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Abstract. We generalize the cyclic orbital Meir—Keeler contractions, which were introduced by
S. Karpagam and S. Agrawal in the context of p-summing maps. We found sufficient conditions
for these new type of maps, that ensure the existence and uniqueness of fixed points in complete
metric spaces, when the distances between the sets are zero, and the existence and uniqueness of
best proximity points in uniformly convex Banach spaces.
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1 Introduction

A fundamental result in fixed point theory is the Banach Contraction Principle. One kind
of a generalization of the Banach Contraction Principle is the notion of cyclic maps [8].
Fixed point theory is an important tool for solving equations T'x = x for mappings 1T’
defined on subsets of metric spaces or normed spaces. Interesting application of cyclic
maps to integro-differential equations is presented in [10]. Because a non-self mapping
T : A — B does not necessarily have a fixed point, one often attempts to find an element
z which is in some sense closest to T'z. Best proximity point theorems are relevant in
this perspective. The notion of best proximity point is introduced in [1]. This definition
is more general than the notion of cyclic maps [8], in sense that if the sets intersect then
every best proximity point is a fixed point. A sufficient condition for the uniqueness of
the best proximity points in uniformly convex Banach spaces is given in [1]. We would
like to mention just a few recent results in this new field [3,9, 11].

Cyclic Meir-Keeler contractions were investigated in [5]. A cyclic orbital Meir—Keeler
contraction was introduced in [6] and sufficient conditions are found for the existence of
fixed points and best proximity points for these type of maps. The notion of p-summing
maps was introduced in [12] and sufficient conditions are found so that these maps to have
fixed points and best proximity points. The p-summing maps are wider class of maps than
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the classical contraction maps and cyclic contraction maps [12]. A disadvantage of the
classical results about best proximity points is that the conditions are so restrictive that
the distances between the successive sets are equal. The p-summing maps overcome this
disadvantage [12].

Karpagam proposed us to try to generalize the notion of cyclic orbital Meir-Keeler
contraction from [6] to the notion of p-summing cyclic contraction, that were introduced
in [12]. We have succeed in obtaining of sufficient conditions for fixed points and best
proximity points for such maps.

2 Preliminary results

In this section we give some basic definitions and concepts which are useful and related
to the best proximity points. Let (X, p) be a metric space. Define a distance between two
subset A, B C X by dist(4, B) = inf{p(x,y): z € A, y € B}.

Let {A;}”_, be nonempty subsets of a metric space (X, p). We use the convention
Ay = A;foreveryi € N. Themap T : [J)_, A, — UY_, A, is called a cyclic map if
T(A;) CT(A;yq) foreveryi = 1,2,...,p. A point £ € A; is called a best proximity
point of the cyclic map T in A; if p(&, TE) = dist(A;, Aj41)-

Let {A4;}?_, be nonempty subsets of a metric space (X, p). Themap T": [ J!_, A; —
Ule A; is called p-cyclic contraction if T is a cyclic map and, for some k € (0, 1), there
holds the inequality p(Tz,Ty) < kp(x,y) + (1 — k) dist(A;, A;41) for any z € A,
y € Ajr1, 1 < @ < p. The definition for 2-cyclic contraction is introduced in [1],
and for p-cyclic contraction is introduced in [7]. A generalization of the cyclic maps for
Meir-Keeler contractions is given in [6].

The best proximity results need norm-structure of the space X. When we investigate
a Banach space (X, ||-||) we will always consider the distance between the elements to be
generated by the norm ||-||.

The assumption that the Banach space (X, ||-||) is uniformly convex plays a crucial
role in the investigation of best proximity points.

Definition 1. (See [2, p. 61].) The norm ||-|| on a Banach space X is said to be uniformly
convex if lim,_,o0 ||, — yn|| = 0 whenever ||z,| = ||yn|| = 1, n € N, are such that
limy, o0 |0 + Ynll = 2.

We will use the following two lemmas for proving the uniqueness of the best proxim-
ity points.

Lemma 1. (See [1].) Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convex Banach space. Let {x,}>2 1 and {z,}32, be se-
quences in A and {y, }°2_ be a sequence in B satisfying:
(i) lim,— o0 ||2n — yn || = dist(A, B);
(ii) For every e > 0, there exists Ng € N such that for allm > n > Ny, there holds
the inequality ||z, — yn| < dist(A, B) + ¢.
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Then for every € > 0, there exists N1 € N such that for all m > n > Ny, there holds the
inequality ||, — zn|| < e

Lemma 2. (See [1].) Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convex Banach space. Let {x,,}°2 ; and {z,}52, be se-
quences in A and {y, }°°_, be a sequence in B satisfying:

() limp oo ||2n — ynl| = dist(A, B);
(i) lim,— oo [|2n — ynl| = dist(A4, B).

Then lim,,_ o0 ||€n — 2n]] = 0.

3 Main result

Let {A;}?_, be non empty subsets of the metric space (X, p). We will use the notions
P= Zf:l dlSt(AZ, Ai+1) and
p—1
Sp(xhx%”'ﬂxp) :Zp(xj7$j+1)+p(xp7xl)v (1
j=1

where if x1 € A;, then x14y, € A;1p foreveryk=1,2,...,p— 1.

Definition 2. Let A;, i = 1,2...,p, be subsets of a metric space (X,p) and T':
P L A; — U, A; be a cyclic map. The map 7 is called a p-summing cyclic orbital
Meir-Keeler contraction if there exists z € A; with the property:

(P1) for every e > 0, there exists § > 0 such that if there holds the inequality
sp(Tp”_lx7y1,y2, e yp,l) <P+e+49
forn € Nandy; € A;,i=1,2...,p— 1, then there holds the inequality
sp(Tp”x, Ty, Tya,. .. 7Typ_l) < P+e.

If p = 2 in Definition 2, we get the definition of cyclic orbital Meir—Keeler contraction
from [6].

We will introduce a new condition, which is similar to (P1).

Let A;, @ = 1,2...,p, be subsets of a metric space (X, p) and T : [J!_ A; —
(UY_, A; be a cyclic map. Let there exists 2 € Ay with the property:

(P2) forevery e > 0, there exists § > 0 such that if there holds the inequality
sp(TP @, y2, Y3, .- Yp) < P+e+6
forn € Nandy; € A;, i = 2,3...,p, then there holds the inequality
Sp (T’me, Ty, Tys, . .. ,Typ) < P+e.

Theorem 1. Let A;, i = 1,2,...,p, be nonempty closed and convex subsets of a uni-
formly convex Banach space (X, |-||). Let T : \U?_; A; — UY_, A; be a p-summing
cyclic orbital Meir-Keeler contraction. Then there exists a unique point, say £ € Aj,
such that:
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(a) For every x € A; satisfying (P1), the sequence {T?"x} converges to &,

(b) & is a best proximity point of T in Aq;

(c) TY¢ is a best proximity point of T in Ajpqforanyj=1,2,...,p—1

If the map T satisfies (P2) or T is a continuous map, then & is a fixed point for the
map TP.

4 Auxiliary results

Definition 3. Let A;, i = 1,2,...,p, be subsets of a metric space (X,p) and T':
P A — UY_, A; be a cyclic map. The map T is called p-cyclic orbital contraction if
there exist € Ay and k = k(x) € (0, 1) such that the inequality

Sp(TpnxaTylva27 s 7Typ71) < k8p<Tpn_1xay17y2a s 7yp71) (2)
holds for every n € Nandeveryy; € A;,i=1,2...,p— 1.

If p = 2, we get the definition of cyclic orbital contraction from [6].
From the definition of s,, it is easy to see that for any z,,; € A;1; 1,5 =1,2,...,p,
there holds the equality

sp(x’!h?xnz? st )xnp) = Sp(xnpvxnlaxnga ctt )xnpfl)' (3)

For any n € N, one of the numbers {n + j}?;é isamultiple of p. Letn+p—k+ 1bea
multiple of p. Applying (3) and (2), we get the inequality

a=sp (T"x, Ty T 2 ,T"er*lz)
=5 (T”“’*k*lx, TRty el g Tl ,T"“’*kx)
< ks (TP~ kg, prte—htly  pnte=2 pnoly Trg . TP k1)
=ksp(T" 2, T2, T"a,..., TP ). 4)
Proposition 1. Let A;, i = 1,2,...,p, be nonempty and closed subsets of a complete

metric space (X, p) and T : \J!_, A; — \U'_, A; be a p-cyclic orbital contraction. Then
Nb_, A; is nonempty and T has a unique fixed point & € (\i_; A,.

Proof. From the condition that T" is p-cyclic orbital contraction we can choose z € Ay,
which satisfies (2). For any n € N, one of the numbers {n + j}f;é is multiple of p, thus,
by applying n-times inequality (4) we can write the chain of inequalities

p(Tn.%‘, Tn-‘rlm) < 5p (TnCL', Tn+1.7;‘, T"+2:L‘7 e T”+p—1aj)

< ksp (T”flz, Tz, T e, ... ,T"“J*za:)

< ks, (T"_Qx, T e Tre,. .. ,T"+p—3x)

<-

< k"sp (as, Tz, Tz, . .. ,Tpflx). 5)
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Put () = sp(z, Tz, Tz, ..., TP~ z). From (5) we obtain the inequality
Z p(T"z, T"'z) < o) Z E" < o0
n=1 n=1

and, consequently, the sequence {7z} ; is a Cauchy sequence. Hence, by the com-
pleteness of the metric space (X, p) it follows that there exists ¢ € X such that
lim,, oo 7"z = €. Forany j = 0,1,...p — 1, the sequences {TP" 7 }5° ; are subse-
quences of {1z}, and thus, lim,, o, TPz = ¢ forany j = 0,1,...p — 1. From
the inclusions {7P"7z}>2 | C A;.; forany j = 0,1,...p — 1 and the condition that
A;,i=1,2,...,p, are closed sets it follows that £ € ();_, A;, and therefore, (\}_, A; is
not an empty set.

We will prove that £ is a unique fixed point for the map 7.

Put S1 = s,_1(£, T, T?¢, ..., TP~2£). From the continuity of the function p(-, 2)
and condition (2) we can write the inequalities

Sl = Sp—1 (57 Tf, T2§7 s ,Tp—Qg)
sp(§,TE, T3, ..., TP72¢, TP Y¢)
lim s, (TP"z, TE, T3¢, ..., TP72¢, TP7¢)

N

N

k lim s,(TP" ‘2, &, TE,..., TP, TP2¢)
n— o0

= ksp(&,6,TE, ..., TP7¢, TP72¢)
= k8p71 (57 Tga T2fa s an_2§)
= kS1.

Hence, we obtain that (1 — k)s,—1 (&, 7€, T2, ..., TP72¢) < 0, and thus, p(¢, T¢) = 0.
Consequently, ¢ is a fixed point for the map 7.

To finish the proof, it remains to show that the point £ € [}_, A; is a unique fixed
point for the map 7.

Suppose that there exists 7 # £ such that Ty = 7. By using the continuity of the
function p(-, z), condition (2) and the assumption that p(7"n, T™n) = 0 for every m,n €
N U {0} we can write the inequalities

2p(&,m) = p(&Tn) + p(T7"'n, €)
= 5p(& T, T, ..., TP ')
= lim s, (Tp"m, Tn, T, ... ,Tpfln)

n— oo

<k li_)m Sp (Tp”_lxm,Tn, . ,Tp_Qn)
=k lim (p(T’m*laj,n) + p(n,Tpn*lx))

n—oo

= 2kp(&, 7).

Hence, we obtain (1 — k)(p(&,n)) < 0 and, consequently, it follows that & = 7). O
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Proposition 2. Let A;, i = 1,2,...,p, be nonempty closed subsets of a complete metric
space (X, p) and T : | J!_, A; — \UY_, A; be a p-cyclic orbital contraction. Then T is
p-summing cyclic orbital Meir—Keeler contraction.

Proof. 1t follows from Proposition 1 that P = 0, because (),_; A; # 0. There are zz € A,
and k = k(x) € (0,1) such that inequality (2) holds. Let € > 0 be arbitrary chosen.
Put § = e(1—k)/k. Forany y; € A;, i = 1,2,...,p — 1, that satisfy the inequality
sp(TP" Yz, y1,ya, ..., yp—1) < € + , there holds the inequality

Sp(TpnxaTyhTva s aTyp—l) < ksp(Tpn71x7y1»y27 s 7yp—1)

<k(e+d)=e. 0
Proposition 3. Let A;, i = 1,2,...,p, be nonempty closed subsets of a metric space
(X,p) and T be a p-summing cyclic orbital Meir-Keeler contraction. Then for any
1 € Ay, mo,x3,...,xp € U A na,na,...,ny € Nsuch that T"z; € A; for
1 =1,2,...,pand x1 satisfies (P1), there holds the inequality
sp(T™ @y, T™?2q, ..., T""x,) < sp(T"ﬁlxl, T2 gy . ,T"Pflwp). (6)
Proof. Forany z1,22,...,2, € U'_ | A;, ny,no,...,n, € N, that satisfy the conditions
of the proposition, there holds the inequality s, (7™ ~'zy,..., T 1z,) > P.

Case I1: s,(T™ 1y, T2 1y, ..., T 'z,) = P. By (P1)we have that for any ¢ > 0
there holds the inequality

sp(T”I:El, T™ 2, ... 7T”Pacp) < P+e.

By the arbitrary choice of € > 0 it follows that sp(T’“xl, TM2xg, ..., T”Pa:p) = P, and
thus, s,(T™ 1, T2, ..., T x,) = sp(T™ 1oy, T oy, ..., T g,).

Case 2: s,(T™ 1y, T2 g, ..., T 1a,) > P. Puteg = s,(T™ 1oy, T2 Ly,
oy~ 1g,) — P > 0. By (P1) there exists § = d(gg) > 0 such that the inequality
sp(T™ @1, T™xg, ..., T"x,) < P + ¢¢ holds for any x5, 3, ..., x, that satisfy the
conditions of the proposition and the inequality

sp(T’“_lxl, .. 7T"f"_lgcp) < P+eg+4.
From gg = s,(T™ " tay,..., T 'z,) — P < &0 + & we get that

sp(mel,T”ng, e ,T"F’xp) < P+egg

= sp(Tnl_lml,T"Q_la:g, e ,T"P_lxp).
From Cases 1 and 2 we get that (6) is true. O

Just for the conveniens of the application of Proposition 3, we will state the next
corollary.
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Corollary 1. Let A;, i = 1,2,...,p, be nonempty closed subsets of a metric space (X, p)

and T be a p-summing cyclic orbital Meir—Keeler contraction. Let x € A1 satisfies (P1).
Letx; € A;, i =1,2,...,p— 1, n € N. Then there hold the inequalities

Sp (T”x, T e ,T"+p—1x) < sp (T”_1;E7 Tz, ... ,T”+p_2x), @)

Sp (Tp”x, Txq,... ,Tacp_l) < sp (Tpn*lx, T1,... ,:vp_l). 8)

Lemma 3. Let A;, t = 1,2,...,p, be nonempty closed subsets of a metric space (X, p)

and T be a p-summing cyclic orbital Meir—Keeler contraction. For any x € A; that
satisfies (P1), there holds lim,, o $p(T"x, T" o, ... TP~ 1g) = P.

Proof. Putr,, = s,(T"x, T" 'z, ..., T" P~ 1), then r, > P. It follows from (7) that
the sequence {7, }5; is a nonincreasing sequence. Hence, lim,,_,oc 7, = 7 > P.

We claim that » = P. Let us suppose the contrary, i.e. » > P. Puteg =7 — P > 0.
There exists § > 0 such that the inequality

Tn = Sp (T"m, T g, ,T"'”’_lm) < P+eg
holds whenever
Tn—1 = Sp (T"_lac, T'x, ... ,T"+p—2x) < P+4+eg+09. ®

By limy, 00 8p (T2, T, ..., TP~ 1z) = r it follow that there is ng € N such that
for any n > nyg, there holds the inequalities

r< sy (T, T e, ., TP g) <r+0=eg+P+34.

Therefore, (9) holds for n — 1 > ng. Thus, by the assumption that 7" is a p-summing
cyclic orbital Meir—Keeler contraction the inequality

Tn = Sp (T”aj, Ty . ,T"“’*lx) <P+e=r
holds true for every n > ng, which is a contradiction. Consequently, » = P. O
Remark 1. If x,21,22,...,2,-1 € Ay, it can be proved in a similar fashion

nh—>ngo Sp (Tn-’lf, Tn+1~r17 Tn+2m27 v aTn+p_1xp_1) =P

Corollary 2. Let A;, i = 1,2, ..., p, be nonempty closed subsets of a metric space (X, p)
and T be a p-summing cyclic orbital Meir-Keeler contraction. Then for any x € Ay that
satisfies (P1), there hold

lim p(T”””x,Tp"HHx) =dist(A4;11, Aj42),

n—oo
lim p(Tp"erJrjx,Tp”HHx) =dist(A 11, 4j42)
n—oo
forany j =0,1,2,...,p — 1, where we use the convention Ap1 = Aj.
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Lemmad4. Let A;,i =1,2,...,p, be nonempty closed subsets of a metric space (X, p)
with P = 0. Let T be a p-summing cyclic orbital Meir—Keeler contraction. Then for any
x € A; that satisfies (P1) and for any € > 0, there exists Ny € N such that there holds
the inequality

sp (TP, TP g, TP 20, TP TP 1) <& (10)

forany m >n > Nj.
Proof. We will prove Lemma 4 by induction on m.

Let ¢ > 0 be arbitrary. There exists § > 0 such that condition (P1) holds true.
By Lemma 3 there exists N; € N such that there holds the inequality

sp(TP ..., TP g, . TP TP 1) < ¢

for every n > N;. From Corollary 2 there exists N, € N such that for every n > Na,
there hold the inequalities p(TP"7 =22, TP"Hi=1z) < §/(2p) for j = 1,2,...,p. Put
No = maX{Nl,NQ}

Inequality (10) is true for m = n > Ny.

Let (10) holds true for some m > n.

We will prove that (10) holds true for m + 1.
Put Sy = s, (TP" Lo, TP+ g TP+ + g pe(mtD)+p=24)

By Corollary 1 and the inductive assumption we obtain the inequalities
Sy = s, (T””flx, Tp(m“)x, Tp(m“)“x, o ’Tp(m+1)+p+1z)

gSp(Tp(nJrl)*lm,Tp(erl)x,'”’Tp(m+1)+p—2)+2P(Tpn Ly, pp(n1)-1 )

p
< Sp (TP(nJrl)*lw7 Tp(erl)x, o ’Tp(m+1)+p72) ) Z ,O(Tanrj*Qx, T"‘mﬂflx)
=1

P
< Sp (Tpnxa Tp’m+1x’ A ,Tpmﬂ”*l) + 2 Z P(Tpn+j72x, Tpn+j,1x)
5 -
<e+2p—=e+0. an
2p

The map 7' is a p-summing cyclic orbital Meir—Keeler contraction with P = 0 and from
the choice of z € A1, 6 > 0 and (11) it follows that

Sp (Tp”:c, TrimFD+ly ,Tp(m“)“j*lm) < €. O

Corollary 3. Let A;,i =1,2,...,p, be nonempty closed subsets of a metric space (X, p)
with P = 0. Let T be a p-summing cyclic orbital Meir—Keeler contraction and xr € A,
satisfies (P1). Then for any € > 0, there exists N1 € N such that for any m > n > Ny,
there hold the inequalities

p(Tp"x,Tpm+1x) <e and p(Tp"’+p_1x,Tp7”x) <e.
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Theorem 2. Let A;, i = 1,2,...,p, be nonempty closed subsets of a complete metric
space (X, p) such that P = 0. Let T be a p-summing cyclic orbital Meir-Keeler contrac-
tion. Then there exists a unique & € (\;_, A; such that:

(@) TE =&
(b) For any x € A that satisfies (P1), there holds lim,, .. TP"x = &.

Proof. Let x € A; satisfies (P1). We claim that for any £ > 0, there exists Ny € N such
that the inequality p(TP™z, TP"x) < € holds for any m > n > Nj.

For any € > 0, by Corollary 1 and Corollary 3 there is Ny € N such that there holds
the inequality

max{p(Tp"z,Tperl;v),p(Tp””lx,Tpmx)} < %
for every m > n > Ny. Thus, by the inequalities
p(Tp"x,Tpmx) < p(Tp"x,Tpm+1ﬂc) + p(T”me,T”mx) <e

it follows that the sequence {TP"x}2 ; is a Cauchy sequences, and therefore, by
the completeness of the space (X, p) it follows that there exists £ € X such that
limy, oo TPz = &.
By the inequality p(T?" 1z, &) < p(TP" o, TP x) + p(TP"x, &) and Corollary 2 it
follows that
lim TPty = ¢, (12)
n—roo
From the inequality p(TP"2x,&) < p(TP" 22, TP 1x) + p(TP"Hlz, €), (12) and
Corollary 2 it follows that

lim 7P"*"2z = lim TPz = lim TP" "z =¢. (13)
n—oo n—oo n— oo
We can obtain in a similar fashion that lim,,_,o. T7P" "2 = lim,_,oc TP"z = £ holds
forevery j = 0,1,2,...,p — 1. Since A;,7 = 1,2,...p, are closed sets, we abtain that
¢ e A;foreveryi=1,2,...,p. Consequently, we get that £ € (F_, A;.
We will prove that T¢ = £. We apply Corollary 1, the continuity of the function
p(+,y) and (13) in the next chain of inequalities:

p(§,T€) < sp(6, T, T, ..., TPYE)
= lim s, (TP 2, TE, T?E, ..., TP71E)

< lim s, (TP 2, &, TE, ..., TP73¢)

n—oo

n(
= lim s,(T"" ‘2, T2, T, ..., TP7%¢)
(

n—oo

< lim s, (TP 22, TP" 12, &, TC, ..., TP3€).

n—oo
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By applying the above procedure p-times and Lemma 3 we get

p(€,TE) < 5, (€, TE T, ..., TPYE)

< lim s (Tp(n—l)x Tp(n=1+1, Tp(n—l)—',—(p—l)x)
S oo P ’ ’ )

=0.

Thus, ¢ is a fixed point for the map 7T'.

It remains to prove that £ is unique.

Suppose that there exists z € Ay, z # x, which satisfies (P1). Then by what we have
just proved it follows that {TP"z}5° ; converges to some point n € ﬂle A; such that
Tn = n. By Remark 1, since P = 0, it follows that

lim s, (TP"z, TP e, TP 2y, TP"TP~ ) = 0. (14)
n—oo

From the continuity of the function p(-, -) and (14) we get

— i pn pn+1
p(n,§) = lim p(T7"z, T x)

< lim s, (Tp”z, TPty Tent2y ,Tp"'“’_lx)
n—oo
=0.
Hence, £ = 7. O
Lemma 5. Let A;, i = 1,2,...,p, be nonempty closed subsets of a uniformly convex

Banach space (X, ||-||). Let T be a p-summing cyclic orbital Meir—Keeler contraction.
Then for every x € A; satisfying (P1), the following statement holds:

lim || 7Pty — TP D || = 0
n—oo

foreveryj=0,1,...,p— 1.
Proof. By Corollary 2 forany j = 0,1,...,p — 1 it follows that

lim HTT’”‘Hx — Tpn+j+1l‘H = diSt(Aj_H,Aj_i_Q)

n—o
and
nll)n;o HT”"‘*‘p‘”x — Tpn+j+1mH = dist(A 41, Ajpa).
According to Lemma 2 it follows that lim,, o, ||77"+ 2 — TP D +ig|| = 0. O

Lemma 6. Let A;, i = 1,2,...p, be nonempty closed subsets of a uniformly convex
Banach space (X, ||-||). Let T be a p-summing cyclic orbital Meir—Keeler contraction.
Then for any x € A; that satisfies (P1) and for any € > 0, there exists Ny € N such that
there holds the inequality

sp(TP" 2, TP o, TP 2y, TP P ly) < P te (15)

forany m = n = N.
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Proof. We will prove by induction on m.
Let € > 0 be arbitrary. There exists § > 0 such that condition (P1) holds true.
By Lemma 3 there exists N; € N such that there holds the inequality

sp(TP" @, ..., TP g, . TP ly) < Pte

for every n > N;. By Lemma 5 there exists No € N such that there hold the inequalities
(|TP"=Pg — TPz < §/2 for every n > Na. Put Ng = max{Ny, Na}.

Inequality (15) is true for m = n > Np.

Let (15) holds true for some m > n.

We will prove that (15) holds true for m + 1.

Let us put S5 = s, (TP Py, TPy, TPmT2g . TP™HP~=1g) It is easy to ob-
serve that
pm+p—2
Sy = |[Ton e — T S ([T, T | 4 [T, 7o
j=pm+1
pm+p—2
< |17 Pe — TP || + || TP e — TP || + Z |77, T7H ||
j=pm+1
T[Tt TP 4 | TP — TP
=5, (Tp"x, TPty TPty ,T”m“’*lfc) + QHTP”*px - Tp”xH.

Consequently, for any n > Ny, there holds the inequality S3 < P + ¢ + §. From (3) we
get the inequality

Sp (Ti"m"'p_lav7 TPn=Py TPty prmt2, ,Tpm+p_2x) =S3< P+e+6.
Therefore, from (P1) it follows that
Sp (Tpm“’x, Pl ppmAl)—pt2, pe(mtl)—pt3,, ,T”(m“)*lx)
<P+e.
Using again (3) we get
Sp (Tpnprrlx’ Tp(m+1)*p+2x’ Tp(m+1)*p+3x’ L 7Tp(erl)x) < P+e.
Put

Sy=s, (szx7 Tp(m+1)+1x7 Tp(7n+1)+2m, o ’Tp(m-&-l)-s-p—lx)

and
S5 = s, (TP PHg, TPimtD)=—pt2, pr(m+1)=p+3, ,Tp(erl)x).

From Corollary 1 we get the inequalities Sy < S5 < P + €. O

Let us recall the definition of strictly convex Banach space.
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Definition 4. (See [2, p. 42].) We say that the Banach space (X, ||-||) is strictly convex if
x = y whenever z,y € X are such that ||z| = ||y|]| = 1 and ||z + y|| = 2.

Proposition 4. (See [2, p. 42].) The following conditions on a norm ||-|| of a Banach
space X are equivalent:
(i) The norm ||-|| is strictly convex.
(i) Ifz,y € X are such that 2||z||* + 2||y||* — |z + y||* = 0, then x = y.
(iil) Ifz,y € X are such that ||z + y|| = ||z|| + ||y|l,  # 0and y # 0, then x = Ay
for some X > 0.

Lemma 7. Let A, B be closed subsets of a strictly convex Banach space (X, ||-||) such
that dist(A, B) > 0 and let A be convex. If v,z € A andy € B be such that ||z — y|| =
||z —y|| = dist(A, B), then x = z.

Proof. There is no A > 0 such that z — y = A(y — ). Indeed if there exists A > 0
such that 2 — y = A(y — ), then y = (1 + A\)~tz + A(1 + \) "'z and, consequently,
it follows that y € A, because A is convex, which is a contradiction with the assumption
that dist(A4, B) > 0. Thus, according to Proposition 4, it follows that

T+ z ez oy 2y 1
e N R AR (Gt KA
= dist(A, B).

Therefore, there exists an element © = (x + z)/2 € A such that ||u — y|| < dist(4, B),
which is a contradiction. O

Let us mention the well known fact, that any uniformly convex Banach space is strictly
convex [2, p. 61].

5 Proof of main result

Let x € A, satisfies (P1).

Case 1. Let P = 0. From Theorem 2 there exists a unique fixed point of 7', which is a
best proximity point.

Case 2. Let P > 0. We will prove that the sequence {TP"x}52 ; is a Cauchy sequence. By
Corollary 2 we have that lim,,, , ||[TP™z — TP™ x| = dist(A;, A2). From Lemma 6
we have that for any € > 0, there exists N; € N such that there holds the inequality
sp(TPp, TP g TP 2 TPMTP=1g) < P +¢/2 for every m > n > Nj.
Therefore, the inequality || 7Pz — TP™ x| < dist(A;, A2) + /2 holds for every m >
n 2 Nj. According to Lemma 1, it follows that for any € > 0, there exists No € N such
that for any m > n > Na, there holds the inequality || TP"x — TP"z|| < £/2 < &, and
thus, {TP"x}22 ; is a Cauchy sequence. Hence, the sequence {T7"z}> ; is convergent
to some £ € Aj.

Nonlinear Anal. Model. Control, 20(4):528-544
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By Corollary 1, Lemma 3, and the continuity of the function ||-|| we can write the
chain of inequalities

P < sp(6,TE, T2, ..., TP7)
lim s, (T7"z, TE, T2, ..., TP71E)
n—oo

N

lim s, (TP ‘2, &, TE, ..., TP7%¢)

n—roo

= lm s, (77" 'z, T2, TE,. .., TP 2¢)

n—oo

N IN

nhHH;O Sp (Tp’“pglc7 PPl penept2, ,Tpn*lx)

=P (16)
From (16) we get that

€ — T€|| = dist(A1, A2),  ||¢ — TP~ e = dist(As, A4p),
| 776 =TI = dist(Aj41, Ajp2), j=1,2,...,p—2.

Thus, £ is a best proximity point of T in Ay, T7¢, j = 1,2,...p — 1, is a best proximity
point of T"in A; ;.

We will show that for any z € Ay, z # x, such that z satisfies (P1), there holds
lim,,_, o TP"2z = £. By what we have just proved {TP"z} converges to a best proximity
point, say n € Ay, of T'in A;. By Remark 1 we have

lim s, (TP" Py, TP—PHly TPn=Pt2, TP 71) = P. (17)
n—oo
By Corollary 1, (17) and the continuity of the function ||-|| we can write the chain of

inequalities

P < sp(&Tn, Ty, ..., T" 'n)
= lim s, (Tp":r, Tn,T?n,... ,Tpfln)

n—oo

N

lim s, TPy n, T, . .. ,Tp_Qn)

n—o0

(
lim s, (Tpn*lx, "z, T, ... 7Tp*z?])
(

n—oo

N

lim s, TP =2, TP L 0, T, . .. 7T”_?’n)

n—o0

NN

n11_>1r010 Sp (Tp"_px, TPnoptly peneptl, o 7Tp”_lz)

=P

Therefore, we get that || — Tn|| = ||€ — T¢|| = dist(Ay, Ay). Since A, is convex set in
a uniformly convex Banach space, it follows from Lemma 7 that T'np = T¢. By the fact
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that 7 is a best proximity point of 7" in A; there hold the equalities
ln =Tl = [In — T¢|| = dist(Ay, Ap) = || — T¢]|.

Since A; a convex set in a uniformly convex Banach space and Tn = T¢ it follows from
Lemma 7 that n = &.

It remains to prove that £ = TPE.

Let T satisfies (P2). From the inequality || 7P" "1z — £|| < |[|TP" Tl — TP x| +
|TPm2 — £|| and Corollary 2 it follows that lim,, . ||[TP" 2 — £|| = dist(A4;, A2). By
Lemma 2 and ||T¢ — £|| = dist(A1, Aa) we get lim,, o TPz = TE. Lete > 0 be
arbitrary chosen. By lim,, o, TP"x = £ it follows that for any 6 > 0, there is Ny € N
such that for every n > Na, there holds s,(T?"x, T¢, T?¢,..., TP71) < P+ e+ 4.
By (P2) it follows that s, (TP" 1z, T2¢, T3¢, ..., TP¢) < P + ¢. Hence, ||[TP" 1z —
TP¢|| < dist(A;, A2) + € for every n > Ns. By the arbitrary choice of ¢ > 0 it
follows that lim,, ., ||TP" T o —TP¢|| = dist(A1, Az). From lim,, o ||[TP" M2 — €| =
dist(A;, A2) and Lemma 2 we get that |77 — || = 0. Thus, £ is a fixed point for the
map T7P.

Let T be a continuous map. By Corollary 2 it follows that lim,,_, o, TP" 'z = TP~1E,
From the continuity of 7" we get the equalities

¢= lim TP"z = lim T(T?" 'z) = T(T?"'¢) = T?¢.

n— oo n—oo

Hence, ¢ is a fixed point for the map T7.

6 Examples

The main results in [6] are consequences from the above results.

Theorem 3. (See [6, Thn. 2.2].) Let A and B be nonempty closed subsets of a complete
metric space X andT : AU B — AU B be a cyclic orbital contraction. Then AN B is
nonempty and T' has a unique fixed point

Proof. The proof follows from Proposition 1. O

Theorem 4. (See [6, Thm. 2.11].) Let X be a complete metric space and A and B be
nonempty closed subsets of X such that dist(A,B) = 0. LetT : AUB — AU B be
a cyclic orbital Meir-Keeler contraction. Then there exists a fixed point, say £ € AN B,
such that for each v € A satisfying (P1), the sequence {T?"x} converges to €.

Proof. The proof follows from Theorem 2. [

Theorem 5. (See [6, Thm. 2.13].) Let X be a uniformly convex Banach space and A and
B be nonempty closed and convex subsets of X. LetT : AU B — AU B be a cyclic
orbital Meir-Keeler contraction. Then there exists a best proximity point, say £ € A, such
that for every x € A satisfying (P1), the sequence {T?"x} converges to €.

Proof. The proof follows from Theorem 1. O
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We would like to illustrate Theorem 1 by one example, which is in some sense very
close to the examples in [4].

Let consider the space (R, ||-||2), where ||(z,y)]l2 = 22 +32 Let A; C R?
be defined by A; = {(2,0) € R%: z € [1,2]}, Ay = {(0,y) € R%: y € [1,2]},
Az ={(2,0) € R%: z € [-2, —1]}. Itis easy to observe that

P = diSt(Al,A2> + diSt(Ag,Ag) + diSt(Ag,Al) = 2\/§+ 2.

Putz; = (xl(.l) (2)) € A;,i=1,2,3. Let T beacyclicmap, T(4;) C Ajyr1,i=1,2,3,
and A4 = Ay, defined by

(0,1), xgl) € Q, xgl) * 2,
T(x1) =< (0,1 +2V/8), 2V ¢ Q,

(0,2), 2V =2

(—1,0), J:g) € Q, xgz) + 2,
T(mQ) = (71 - xéz)/g’ 0)7 x(22) g @7

(_27O)a $é2) = 2;

(1,0), 2V eQ, afV £2,
T(xs) = (1+a$7/8,0), 2" ¢Q,

(2,0), 2V =2,

We will use the inequalities 1 4+ (¢/4) < /14t < 1+ (¢/2), which hold for every
te0,1].

We will show that the map T’ with x € Ay, z € Q\ {2} is a 3-summing cyclic orbital
Meir—Keeler contraction. It is easy to observe that 73"z = (1,0), T3" 'z = (-1,0).
Put y; = (1 + O(,O) c A, Yo = (0, 1+ ﬁ) € Ay, S3,_1 = HTgn_lZ‘ — y1|| + ||y1 —
yall + llyz — T3 1a]| and S, = |70 — Ty | + ||Tys — Tyall + | Tys — T

Let & > 0 be arbitrary chosen. Put § = £/5. Let y; and yo be chosen so that S5, 1 <
P + ¢ + 4. Then by the inequality

6
P+§:P+8+5>S3n_1

:2+a+\/2(1+a+ﬁ+a2;_62)+\/ <1+6+622)

>P+a+?(a+ﬁ)+g(a2+ﬁ2) f5+£ﬁ2

we get the inequality 6¢/5 > a + (v/2/4)(a + B) + (vV2/8)(a? + B2) + (vV2/4)B +
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(v/2/8)3. Therefore, we can write the chain of inequalities

€ > §a+§£(a+,@)+§@(a2+52)—&-%gﬁ—i—%g

2
6" "6 4 6 8 p
B
-

Vo VYRV

vz Va9 2
> 60T a5 Ty @O+ gpglat H ) +

Consequently, we get that

8 V3 VI o VI VI,
P 24+2v2+ 24 X2 2 a4+ =
+e>24+2V2+ o+ Je(at B+ e (0¥ + B7) + Jpat geea

sor D Y (14 8) £ e (149) 58
= S S S ) = P3n,

and therefore, the map 7" with © € A;, z € Q \ {2} is a 3—summing cyclic orbital
Meir-Keeler contraction.

It is possible to make the above construction for a uniformly convex Banach space,
which is not an Euclidian space, as it is done in the example in [12].

If we consider the map T in the example with the change 7'(—1,0) = (2,0), then T’
satisfies all of the condition in Theorem 1, except that T is not continuous at (—1,0) and
T do not satisfies (P2). It is easy to see that T°(1,0) # (1,0).
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