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Abstract. Let ((s,w; ) be the periodic Hurwitz zeta-function. We look for real numbers « and
B for which there exist “many” real numbers 7 such that the shifts {(s + ia7,w;2) and {(s +
iB7,w; ) are “near” each other.
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1 Introduction

Let as usual s = o + it denote a complex variable. Let w be a fixed real number from the
interval (0, 1] and denote by 2 = {c¢,,: m € Ny}, Ng = N U {0}, a periodic sequence
of complex numbers with the smallest period ¥ € N. For ¢ > 1, the periodic Hurwitz
zeta-function is defined by

oo

C(s,w;2A) Zm+w

m=0

If A = {1}, then ((s,w; %) is the classical Hurwitz zeta-function

C(s,w) = —, o0>1,
2 o)

which has meromorphic continuation to the whole complex plane with a simple pole
5 =1 and residue 1.
If w = 1, then the function ((s,w;2() reduces to the periodic zeta-function

> C
m— 1
E s > 1.

m=1
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It is not difficult to see that, foro > 1,

k—1 oo lk 1 0o
Ql J—
(8,5 Zmzo mk+l+w) N lzoclm;) (m + Z+w/k))

k—1

;SZcm“( ”“’>. ()

Therefore, (1) gives the analytic continuation for {(s,w;2l) to the whole complex plane,
except, perhaps, for a simple pole s = 1 with residue

If ¢ = 0, then {(s,w; 2) is an entire function.
In the case when 20 = {1} and w = 1, the function ((s,w; ) becomes the Riemann

zeta-function
1
¢(s) = E —, o>1.

)
ms
m=1

In 1982, Bagchi [1] proved that the Riemann hypothesis for Dirichlet L-function
L(s, x) (x is an arbitrary Dirichlet character) holds if and only if for any compact subset
IC of the strip 1/2 < ¢ < 1 and for any £ > 0:

llmlnflmeaS{T €10,7): max‘L s+ir,x) — L(s, x)| < 5} >0,
T—oo T se
where meas stands for the Lebesgue measure on R.

Recently, Nakamura in [5] considered joint universality of shifted Dirichlet L-func-
tions, which led to the following generalization of Bagchi’s criteria. Assume that 1 = d;,
da, ..., dy, are algebraic real numbers linearly independent over Q and  is an arbitrary
Dirichlet character. Then, for every € > 0, we have

1
lim inf T meas{T € [0,T]:

T—o0
 Jax max |L(s +id;7,x) — L(s + ideT, X)| < 5} >0. (2
For m = 2, Parikowski [8] using Six Exponentials Theorem showed that (2) holds as well
for every real numbers dj, ds linearly independent over Q. The case where d; /dy € Q
in inequality (2) was considered by Garunkstis [2] and Nakamura [5] independently. It
is worth mentioning that the proofs of their results contain gaps. The gaps were filled by
Nakamura and Pakowski in [7], where d; = 1and ds = a/b € Q satisfies ged(a, b) = 1,
|a — b| # 1. It should be mentioned that the general case for d; = 1 and for non-zero
rational ds is still open. Garunkstis and Karikovas [3] investigated the self-approximation
property for Hurtwitz zeta-functions with a transcendental parameter w. Karikovas and
Pankowski [4] deal with Hurwitz zeta-functions with rational w
In this paper, we prove two theorems.
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Theorem 1. Let 2L = {c,,: m € Ny} be a periodic sequence of complex numbers with
the smallest period k € N. Let w = a/b, w € (0,1], 0 < a < b, gcd(a,b) = 1. Moreover,
suppose that o, [ are real numbers linearly independent over Q and K is any compact
subset of the strip 1/2 < o < 1. Then, for any € > 0,

liTrrLior(l)f% meas{T € [0,T7: max C(s + iarT, Z;Ql) - C(s +iBT, Z;Ql) ’ < 6} > 0.

In the next theorem, we consider the case when the parameter w is a transcendental
number.

Let dy,ds,...,dy,w be real numbers and let w be a transcendental number from the
interval (0, 1].

Let

A(dy,da, ..., dy;w) = {djlog(n—i—w):j:l,...,k; nENO}

be a multiset. Note that in a multiset the elements can appear more than once. For
example, {2,3} and {2,3,3} are different multisets, but {2,3} and {3,2} are equal

multisets. If a multiset A(dy,da, .. ., dx;w) is linearly independent over rational numbers,
then A(dy,ds,...,dy;w) is a set and the numbers dy, ..., d; are linearly independent
over Q.

Denote by ||z|| the minimal distance of x € R to an integer.

Theorem 2. Let 2L = {¢,,: m € Ny} be a periodic sequence of complex numbers with
the smallest period k € N. Let w be a transcendental number from the interval (0, 1].
Moreover, suppose that o, 3 € R are such that the set A, 8;w) is linearly independent
over Q and K is any compact subset of the strip 1/2 < o < 1. Then, for any € > 0,

1
liminff meas{T € [0,7T): max |C(s +iat,w;A) — (s + iﬁr,w;?l)| <e,

T — 00
— I
‘Mﬁogkuq}w.

2
In the next section, we prove Theorem 1. Section 3 is devoted to the proof of Theo-
rem 2.

2 Proof of theorem 1

Recall that, for Lebesgue measurable set A C (0, c0), we define lower density of A as

lim inf % meas(A4 N (0,7]).

T—o0

Moreover, if the limit above is positive, then we say that A has a positive lower density.
In the proof of Theorem 1, the following statement will be useful.
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Lemma 1. Let K C D be any compact set with connected complement, x1, . .., Xn be

pairwise non-equivalent Dirichlet characters and f;, g;, (j = 1,...,n) be functions

which are non-vanishing and continuous on K and analytic in the interior. Moreover, let

«, (8 be real numbers linearly independent over Q and B be a finite set of prime numbers.
Then, for every € > 0, the set of real numbers T satisfying

max max |L(s +ia7, x;) — fi(s)| <e,

Jwax max |L(s +i87,x;) — g(5)| <&,

max
peEB

T 2T

- pB)1
(o — ) logp H e
has a positive lower density.
Particularly, taking f; = g; yields that the set of T € R satisfying

121%)(" Isnea% ’L(s +iaT, x;) — L(s + 18, Xj)| < g,

max Ti(a—ﬁ) IngH <e
peB 2
has a positive lower density.
Proof. This is Theorem 4.1 in [4]. O

Theorem 1 will be derived from the following proposition.

Proposition 1. Let k,n € Nand a1/by,...,a,/b, be rational numbers satisfying 0 <
a; < b; and ged(a;,b;) =1 for j = 1,2,...,n. Moreover, suppose that o, 3 are real
numbers linearly independent over Q and K is any compact subset of the strip 1/2 <
o < 1. Then, for any € > 0,

C(s+ia7,zj> —C(s+iﬁ7',zj>’ <eg,
J J

’<5}>0.

Let the notation A < B means that there exists ¢ > 0 such that |A| < ¢B. Note that
the inequality

o1
liminf — measq 7 € [0,7]: max max
T—oo T sek 1<j<n

1
max ||—7logp — 1
2

plk

max
plk

1
—rlogp — 1H <e
27
implies that

max ’kSHT - ks‘ <L €.
se
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Proof. Letus consider the set of the functions {((s, a1/b1), {(s, a2/b2), ..., (s, an/by)}.
Since (a;,b;) =1 (j =1,...n), we have:

a b — : b R T (0
C(S J) = E X9 (a;)L(s,xV)) = —2 E X (a;)L(s,x;)).
b] Sﬁ(b]) o y J ( ) Qﬂ(b‘]) P k J ( k )

Thus

k—1 s
(ga) = AT > o)

X(l) mod b,

Two characters, y; mod ky, x2 mod ko, are equivalent if they are induced by the
same primitive character x* mod k with k|k; and k|ky. Then, for j = 1,2, we have

L(s,x;) = L(s, ") H (1 B X*(P)).

pS
plk;

Now let us assume that X;@ 7 is induced by a primitive character x;’

every two elements from the set

(U)* et us observe that

1) 1) 1)* n n
{XE) an) 77X50()bl)aax( ) an) ?7X4(p(2))

are non-equivalent either equal.
Let x1, ... xn denote all distinct characters in the set

1) 1) 1) n)* n)*
{X() » X é) 7"'7Xfp()b1)7"'5Xj(L ) )Xé) yee X (bn)}

Moreover, put
) if xU) is primitive,
P(&Xm) = G (p) . AN .
[L, (1~ %) if ) is imprimitive character mod g.
Let us observe that, for any imprimitive character X(j ) mod q, we have
|P(s + i, x(j)) — P(S,X(j))| < ¢,

provided

1
max Tlong < e.
ple || 27

Therefore,

b plbj) _
C(& ) D ay)P (5, X)L (5, (9.
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We see that, for any € > 0, there are ¢; > 0 and €2 > 0 such that

(ont) o)<
J J

’L(S—FiT,XT) —L(s,xr)’ <eg forallr=1,...,N,

forallj=1,...,nif

: , 3)
’P(s +ir, X,@) — P(s,xgﬂ))’ <eg forallj=1,...,n, r=1,...,0(b).
The above inequalities (3) are implied by Lemma 1. This proves Proposition 1. O

Proof of Theorem 1. From equality (1) for w = a/b € Q we obtain
k—1
a 1 Ib+a
=A== E — ).
<<57 b’ ) ks s CIC<S7 b )

Obviously, for all I with 0 < [ < k — 1, we can find a;, b; such that (a;,b;) = 1 and
(Ib+ a)/(bk) = a;/b;. Hence

a 2) — 1 i aj
C<S,b, )ksZClC(s,bl>.

=0

Now we have that

max ’C(s +iar,w;A) — (s + iﬁT,u};Ql)|

seX
1 "’Z‘l a 1 "’Z‘l a
. 1 . l
W ClC(S"‘lO[T,l)l) - W ClC(S"‘lﬁT,bl) ’

=0 =0

= max
sek

1 . a; 1 . ap
g T ) e - T A 3 e . 4
max max |kl i ¢ (s +iar 3 ) i ¢ (s +ifr b ) ‘ “)

Note that |ke;| < 1.
In view of (4), it is easy to see that Theorem 1 follows from the Proposition 1. O

3 Proof of the theorem 2

In the proof of Theorem 2 the following lemmas will be useful.

Lemma 2. Let I < m be positive integers and let w be a transcendental number from the
interval (0,1). Let dy,...,d; € R be such that A(dy,ds, . ..,d;;w) is linearly indepen-
dent over Q. Form > 1, let dj41,...,d;, € Rbe such that each dy, k =1+ 1,...,m, is
a linear combination of dy, . . . , d; over Q. Then, for any € > 0,

o1 : .
lﬂloréff meas{7 € [0,T]: P |C(s +id;T,w) — ((s + idpT,w)| < e} > 0.
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Proof. This is Theorem 1 in [3]. O]

Note that for any transcendental number w, 0 < w < 1, and for any real number d;,
the set A(d;;w) is linearly independent over Q. The following lemma shows that for any
positive integer [, “most” collections of real numbers d1, ds, . .., d;,w, where 0 < w < 1,
are such that A(dy,ds, ..., d;;w) is linearly independent over Q.

Lemma 3. Let w be a transcendental number and | > 2. If A(dy,ds,...,dj—1;w) is
linearly independent over Q, then the set

D= {dl e R: A(dy,ds, ..., d;w) is linearly dependent over Q}
is countable.
Proof. This is Proposition 2 in [3]. O
Next we will prove Theorem 2.

Proof of Theorem 2. Let « be a real number. By Lemma 3, we can find a real number 3
such that A(«, 8; w) is linearly independent over Q.
We have that

max |((s +iar,w;A) — (s + iﬁT,w;Ql)‘

sekk
1 k—1 1 k—1
= fsﬂe%é( Totiar Z al(s +iat,w) — TostiBT ZCIC(S + BT, wi)
= =0

<max max |kl
sek 0<I<k—1

1 ) 1 .
k5+ia7 C(S + 1a7—7 wl) - k5+i57— C(S + 157-) Wl)

Note that |ke;| < 1.
Inequality

HT(a ﬁ)long e
2

implies that

‘ks—&-iaT _ ks+i57‘| — ‘kUHki(a_B)T _ 1| <

KT 1| <.

This means that 1/k*+1°7 is near 1/k5+1°7.

Now we consider linear independence of numbers log(n + w;) (n € Ny) and log k
over Q, where w; = (I +w)/kandl=0,...,k— 1.

Assume that there exists a finite sequence of rational numbers

din, 1=0,....k—1,n=0,1,2,...,N, and d
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such that not all of these numbers are equal to 0 and

k—1 N
> dinlog(n+wi) + dlogk
=0 n=0
-1 N
= Z din (log(nk + 1+ w) — logk) + dlogk = 0.
=0 n=0
Then
k-1 N
Z Z diy log(nk + 1+ w) = log k7,
=0 n=0

where
-1

N
Y=Y dm—d
=0 n=0

and
k-1 N

H H(nk+l+w)d‘" =K. (5)

=0 n=0

Numbers d;,,, d and ~y are rationals. Therefore, it is not difficult to see that we can write (5)
in the form P(w) = 0, where P(w) is a polynomial. Then w is a root of this polynomial.
But w is a transcendental number, and we obtain a contradiction. This gives that numbers
log(n + w;) and log k are linearly independent over Q.

By the linear independence of numbers log(n+w;) and log k over Q, and by Lemma 2
(for m = 2) we obtain

Isne%{ogrlngals{—l ‘C(s +iar,w) — (s + BT, wl)| < e,

and Theorem 2 follows. O
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