5, ε = 1.0.

in good agreement with those of Wang et al. [48]. The significant feature is that (cf. pan-
els (a), (b) and (c), (d) of Fig. 6) the lower and the upper bound for prey concentration
over two-dimensional space is changing with the change of diffusion coefficients as well
as the progression of time. Also it is evident that the difference between highest and
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Table 2. The table shows the relevant values of parameters, time and
contour pictures of Turing patterns.

Values of diffusion and refuge parameters Time Contour pictures
d1 = 0.1, d2 = 40.0, m = 0.25 200 Fig. 7a
d1 = 0.1, d2 = 40.0, m = 0.25 500 Fig. 7b
d1 = 0.1, d2 = 40.0, m = 0.30 200 Fig. 7c
d1 = 0.1, d2 = 40.0, m = 0.30 500 Fig. 7d

(a) (b)

(c) (d)

Fig. 7. Snapshots of contour pictures of the time evolution of the prey species at different instants with α = 0.3,
γ = 0.02, δ = 0.5, ε = 1.0.

lowest concentration of prey species increases with the increase of d2. Another interesting
feature may be recorded by comparing the relevant figures (cf. panels (a), (b) and (c), (d)
of Fig. 6 is that as d2 increases, the radius of the spot increases irrespective of the number
of iterations computed.

Three different types of spatial pattern can be obtained by varying the value of m
(viz. 0.2 or 0.25 or 0.3), the refuge constant of the prey. One observes that both the
spotted pattern and the stripe-like pattern coexist in the spatially extended model (4)
corresponding to two different values of the refuge parameter m = 0.2 and m = 0.25 as
shown in the panels (e), (f) of Fig. 6 and (a), (b) of Fig. 7, respectively. However, these
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two patterns of panels (e) (f) of Fig. 6 and (a), (b) of Fig. 7 are essentially different from
each other, because of their own different wavelengths. Likewise, the results of panels (c),
(d) of Fig. 7 show the process of spatial pattern formation for the present model (4) with
m = 0.3. In this case, the random perturbation around the homogeneous steady state
(u2, v2) = (0.1558461549, 0.4933383502) leads to the formation of spotted and stripe-
like patterns, and ending with almost stripe-like patterns (cf. panels (c), (d) of Fig. 7),
which is time independent. Examining all these spatial patterns one may notice that prey
refuge plays a significant role in the formation of various kinds of patterns ranging from
spot to stripe-like.

6 Conclusions and comments

The present investigation is primarily dealt with an in-depth analysis of the spatial pat-
tern formation of a diffusive predator–prey system with intra-species competition among
predators in the event of a prey refuge within two-dimensional space. The conditions of
Turing space through diffusion-driven instability have been derived analytically. Analyz-
ing the nature of the eigenvalues of the allied characteristic equations, the local and the
global asymptotic stability analyses of the boundary equilibrium points e0, e1 along with
the positive interior equilibrium point e2 of the non-spatial model (4) have been reported
at length. The system appears to attain Hopf-bifurcation at α = α[HB] (cf. Fig. 2 around
e2, where α[HB] is given in Section 3.2 (iii).

The analytical derivation of the conditions in terms of the present system parame-
ters for which the proposed diffusive predator–prey model with prey-dependent Holling
type II functional response reveals the formation of spatial patterns through diffusion-
driven instability. The influence of diffusion with prey refuge on the stability of the
predator–prey coexistence equilibrium position has been focused with special attention
in our proposed mathematical model. The distinguished feature is that the uniform steady
state of a reaction–diffusion equation is stable for the ordinary differential equations, but
it becomes unstable for the corresponding partial differential equations with diffusion
resulting in the emergence of Turing instability. It is obvious from the results displayed
through Figs. 6–7 that the number of the spotted (or stripe-like or coexistence of both)
area in the spatial domain increases with increasing number of iterations for a particular
set of parameter values. The mathematical analysis of the model system (4) shows that
a reaction-diffusive predator–prey model regulates in a stable manner its growth around
spatially homogeneous solutions via Turing instability mechanism. The results obtained
from the model under consideration show that the influence of prey refuge plays an
important role on the spatial pattern formation of the interacting populations.

More specifically, owing to the presence of prey refuge, the present dynamic model
exhibits a change from spotted pattern to the stripe-like pattern as evident from Figs. 6–7.
The spotted patterns do indicate that the prey populations are more isolated than the
stripe-like patterns. Biologically one may interpret that when the ability of prey refuge
is increased, the prey will be more centralized, i.e., the predator can not consume prey
populations easily. One may also interpret this transition as, when the prey concentration
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is high, prey have enough energy to prevent predator being caught or when the prey is in
high density distribution, it is easy for them to capture the food for themselves. Thus, the
results based on the present model show that the effect of the prey refuge for spatial pattern
formation is profound on the dynamic complexity of ecosystems or physical systems.

7 Scope of future work

The influence of noise on nonlinear systems is the subject of intense experimental and
theoretical investigations. The most well-known phenomenon is noise induces transition
and stochastic resonance, both showing the possibility to transform noise in order. Re-
cently, many eminent researchers through their investigations have revealed that noise
can have an important impact on the dynamics of ecological populations [2, 43, 50]. The
comprehension of noise’s role in the dynamics of nonlinear systems plays a key aspect
in the efforts devoted to understand and then to model so-called complex ecosystems.
A large volume of work has already been carried out by taking into account the influence
of noise in ecologically relevant models of ordinary differential equations or partial dif-
ferential equations with logistic growth. Sun et al. [44] showed that when the diffusive
predator–prey model has no noise, it exhibits wave dynamics in two-dimensional space,
however, combined with noise, it exhibits chaotic patterns. Li and Zhen [24] illustrated
pattern dynamics of a spatial predator–prey model with noise and they concluded that
when the noise intensity and temporal correlation are in appropriate levels, the model
exhibis phase transition from spotted to stripe pattern. However, it has been observed in
the literature that the refuge effect by the prey species, especially combined with diffusion
of the spatial patterns, had been generally overlooked, despite its potential ecological
reality and intrinsic theoretical interest. These structures may in fact correspond to the
real world. For this reason, one may investigate the effect of noise on the spatial patterns
of a predator–prey model with the effect of prey refuge. The environments in models and
also laboratories are much less complex than ecological environments. The deterministic
environment is rarely the case in real life. Natural environments are random environments,
therefore the inclusion of noise sources in the proposed mathematical model (4) could give
more realistic results from physical point of view. This is desirable in future studies.

Acknowledgement. The present form of the paper owes much to the helpful sugges-
tions of the referees, whose careful scrutiny we are pleased to acknowledge.

Appendix

Let us consider a function H(u, v) of the form H(u, v) = 1/(uv). Then H(u, v) > 0 for
both u, v > 0. Now

G(u, v) =
∂

∂u
(F1H) +

∂

∂v
(F2H),

where F1 and F2 are the right hand side of the non-spatial system of (4). By Bendixon–
Dulac criterion, one can see that if ε 6 2εδ/(1 − m), then G(u, v) < 0; therefore,
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the system has no non-trivial positive periodic solution. Also, lim supt→+∞ u(t) 6 u,
lim supt→+∞ v(t) 6 v, lim inft→+∞ u(t) > u and lim inft→+∞ v(t) > v, where u = 1,
v = (ε−γ)/δ, u = (1±

√
1− 4εv)/2 and v = ((ε−γ)(1−m)u−αγ)/δ((1−m)u+α).

Therefore, the conditions for global stability are γ < ε 6 2εδ/(1 − m) and v > 0,
see [13, 14] for details. These together with the assumption of local stability yield the
conclusion.
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