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Abstract. Let ζ(s, ω;A) be the periodic Hurwitz zeta-function. We look for real numbers α and
β for which there exist “many” real numbers τ such that the shifts ζ(s + iατ, ω;A) and ζ(s +
iβτ, ω;A) are “near” each other.
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1 Introduction

Let as usual s = σ+ it denote a complex variable. Let ω be a fixed real number from the
interval (0, 1] and denote by A = {cm: m ∈ N0}, N0 = N ∪ {0}, a periodic sequence
of complex numbers with the smallest period k ∈ N. For σ > 1, the periodic Hurwitz
zeta-function is defined by

ζ(s, ω;A) =

∞∑
m=0

cm
(m+ ω)s

.

If A = {1}, then ζ(s, ω;A) is the classical Hurwitz zeta-function

ζ(s, ω) =

∞∑
m=0

1

(m+ ω)s
, σ > 1,

which has meromorphic continuation to the whole complex plane with a simple pole
s = 1 and residue 1.

If ω = 1, then the function ζ(s, ω;A) reduces to the periodic zeta-function

ζ(s;A) =

∞∑
m=1

cm−1
ms

, σ > 1.

c© Vilnius University, 2015

mailto:erikas.karikovas@gmail.com


562 E. Karikovas

It is not difficult to see that, for σ > 1,

ζ(s, ω;A) =

k−1∑
l=0

∞∑
m=0

cl
(mk + l + ω)s

=
1

ks

k−1∑
l=0

cl

∞∑
m=0

1

(m+ (l + ω/k))s

=
1

ks

k−1∑
l=0

clζ

(
s,
l + ω

k

)
. (1)

Therefore, (1) gives the analytic continuation for ζ(s, ω;A) to the whole complex plane,
except, perhaps, for a simple pole s = 1 with residue

c =
1

k

k−1∑
l=0

cl.

If c = 0, then ζ(s, ω;A) is an entire function.
In the case when A = {1} and ω = 1, the function ζ(s, ω;A) becomes the Riemann

zeta-function

ζ(s) =

∞∑
m=1

1

ms
, σ > 1.

In 1982, Bagchi [1] proved that the Riemann hypothesis for Dirichlet L-function
L(s, χ) (χ is an arbitrary Dirichlet character) holds if and only if for any compact subset
K of the strip 1/2 < σ < 1 and for any ε > 0:

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣L(s+ iτ, χ)− L(s, χ)
∣∣ < ε

}
> 0,

where meas stands for the Lebesgue measure on R.
Recently, Nakamura in [5] considered joint universality of shifted Dirichlet L-func-

tions, which led to the following generalization of Bagchi’s criteria. Assume that 1 = d1,
d2, . . . , dm are algebraic real numbers linearly independent over Q and χ is an arbitrary
Dirichlet character. Then, for every ε > 0, we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]:

max
16j,k6m

max
s∈K

∣∣L(s+ idjτ, χ)− L(s+ idkτ, χ)
∣∣ < ε

}
> 0. (2)

For m = 2, Pańkowski [8] using Six Exponentials Theorem showed that (2) holds as well
for every real numbers d1, d2 linearly independent over Q. The case where d1/d2 ∈ Q
in inequality (2) was considered by Garunkštis [2] and Nakamura [5] independently. It
is worth mentioning that the proofs of their results contain gaps. The gaps were filled by
Nakamura and Pańkowski in [7], where d1 = 1 and d2 = a/b ∈ Q satisfies gcd(a, b) = 1,
|a − b| 6= 1. It should be mentioned that the general case for d1 = 1 and for non-zero
rational d2 is still open. Garunkštis and Karikovas [3] investigated the self-approximation
property for Hurtwitz zeta-functions with a transcendental parameter ω. Karikovas and
Pańkowski [4] deal with Hurwitz zeta-functions with rational ω.

In this paper, we prove two theorems.
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Theorem 1. Let A = {cm: m ∈ N0} be a periodic sequence of complex numbers with
the smallest period k ∈ N. Let ω = a/b, ω ∈ (0, 1], 0 < a < b, gcd(a, b) = 1. Moreover,
suppose that α, β are real numbers linearly independent over Q and K is any compact
subset of the strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣∣∣ζ(s+ iατ,
a

b
;A

)
− ζ
(
s+ iβτ,

a

b
;A

)∣∣∣∣ < ε

}
> 0.

In the next theorem, we consider the case when the parameter ω is a transcendental
number.

Let d1, d2, . . . , dk, ω be real numbers and let ω be a transcendental number from the
interval (0, 1].

Let
A(d1, d2, . . . , dk;ω) =

{
dj log(n+ ω): j = 1, . . . , k; n ∈ N0

}
be a multiset. Note that in a multiset the elements can appear more than once. For
example, {2, 3} and {2, 3, 3} are different multisets, but {2, 3} and {3, 2} are equal
multisets. If a multisetA(d1, d2, . . . , dk;ω) is linearly independent over rational numbers,
then A(d1, d2, . . . , dk;ω) is a set and the numbers d1, . . . , dk are linearly independent
over Q.

Denote by ‖x‖ the minimal distance of x ∈ R to an integer.

Theorem 2. Let A = {cm: m ∈ N0} be a periodic sequence of complex numbers with
the smallest period k ∈ N. Let ω be a transcendental number from the interval (0, 1].
Moreover, suppose that α, β ∈ R are such that the set A(α, β;ω) is linearly independent
over Q and K is any compact subset of the strip 1/2 < σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K

∣∣ζ(s+ iατ, ω;A)− ζ(s+ iβτ, ω;A)
∣∣ < ε,∥∥∥∥ (α− β)τ log k2π

∥∥∥∥ < ε

}
> 0.

In the next section, we prove Theorem 1. Section 3 is devoted to the proof of Theo-
rem 2.

2 Proof of theorem 1

Recall that, for Lebesgue measurable set A ⊂ (0,∞), we define lower density of A as

lim inf
T→∞

1

T
meas

(
A ∩ (0, T ]

)
.

Moreover, if the limit above is positive, then we say that A has a positive lower density.
In the proof of Theorem 1, the following statement will be useful.
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Lemma 1. Let K ⊂ D be any compact set with connected complement, χ1, . . . , χn be
pairwise non-equivalent Dirichlet characters and fj , gj , (j = 1, . . . , n) be functions
which are non-vanishing and continuous on K and analytic in the interior. Moreover, let
α, β be real numbers linearly independent over Q and B be a finite set of prime numbers.

Then, for every ε > 0, the set of real numbers τ satisfying

max
16j6n

max
s∈K

∣∣L(s+ iατ, χj)− fj(s)
∣∣ < ε,

max
16j6n

max
s∈K

∣∣L(s+ iβτ, χj)− gj(s)
∣∣ < ε,

max
p∈B

∥∥∥∥τ (α− β) log p2π

∥∥∥∥ < ε

has a positive lower density.
Particularly, taking fj = gj yields that the set of τ ∈ R satisfying

max
16j6n

max
s∈K

∣∣L(s+ iατ, χj)− L(s+ iβτ, χj)
∣∣ < ε,

max
p∈B

∥∥∥∥τ (α− β) log p2π

∥∥∥∥ < ε

has a positive lower density.

Proof. This is Theorem 4.1 in [4].

Theorem 1 will be derived from the following proposition.

Proposition 1. Let k, n ∈ N and a1/b1, . . . , an/bn be rational numbers satisfying 0 <
aj < bj and gcd(aj , bj) = 1 for j = 1, 2, . . . , n. Moreover, suppose that α, β are real
numbers linearly independent over Q and K is any compact subset of the strip 1/2 <
σ < 1. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: max

s∈K
max
16j6n

∣∣∣∣ζ(s+ iατ,
aj
bj

)
− ζ
(
s+ iβτ,

aj
bj

)∣∣∣∣ < ε,

max
p|k

∥∥∥∥ 1

2π
τ log p− 1

∥∥∥∥ < ε

}
> 0.

Let the notation A � B means that there exists c > 0 such that |A| 6 cB. Note that
the inequality

max
p|k

∥∥∥∥ 1

2π
τ log p− 1

∥∥∥∥ < ε

implies that
max
s∈K

∣∣ks+iτ − ks
∣∣� ε.
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Proof. Let us consider the set of the functions {ζ(s, a1/b1), ζ(s, a2/b2), . . . , ζ(s, an/bn)}.
Since (aj , bj) = 1 (j = 1, . . . n), we have:

ζ

(
s,
aj
bj

)
=

bsj
ϕ(bj)

∑
χ(j) mod bj

χ(j)(aj)L
(
s, χ(j)

)
=

bsj
ϕ(bj)

ϕ(bj)∑
k=1

χ
(j)
k (aj)L

(
s, χ

(j)
k

)
.

Thus

ζ

(
s,
a

b
,A

)
=

1

ks

k−1∑
l=0

cl
bsl

ϕ(bl)

∑
χ(l) mod bl

χ(l)(al)L
(
s, χ(l)

)
.

Two characters, χ1 mod k1, χ2 mod k2, are equivalent if they are induced by the
same primitive character χ∗ mod k with k|k1 and k|k2. Then, for j = 1, 2, we have

L(s, χj) = L(s, χ∗)
∏
p|kj

(
1− χ∗(p)

ps

)
.

Now let us assume that χ(j)
k is induced by a primitive character χ(j)∗

k . Let us observe that
every two elements from the set{

χ
(1)∗
1 , χ

(1)∗
2 , . . . , χ

(1)∗
ϕ(b1)

, . . . , χ
(n)∗
1 , χ

(n)∗
2 , . . . , χ

(n)∗
ϕ(bn)

}
are non-equivalent either equal.

Let χ1, . . . χN denote all distinct characters in the set{
χ
(1)∗
1 , χ

(1)∗
2 , . . . , χ

(1)∗
ϕ(b1)

, . . . , χ
(n)∗
1 , χ

(n)∗
2 , . . . , χ

(n)∗
ϕ(bn)

}
.

Moreover, put

P
(
s, χ(j)

)
=

1 if χ(j) is primitive,∏
p|q(1−

χ(j)∗(p)
ps ) if χ(j) is imprimitive character mod q.

Let us observe that, for any imprimitive character χ(j) mod q, we have∣∣P (s+ iτ, χ(j)
)
− P

(
s, χ(j)

)∣∣� ε,

provided

max
p|q

∥∥∥∥ 1

2π
τ log p

∥∥∥∥� ε.

Therefore,

ζ

(
s,
aj
bj

)
=

bsj
ϕ(bj)

ϕ(bj)∑
k=1

χ
(j)
k (aj)P

(
s, χ

(j)
k

)
L
(
s, χ

(j)
k

)
.
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We see that, for any ε > 0, there are ε1 > 0 and ε2 > 0 such that∣∣∣∣ζ(s+ iτ,
aj
bj

)
− ζ
(
s,
aj
bj

)∣∣∣∣ < ε

for all j = 1, . . . , n if∣∣L(s+ iτ, χr)− L(s, χr)
∣∣ < ε1 for all r = 1, . . . , N,∣∣P (s+ iτ, χ(j)

r

)
− P

(
s, χ(j)

r

)∣∣ < ε2 for all j = 1, . . . , n, r = 1, . . . , ϕ(bj).
(3)

The above inequalities (3) are implied by Lemma 1. This proves Proposition 1.

Proof of Theorem 1. From equality (1) for ω = a/b ∈ Q we obtain

ζ

(
s,
a

b
,A

)
=

1

ks

k−1∑
l=0

clζ

(
s,
lb+ a

bk

)
.

Obviously, for all l with 0 6 l 6 k − 1, we can find al, bl such that (al, bl) = 1 and
(lb+ a)/(bk) = al/bl. Hence

ζ

(
s,
a

b
,A

)
=

1

ks

k−1∑
l=0

clζ

(
s,
al
bl

)
.

Now we have that

max
s∈K

∣∣ζ(s+ iατ, ω;A)− ζ(s+ iβτ, ω;A)
∣∣

= max
s∈K

∣∣∣∣ 1

ks+iατ

k−1∑
l=0

clζ

(
s+ iατ,

al
bl

)
− 1

ks+iβτ

k−1∑
l=0

clζ

(
s+ iβτ,

al
bl

)∣∣∣∣
6 max

s∈K
max

06l6k−1
|kcl|

∣∣∣∣ 1

ks+iατ
ζ

(
s+ iατ,

al
bl

)
− 1

ks+iβτ
ζ

(
s+ iβτ,

al
bl

)∣∣∣∣. (4)

Note that |kcl| � 1.
In view of (4), it is easy to see that Theorem 1 follows from the Proposition 1.

3 Proof of the theorem 2

In the proof of Theorem 2 the following lemmas will be useful.

Lemma 2. Let l 6 m be positive integers and let ω be a transcendental number from the
interval (0, 1]. Let d1, . . . , dl ∈ R be such that A(d1, d2, . . . , dl;ω) is linearly indepen-
dent over Q. For m > l, let dl+1, . . . , dm ∈ R be such that each dk, k = l+ 1, . . . ,m, is
a linear combination of d1, . . . , dl over Q. Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ]: max

16j,k6m
max
s∈K

∣∣ζ(s+ idjτ, ω)− ζ(s+ idkτ, ω)
∣∣ < ε

}
> 0.
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Proof. This is Theorem 1 in [3].

Note that for any transcendental number ω, 0 < ω 6 1, and for any real number d1,
the set A(d1;ω) is linearly independent over Q. The following lemma shows that for any
positive integer l, “most” collections of real numbers d1, d2, . . . , dl, ω, where 0 < ω 6 1,
are such that A(d1, d2, . . . , dl;ω) is linearly independent over Q.

Lemma 3. Let ω be a transcendental number and l > 2. If A(d1, d2, . . . , dl−1;ω) is
linearly independent over Q, then the set

D =
{
dl ∈ R: A(d1, d2, . . . , dl;ω) is linearly dependent over Q

}
is countable.

Proof. This is Proposition 2 in [3].

Next we will prove Theorem 2.

Proof of Theorem 2. Let α be a real number. By Lemma 3, we can find a real number β
such that A(α, β;ω) is linearly independent over Q.

We have that

max
s∈K

∣∣ζ(s+ iατ, ω;A)− ζ(s+ iβτ, ω;A)
∣∣

= max
s∈K

∣∣∣∣ 1

ks+iατ

k−1∑
l=0

clζ(s+ iατ, ωl)−
1

ks+iβτ

k−1∑
l=0

clζ(s+ iβτ, ωl)

∣∣∣∣
6 max

s∈K
max

06l6k−1
|kcl|

∣∣∣∣ 1

ks+iατ
ζ(s+ iατ, ωl)−

1

ks+iβτ
ζ(s+ iβτ, ωl)

∣∣∣∣.
Note that |kcl| � 1.

Inequality ∥∥∥∥τ (α− β) log k2π

∥∥∥∥ < ε

implies that∣∣ks+iατ − ks+iβτ
∣∣ = ∣∣kσ∣∣∣∣ki(α−β)τ − 1

∣∣� ∣∣ki(α−β)τ − 1
∣∣� ε.

This means that 1/ks+iατ is near 1/ks+iβτ .
Now we consider linear independence of numbers log(n + ωl) (n ∈ N0) and log k

over Q, where ωl = (l + ω)/k and l = 0, . . . , k − 1.
Assume that there exists a finite sequence of rational numbers

dln, l = 0, . . . , k − 1, n = 0, 1, 2, . . . , N, and d

Nonlinear Anal. Model. Control, 20(4):561–569
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such that not all of these numbers are equal to 0 and

k−1∑
l=0

N∑
n=0

dln log(n+ ωl) + d log k

=

k−1∑
l=0

N∑
n=0

dln
(
log(nk + l + ω)− log k

)
+ d log k = 0.

Then
k−1∑
l=0

N∑
n=0

dln log(nk + l + ω) = log kγ ,

where

γ =
k−1∑
l=0

N∑
n=0

dln − d

and
k−1∏
l=0

N∏
n=0

(nk + l + ω)dln = kγ . (5)

Numbers dln, d and γ are rationals. Therefore, it is not difficult to see that we can write (5)
in the form P (ω) = 0, where P (ω) is a polynomial. Then ω is a root of this polynomial.
But ω is a transcendental number, and we obtain a contradiction. This gives that numbers
log(n+ ωl) and log k are linearly independent over Q.

By the linear independence of numbers log(n+ωl) and log k over Q, and by Lemma 2
(for m = 2) we obtain

max
s∈K

max
06l6k−1

∣∣ζ(s+ iατ, ωl)− ζ(s+ βτ, ωl)
∣∣� ε,

and Theorem 2 follows.
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