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Abstract. In this paper, the global existence of smooth solutions for the three-dimensional (3D)
non-isentropic bipolar hydrodynamic model is showed when the initial data are close to a constant
state. This system takes the form of non-isentropic Euler—Poisson with electric field and frictional
damping added to the momentum equations. Moreover, the L?-decay rate of the solutions is
also obtained. Our approach is based on detailed analysis of the Green function of the linearized
system and elaborate energy estimates. To our knowledge, it is the first result about the existence
and L2-decay rate of global smooth solutions to the multi-dimensional non-isentropic bipolar
hydrodynamic model.
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1 Introduction

In this paper, we consider the following three-dimensional non-isentropic bipolar hydro-
dynamic model:

8tp1+V~m1:0,

mi ®m m
oymq1 + V- <1l> + V(plTl) =p1Vo— 717
p1 71
2 2 1
8T+ AT + STV (ml) — 2 V. (kVTY) (1)
p1 3 p1 3p1
_ 270 — 11 my 2_T1—TL1
312 | p1 T
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atp2+v'm2:07

dyma + V- <mz®””) + V(peTe) = —p2Ve — 2,
P2 1
O Ty + %VTQ + ;Tgv : (’;‘;) - 3ip2v (V) (12)
727’277’1 m22 TQ*TLQ
T 3mm | pe| T
NA¢ = p1 — pa.

Here (t,2) € Ry X R3, and the unknown variables p;, m;, T; (i = 1,2), and ¢ are the
charge densities, current densities, temperatures, and electrostatic potential. The coeffi-
cients 7y, 7o, £ and A are the momentum relaxation time, the energy relaxation limit, the
heat conduction and the Debye length, respectively. The constants 77, and 77, stand
for the lattice temperature. The non-isentropic bipolar hydrodynamic model plays an
important role in simulating the behavior of charge carries in submicron semiconductor
devices, see the pioneering work by Blotekjaer in [4], and also see [2,3]. The model takes
the nonisentropic Euler—Poisson form, and consists of a set of nonlinear conservation
laws for particle number, momentum, and energy, plus Poisson’s equation for the electric
potential. Moreover, it is worth mentioning that there are a lot of simplified models in the
fields of applied and computational mathematics, i.e., we can refer to [11, 16,20], etc.
Recently, many efforts were made for the isentropic bipolar hydrodynamic equations
from semiconductors or plasmas. Zhou and Li [25] and Tsuge [22] discussed the unique
existence of the stationary solutions for the one-dimensional bipolar hydrodynamic model
with proper boundary conditions. Natalini [18] and Hsiao and Zhang [6] established the
global entropy weak solutions in the framework of compensated compactness on the
whole real line and bounded domain respectively. Hattori and Zhu [26] proved the stabil-
ity of steady-state solutions for a recombined one-dimensional bipolar hydrodynamical
model. Gasser, Hsiao and Li [5] investigated the large time behavior of smooth “small”
solutions for the one-dimensional bipolar hydrodynamic model, and they found that the
frictional damping is the key to the nonlinear diffusive phenomena of hyperbolic waves.
Huang and Li [7] also studied the large-time behavior and quasi-neutral limit of L*° solu-
tion for large initial data with vacuum. Huang, Mei and Wang [8] discussed the large time
behavior of solution to n-dimensional bipolar hydrodynamic model for semiconductors
in switch-on case. Ali and Jiingel [1] and Li and Zhang [15] studied the global smooth
solutions of the Cauchy problem for multidimensional bipolar hydrodynamic models in
the Sobolev space H!(R?) (I > 1+ d/2) and in the Besov space, respectively. Ju [10]
discussed the global existence of smooth solutions to the IBVP for the 3D bipolar Euler—
Poisson system (1). Li and Yang [14] discussed the global existence and L?-decay rates
of smooth solutions for the three-dimensional isentropic bipolar hydrodynamic model. To
our knowledge, there are very few results about the non-isentropic bipolar hydrodynamic
model (1). Li [13] investigated the global existence and nonlinear diffusive waves of
smooth solutions for the initial value problem of the one-dimensional non-isentropic bipo-
lar hydrodynamic model. Jiang, etc. [9] discussed the quasi-neutral limit of the full bipolar
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Euler—Poisson system and obtained the local existence of smooth solutions for the initial
value problem. In this paper, we will discuss the global existence and asymptotic behavior
of smooth solutions of the initial value problem for the three-dimensional hydrodynamic
model (1) here. For the sake of simplicity, we assume 72 = x = 1, ; = 275 and
Ty, =T, = T, then we can rewrite (1) as

Op1 +V-mq =0,

®
omy + V- <m1p1m1) + V(p1Th) = p1Vé —mu,
mq 2 ma 2
0T + VT + STV - (22 ) - AT 4+ Ty — Ty =0,
P1 3 P1 3p1
atp2+V-m2 =0, (@)
®
Oymg +V - <m2p2m2) + V(p2T2) = —p2Vd — ma,
mao 2 mao 2
0o+ “2VTy + SToV - (22 ) = S ATy +Tp — Ty, = 0,
P2 3 P2 3p2
A¢ = p1 — pa.

We also prescribe the initial data as

pl(t:O,I):plo(I) >0, pg(t:O,I):pgo(I) > 0, IERB,
(ml,Tl,mg,Tg)(t = 0,.%') = (mlo,Tlo,mgo,Tgo)(x), ¢ — 0 as |$| — OQ.

3

The main result in this paper is stated in the following theorem.

Theorem 1. Let (p,m,TL) be constant state with p > 0 and Ty, > 0. Assume that
Oo =: |[(p1o — p, mio — m, Tro — Tr, p2o — p, Mao — M, Tog — T1) | ganpr is small
enough. Then, there is a unique global classical solution (p1,my,T1, p2, ma, Ta, &) of
the IVP (2)—(3) satisfying
p1—p, p2 — p € CO(Ry, H*(R*)) N C" (Ry, H?(R?)),
(R A (RY)) 0 Y (R, B (BY)),
Ty — Ty, T, — Ty € C°(Ry, H(R?)) N C (R4, H?(R?)),
¢ € CO(Ry, LO(R?)), V¢ e CO(Ry, H?(R?)),

ml—fmmg—meC’o

and there is some positive constant C' > 0 such that, for i =1, 2,

102 (pi — p)(1)]] < CONL + 1) 3/47101/2 o] < 2, “)
|05 (ms —m)(8)|| < COW(1+ 1) /412 o] < 2, ©)
102(T; = TL)(8)]| < COW1+1)~¥/471e1/2 o] < 2, ©6)

|02V e(t)]| < CONL+ 1) /471RI2 18] < 3.
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Remark 1. Furthermore, if we assume that @1 =: |[(p10 — p, m1o — ™M, P20 — P,
mag — M) ||gs+inpr (s = 2,1 > 2) is small, then there is a unique global classical
solution (p1, m1, 11, p1,m2, Tz, @) of the IVP (2)—(3) satisfying

pL—p, pa—pE CO( Hs+l (RB)) not (R_,_,HSH 1(R3))

mi —m, my —m € C°(Ry, H*Y'(R?)) N C* (Ry, H*H' 1 (R?)),

Ty — Ty, To — Ty, € CO(Ry, H*TH(R?)) N CH (R, H* T2 (R?)),

o€ CO'(RL,LO(R?)),  Vo¢e CORy, HHH(RY)),

and there is some positive constant C' > 0 such that, fori = 1,2 and || < I, |B] < 1+ 1,
102 (pi — ) (X)|| < COL(L + t) 3/ 112,
|02 (mi —m)()]| < COL(L +¢) /A lel/2)
[02(T; = TL)(1)]| < COL(1 +t)=2/471el/2,
|00V 6(t)|| < COL(L+ 1) /1A,

Remark 2. Compared with the Euler equations with damping in [23], we find that the
interaction of the two particles and the additional electric field reduce the decay rate of
the momentums, which are seen in the isentropic bipolar case in [14]. Moreover it is
interesting studying the existence and stability of the planar diffusion waves for the multi-
dimensional full bipolar Euler—Poisson system in switch-on case as in [8], which is left
for the forthcoming future.

The idea of the proof is outlined as follows. First, we present local-in-time existence
of the initial value problem (7)—(8) by the standard argument of contracting map theorem
as in [12]. Next, combining the local existence and global a-priori estimates, we apply the
continuity argument to establish global existence of smooth solutions for the nonlinear
problem. The key point is to derive the a-priori estimates, in which we show the estimates
of the lower order derivatives of solutions by the spectral analysis of the corresponding
linearized equations, and obtain the estimates of the higher order derivatives of solutions
by elaborate energy estimates.

The rest of this paper is outlined as follows. In Section 2, we reformulate the original
problem in terms of the perturbed variable, and present the L? decay rate of the linearized
equations. The global existence and L2-convergence rates of smooth solutions will be
shown in Section 3.

Notations. Throughout this paper, C' > 0 denotes a generic positive constant indepen-
dent of time. LP(R?®) (1 < p < oc) denotes the space of measurable functions whose
p-powers are integrable on R, with the norm || - || z» = ([gs | - [P dz)'/?, and L* is the
space of bounded measurable functions on R3, with the norm || - || = = esssup,| - |, and
also simply denote || - ||z2 by || - ||. H*(k > 0) stands for usual Sobolev space with the
norm || - ||s. Moreover, we denote || - ||s + || - ||z by || - ||HmL1 Finally, for f € L?, the
Fourier transform of f is f(¢) = F[f](£) = (2m)3/2 Jgs fx)e ™= ¢ da.
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2 Solutions of the linearized equation

Firstly, we reformulate the nonlinear system (2) for (py,my, Ty, p2, ma, To) around the
equilibrium state (p, m, T, p, m, Tr,). Without loss of generality, we can take (p, m, Ty,
p,m,Tr) =(1,0,1,1,0,1). Denote

ni:Pi_L m; = My, ai:Ti_17 i:1727 ¢:¢>
then the IVP problem for (ny, my, 01, n2, ma, 02, P) is given by

8tnl+sz:0, i:1,2,
oym; + Vn; + Vo; — (—1)iV¢+mi =fi, 1=1,2,

2 2
Oub;+ 5V i = A0+ =g, =12 @
AP =n; —ng, ‘ llim &(z,t) =0,
T|—00

with the initial data

(nh may, 017 N2, Mma2, 92)(I7 0)
= (n10, M10, 010, n20, M20, 20) ()

= (p10o — 1, mio, Tho — 1, pao — 1, mag, Too — 1)(x). ®)

Here the nonlinear terms f;, g; (¢ = 1, 2) are defined by

i ; @ my
= (—1) Ve — V- M L 0.
fi=(=1)"n;V \Y ( p—— ) V(n;6;),
m; 2 m; 2 m; 2 1
i = — ! V(‘)z—f@ZV d —*V' d - i - —]. A(‘)z
g n; +1 3 n,+1 3 (ni+1 m>+3<ni+l )
For simplicity, we replace V@ with the following formulation:
V& = VA~ (ng —no). 9)

Inserting (9) into (7) and neglecting the nonlinear terms, we have the following linearized
nonisentropic bipolar Euler—Poisson system:

Oy +V -y =0, i=1,2,

Oy + Vi +V0; — (=1)'VA™ (g —ng) +m; =0, i=1,2, (10)
_ 9 2 _

6t9i+§v‘mi_§A0i+0i =0, =12,

with
(711, N2, 01, M1, M2, 02)(x,0) = (n10, M10, 010, N20, M20, O20) (). (11)

By setting U = (71, M1, 01, Mo, o, 02)t, IVP (10)—(11) can be expressed as
U =BU, U0)=Uy, t=0. (12)

Nonlinear Anal. Model. Control, 20(3):305-330
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In particular, there is a solution of the following IVP: U, = BU, U(0) = §(x)I10+10,
which was always called Green function and denoted as G(z,t). And the solution of (12)
can be expressed as

U(xvt) = G('vt) * UO(')? (13)

where * is the convolution in z. In the following, we focus on analyzing the properties of
G(-,t) * Up(+). For this aim, from (10), we have

O (N1 +72) + V- (Mg +1me) =0,
Oy (M1 + ma) + V(nq + fiz) + V(01 + 02) + my + 1mg =0, (14)
_ _ 2 2 _ _ _ _
0(01 + 02) + §V - (mq 4+ ma) — §A(91 +0)+60,+60,=0
and

O¢(fy — fig) + V- (M — mg) =0,
O¢(y — ma) + V(7 — fin) + V(61 — 62)

+ 1y — Mg — 2VATH (g — fg) = 0, (15)

o 9 9 o
8t(91 — 6‘2) + gv . (ml — mg) — gA(Ql — 92) +6; —05 = 0,

By setting Ul = (’Fll —|—ﬁ2, m1 —I—mg, 9_1 —|—9_2)t, and Ug = (7_11 —1_12, m1 —T?LQ, él —gg)t,
IVP (14) and (15) can be expressed as

Uiy = B1U1, Uy(0) = Uig = (i1g + fing, Mg + Mag, 010 + O20)", ¢t >0, (16)
and
Ust = BoUsz, Us(0) = Usg = (i19 — Mino, M1o — Mag, f10 — Oa0)', £ >0, (17)

Let us denote the solution of the following IVP:
Uir = B;U;, Ui(0) = 6(x) 545
by Gi(x, t). Then the solution of (14) and (15) can be expressed as
Us(x,t) = G*(-,t) * (n10 & n20, mio £ mag, O10 £ O20)(-), (18)

where * is the convolution in z.
Applying the Fourier transform to system (16) with respect to z, we have

OUL(E ) = AL(OUL(E L) (€= (6,6.8)), U1(0) = Is.s,

where
0 —i€ 0
A = | -t —Is —igt
0 —2€/3 —(2¢2/3+1)
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The eigenvalues of the matrix A;(§) can be computed from the determinant

det()\I5 — Al(f))
=(A+1) (/\3 + (?)|§|2 + 2)>\2 + (;|£2 + 1>>\ + 5|2<§§|2 + 1)) =0,

which implies A; = —1 (double), and there exist positive constants r; and ro satisfying
r1 < ro such that when || > 7o,

_h BY _ 3 1 _
Ay = b ‘/?E \/72, A= - (=2b+ YY1+ YY) £ —V63(\3/71— Y/Ya),

and when [¢] < 71,

—b—2vAcos ¥ 1 V v
Ny = 02V L Ve s VB D)),
3a ’ 3a 3 3

Here
2 7 2
o=l o=liPez e=lkPat a=lep(GP 1),

A =b% - 3ac, B = be — 9ad, C = — 3bd,

3a 2Ab — 3aB
Yio=Ab+ —(—B+ vB?2-4AC 9= —_— .
1.2 + 5 ( Vi ), arccos VoS
The semigroup S; () = e*1 is expressed as
4 G%l G%Q G%B
et M) = ZeAthi(g) = q%1 ng2 ng?, ) (19)
=1 Gy Gl Gig
where the project operators P;(£) (: = 1,2, 3,4) can be computed as
Ai(§) — N1
g
Similarly, for
0 —i€ 0
Ap(§) = | -7 (A +2[7%) I —ig" ;
0 —2i¢/3  —(2|¢)?/3+1)
we have R .
A 4 St Cf% Cf%2 Cf%?,
O =3 NP = |G G3 Gy, 20)
=1 G3 G3, G

Nonlinear Anal. Model. Control, 20(3):305-330
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where A; = 2 and A2 3 4 satisfy

3+ <:2))|§|2 +2)>\2 + (;|£|2+1>)\+ (|§|2 +1) ((,2))|§|2 + 1) =0,

and the project operators P; (&) (i = 1,2, 3, 4) can be computed as

_ Ag(&) = NI
Pie) = [ A2
j#i v
Noting in (19) and (20), G, (i = 1,2) are 1 x 3-matrix, G%, (i = 1,2) are 3 x 3-matrix,
and G%;, G, (i = 1,2) are 3 x 1-matrix, the other are 1 x 1-matrix.
Then, from (19) and (20), we have

Gii G2 Giz G Gis5 Gy

Ga1 G2z Gaz Gay Gas Gy

Gl t) = Gs31 Gz Gzz Gz G35 Gsg
' Gy Gio Gaz Gu Gus Gas |’

Gs1 Gs2 Gs3 Gsa Gss Gse

Ge1 Ge2 Gez Ges Ges Ges

2

where
Gl]:%(G1+G2) i=1,2,3,7=1,2,3,
GU:%( G7), i=1,2,3,j=4,56,1=j—3,
GU_%(GU ), i=456,7j=1,2731=i-3,

Gijzi(G}cl—Gil), i=4,5,6,7=4,56k=4i—3, 1=7j—3.

Using the idea and argument of [14, 17,19, 24], we have L2-estimate of solution for
the IVP (10)—(11) as follows.

Lemma 1. [fUy € L'(R3) N H*(R?), then fori = 1,3,4,6, j = 2,5, we have

102 (G *UO7G14*UO)H <C(1+1t)” 3/4_|O‘V2(||Uo||L1 + H8§‘Uo )

105 (Giz  Uo, G + Up)|| < C(1 ) G2/ m=/D =122 (U | Lo + |05 T ),
||8 (Gis * Uy, zG*UO)H <C(141)" (3/2)(1/m—1/2)—1/2—|a|/2(HUO”Lm_i_Ha;yUO )7
103 (Gis * Uo, Gis + U)|| < C(L+ 1) /212 (U] + [[07Uo])), ol > 1

105(G 1 % Uy, Gy Up)|| < C(A+ )~V 1212(|Ug || 10 + ||02T0 ),

103 (G2 Uo, Gjs * Vo) || < O(1+ 1)~ G/DUm=U2I2 (|10 1o+ (|07 ),
105(Gy3 * Up, Gje * Up)|| < C(1 + ¢)=3/20/m=1/2=1271el/2 (|1 || m + |02 T |)),
105(Gys * Uo, G * Uo)|| < C(1+ )2 12(1Ug || + |07 T0]]), o] > 1

where |a] < 4, |8

=l|a|—1,andm =1,2.
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Indeed, with the express of G (&,t), and applying Hausdorff-Young inequality, we can
show Lemma 1, and the details can be found in [14,17,19,24].
Moreover, from (9) and (21), the Fourier transform for the electric field is

lg ~

E = 7@(711 — ﬁZ)
= 52 (G11,G12,Gh3, G4, Grs, Gi6)Up + |£|2(G41,G427G43,G44,G45,G46)ﬁ0

From the above equality, we can define

E=LUy = (£ + S)Uo,

where

L= ‘§|2(G11 Gu1, 0, 0, G1g — Gu, 0, 0),

~ Zf
£=
el

Here L, £, £ are the Fourier transform of function L, £, £, respectively. From Lemma 1,
the estimates of L,L, £ is given as following.
Lemma 2. [fU € L*(R?) N H*(R3), then for m = 1,2, we have

102 (L + Uo)[| < C(1+ )= A1 V2 (|1 Us| . + (|07 U ),

|02(£ % Uo)|| < C1 +8)=3/4112(|| U || 1 + ||02Ts ).

(0, Gi2 — Ga2, G13 — G43, 0, G15 — Gus, Gie — Gag)-

3 Global existence and L2-decay rate

In this section, we are going to establish the global existence and show the L?-decay rate
of the solution of nonlinear problem (7)—(8).

First of all, we give the local existence theory, which can be established in the frame-
work as in [12]. The key point is the electric field V@ can be expressed by the Riesz
potential as a nonlocal term

t
V6 = Vo(t = 0,2) + V(-A) 1V - /(m1 — my) ds,
0

which together with the L estimates of Riesz potential leads to

)V /t(ml —ma)ds
0

Then, we can prove the following local-in-time existence of the initial value prob-
lem (7)—(8) by the standard argument of contracting map theorem as in [12]. The details
are omitted.

t

/(ml —ma)ds

0

<C
k

k
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Theorem 2. Assume that (n19, m10, 010, N20, M0, 020)(x) € HA(R3). Then, there is
a time T > 0 such that the IVP (7)—(8) has a unique global smooth solution (ny, my, 61,
N2, ma, 027 ¢)

ni,mi,na,mo € C°([0,T), H*(R?)) n C*([0,T), H*(R?)),
01,62 € C°([0,T], H*(R*)) n C*([o, T HQ(]R3))
@ CO([0,T7,L°(R?)), Vo e C°([0,T], H (R?)),
satisfying inf ;. )0, 71xrs i (t, ) > 0, and
[0, 61, m2,ma, 62) ()| + [[VEC O + [[ @, 0] 16 < C:
To extend the local existence of solution to be a global solution in time, we need to

establish some uniform a priori estimates. For this aim, we will look for the solution in
the following space

S = {(n1,m1,01,n9,ms,05,V®) € (H*)® x H® | A(t) < +00},

where

A(t) = sup {<1+s VAIVe)|+ D [(1+s)? 2D (0, 61, m2, 6) (5)]|

Osest lal<2

+ (1+5)1/4+|a‘/2||D‘a|(m1»m2)(5)H] +(1+3)3/4HD3(nhm1, 01,n2,msz,02)||

+HD4(n1;m17917n27m2792)H}' (22)

Due to the property of Riesz potential (see [21]), we have

1"V < ClID™ (n = na)|,

k>1. (23)

It seems that the estimates of the high order derivatives of V& come from the bounds of
ny and no. That is, if (ny,my1, s, ma, VP) € S, it is obviously that for all 0 < s < ¢,
(14 ) Y4k 2A01) (k=1,2,3),

| DFVa(s)|| < ( o4
| < (1+s) 732 A(2).

| D*Vo(s)|
So we should obtain the estimate of V@ itself.

Lemma 3 (The a priori estimate of lower order derivatives of solution). Under the
assumption of Theorem 1, suppose that (ny, my,01,n2, ma, 02, V&) € S is the solution
of IVP (1)—~(8) on [0, T for any T > 0, which satisfies the following assumption:

(n1,m1,01,n2,m2,02,V®) € S, A(t) < 0o fordp < 1. (25)
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Then, for any t € [0, T), there exists some constant C' such that

105 (11,19, 01, 05) (1) || < COG(1 + 1) 3/4 /2 4 C(A(E)) (1 + 1) ~3¥/4H/2,

|
102(n1,m2,01,02) ()| < COL(1 + 1)~ 3/4 + C(A(t )) (1+1)7%/4,
105 (m, ma) (8)|| < COO(1 + £) 442 4 (A1) * (1 + £) /42,
102 (1, ma) ()| < COLL + 1)~/ + C (A1) *(1 +1)3/1,
V()| < COG(L + 1) + C(A®))*(1 + 1)~ /%
Here k =10,1,2.

Proof. By Duhamel principle, it is easy to verify that the solution U = (ny,m1, 61, na,
ma, 02, VP) of the IVP problem (7)—(8) can be expressed as

n1 = (G11,G12,G13, G14, G15, G16) * U
t
+/(G12*f1+G13*91+G15*f2+G16 * g2)(s) ds, (26)
my = (G0217 G2z, G23, G4, Gas, Gag) x U
t
+/(G22*f1+st*g1+G25*f2+G26 * g2)(s)ds, (27)
th = (G031, G2, G33, G4, G35, G36) x U
t
+/(G32*f1+G33*91+G35*f2+G36 * g2)(s)ds, (28)
ng = (G041, Ga2,G43,Ga4, Gus,Gue) x Ug
t
+/(G42*f1+G43*91+G45*f2+G46*g2)(8) ds, (29)
mo = (G051, G2, Gs3, Gs4, G5, Gis6) * Uy

t

+/(G52*f1+G53*91+G55*f2+G56*g2)(8) ds, (30)
0
02 = (Ge1, Ge2, Ge3, Gea, Ges, Ges) * Up

t
+/(G62*f1+G63*91+G65*f2+G66*92)(5)d5, (31)

and

¢
Vo = L*UO+/£t—s (0, f1, 91,0, f2,92)(s) ds. (32)
0
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First, from (26) and Lemma 1, we have
| D%(G11, Gh2, Gis, Gia, G15, Gig) * Up|| < C(1+ t) 32 (1T | Lr + | Tole).-
For the estimates of the nonlinear terms, we first have for i = 1, 2,
|(ni, 02)] . < + )32 A1), [(mi, V®)|| _ < C(L+8)7TAt), (33)
|(Dni, DO;)|| < C +t) YA), || D(mi, V)| < C(L+1)73/*A(t) (34)
with the aid of

1/2

ullz= < C||Dul|}5|| D?ul foru € H?(R?),

which appeared in [21]. Further, from (25) and (33)—(34), we can get that, fori = 1, 2,

[A@)] < OV o + | Dmll[lm]| Lo + | Drl[[Fm |7
+ | Dnillllnil[ o + 11D 10| Lo + [lmsll L= [ D6s]])
C(1+1)774 (A1), (35)

<
1£: ) 1 < C(UInalllIVel + [1Dmal[lmall + | Dl [ 2

+ [ DngllIna]l + [1Dna| 1631 + llna [ D6s 1)
2

<CA+t)71(A@W)7, (36)
9| < C(Imill L= IV Ol + [1Dm | ([16:]] o + 1724 o)
+ [[Dni[llmil[ Lo 10il| oo + | A0 [|||meill oo + || Drog[[[mi| e
+ 1 Dngllml pos |mal| o)
< C(A®) (141794, 37

and
Hgi(U)HLl < C(”mz””V@zH + | D[ 10 || + (| D |[[[12:]] oo [10:]] + | A0 |[[[ 724 ]
+IDnillllmall + Il Dmal| + | Dnal il mal o)
< C(A®)*(1 417372, (38)
Thus, one have

In1ll < [[(G11, G2, Gis, Gra, Gis, Gag) * Uo|

t

+ / ([|Gr2 * fill + |Gz * g1ll + [|G1s * fall + |G16 * g2l|) dT
0
< C||U0HL10L2(1 +1)73

e / i 5/4z<||fz g+ 9@ i) 07
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2

< CO(1+1)* + C(A®))

X /(1+t—7)*5/4 [(Q+7) 74+ (1+7) 7 4+ L+7) 4+ (1+7) 3] dr
0
< COY1+1)3/* + (A1) (1 +1)!

Next, we have the following estimate of the nonlinear terms f;(U) (¢ = 1,2) and

g:(U) ¢ =1,2):

IDLU)]| < C(A®))* (1 +1)~%/2, (39)

|Dg:(U)|| < C(A®)*(1 +1)72, (40)

ID2£,(U)|| < C(AW®))* (1 +1)~ /4, (41)
and

|D%g:(U)|| < C(A®))* (1 +1)7", (42)

which together with (26) yield

| Dny(t)|| < || D(G11, Gz, Gis, Gia, Gis, Gig) * U
¢
+ / | D¥ (G2 * f1 + Gis % g1 + G5 * f2 + Gig * g2) (1) || d7
0

<O+ t)‘5/4HUo|IL1mH1
t/2

+0/ o) TAY (Hfz ), + 1D @) @)]) dr

e /(1 +t=n) Y ([ + L)) dr

/2
t/2

+C’/1+t 7/42 9:(O)]| 2 + || Dga(U)(7)]]) dr

0
t

+0/ 1+t—7)" " (lg:(©)] + || Dg:(U
t/2 i=1
<O+ )4Vl rrm
t/2
+C(A(t))2/(14_1‘,—7')77/4[(14—7')71+(1—|—7‘)73/2} ar
0

[

)(7) |) dr
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+ C(A(1))? /(1 T )AL (1 T)73/2] dr
t/2
t/2

+C(A(t))2/(1+t77_)77/4[(1+7_)72+(1+7_)73/2} dr

0
t

L o(A®)? /(1 o) ) (L4 dr
/2

< CO(1+1)"1 4 C(AW) (1 +6)7%/2
and
| D*na(t)|| < ||D*(Gh1, Gz, Gis, Gis, Gis, Gie) * Uo ||
t
+ / |D?(G1a % f1 + Gis % g1 + G15 * fo + Gig % g2)(7)]| AT

< CA+ )" Uo| pram2
t/2

e / (14t- 9/42 )|+ D)) dr

+C

\“o

(i 3/22 |H@)O] + D 1)) ) dr

~ Dl

/2

+c/ 1+t— 9/42 (llg: (@[ 1 + [|1D*gs(@)]]) ar
0

t
+C/1+t 3/22 lg:@)|| + |1Dg:(U)]])

t/2
< CA+6) Vo rrme
t/2
JrC(A(t))Q/(1+t77_)79/4[(1+7_)71+(1+7_)77/4} dr

0
t

+C(A(t))2/(1_’_t_,]_)73/2[(1_’_7_)77/4_’_(1_,[_7_)77/4] dr

t/2
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t/2
+C(/1(t))2 /(1 +t—T)_9/4[(1 )l +T>—3/2} dr

0
t

+o(A®)? /(1 +t—7) 2L+ )T+ A4 7) " dr
t/2
< COYL+ )T+ C(AW)) (1 +1)"/*
with the help of (35)—(38).
Finally, we can show
ID* )| < C(a@) @+ 67"
which together with (35)—(38), and (42) leads to
|[D*na(t)|| < ||D*(Gi1, Gz, Gas, Gis, Gis, Gie)  Uo|

+ / HDk(Glz * f1+ Gizx g1+ Gis * fo + Gre * 92)(7')” dr

< C(L+t)" 4 Uol prnms
t/2

e / (4t 11/42 )|+ D F) @) dr

0
t

w0 [st=nn Y (@] + [0 @) o

t/2

e / (+t=7)23 (o)) + | D2g:(0)(D)])) dr
0 =1

<CA+1) Ul 1
t/2
+o(Aw)’ /(1 Lt AL ) (L) dr

0
t

+ C(A(t))2 /(1+t—7)*2 [(A+7) "7+ (1+7) 7+ (1+7) 7] dr

t/2
t

+C(A(1)? /(1+t—r)*2 [(Q+7) 74+ (1+7) "+ (1+7)7 ] dr
0
< CO(1+) ¥ + C (A1) (141) /4,
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Moreover, in the completely same way, from (27), we can obtain
[mr ()] < CO(L+ 1)~ V44 C (A1) (1 + 1)
[ Dma(1)|| < COH(1 + ) VAR 24 (A (1)) (1+ )42 o =k =1,2,
| D*m (1) ,2 < COWL+ 1) 44+ C (A (1) * (1 + 1)~
and from (28), we can show
161()]| < CO(L + 1)~/ 4 C (A1 (1))* (1 + 1)~
ID01(1)|| < CO(1 + 1) 3/ 4 F 24 C (AL ()2 (1 + 1) ¥4 F2 o] =k = 1,2,
ID61(8)]] ;2 < COLL + 1)~/ *+ C (A1 (1)) 2(1 + 1)

The estimates of ns, my and A, can be obtained by the completely similar way. We
omit the details here. For the time decay rate for V&, from Lemma 2 and (35)—(38), it is
easy to get

01| P

V()| < ||L* Ul + / [£(t = 7) % (0, f1,91,0, f2, 92)(7)|| dT
<O+ )Tl rnze
¢
+ c/<1 +1- r)mi (£ aerpe + 96 o p2) o7
< 06021 )TV C(AW)) (1 + 1)V
This completes the proofs. O

Next, we are going to derive the estimates of higher order derivatives of (nq,mq, 61,
nga, M2, 62). For simplicity, we denote u; = m;/(n; + 1), ¢« = 1,2. From (7)—(8), we
derive the system for (n1, u1,ng, us, ) as

8tni —|— V s U = —V . (niui), ’L = 17 2, (43)
i+ 1)(0:; +1 ; )
s + (s - Vyus + S FDOHY) yyigg— o1 @)
n; +1
0:0; + -V9-+2(9-+1)V v—LAH*}\ v|2—0- i =1,2, (45)
A% U; [ 3 7 U; 3(711—"-1) 1*3u1 (%) 1= 1,4,
AP =ni — na, & —0, |z]— . (46)
Further, we have
Nie — Ang +niy + (1) (1 — ny) — Ab; = R, 47)
it + ui + Vn; + Vo; — (=1)'V® = Q;, (48)
2 2
00; + §Vul — §A91+91 :Si, 49)
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fori =1, 2, here

0; +1
R, =V"- (TLZ n 1V’I’Li — V’Ilz) —-V- (nzul + (niui)t)
1k k
0; +1
R I R (- .
Qi ( — 1>Vnz (ui - V)ui,
2 2 2
Si:_i 91 —_— — = Aei—f&- s Uj.
usv +<3(ni—|—l) 3) ghiv-u
In the following, we define
E(t) = || (n1esn2o) || + || (1, ua, 01,12, w2, 62)| 5,

D(t) = H(nu,nzt’V”uvm,@lt,@ztwi + H(u17u2>Hi + ”(91,92)”;

Then, we have the following estimate of the solution by basic energy estimate.

Lemma 4 (The a priori estimate of the high order derivatives of solution). Under the
assumption of Theorem 1, suppose (n1,my,na, ma, V@) € S is the solution of IVP (7)-
(8) on [0, T] for any T > 0, which satisfies (25). Then, for any t € [0,T), there exists C
such that

%(5(75) + ||v¢(t)|yj) +D(t) < CA@)D(t) + C(L + ) 3/?|| (ur, us, w)”iz. (50)

Proof. From (22)—(25) and Sobolev inequality, we know that

Z Hag(nlvu17013n23u2302)HLm < CA(t) (51)

la|<2

From equalities (43)—(45) and assumption (25), we also have

> 1108 (nae wre, O1e nor, e, 1) || o < CA(R). (52)

la|<1
Moreover, it is easy to see that

0; +1
1+n,

In the following, we will obtain five elementary estimates, denoted by estimates A, B, C,
D and E. Then the estimates of the higher derivatives will be considered.
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Estimate A. Multiplying (47) with ¢ = 1 by n1: + An; (0 < A < 1) and integrating it by
parts over R? yields

1d
T / (n}, + |Vni|? + An?) dz + / (n}, + A|Vni?) da
R3 R3
+ /(m —ng)(n1t + Ang)dz — /Aé?l(nlt + Any) dx
RS RS
= /(nlt + /\nl)Rl dx
R3
0, +1
— /(nlt—l—/\nlv (( 1+ )an)dx
]R3
+/ nit + Ang) (Zulm’zulxk +Zu1 V), )dx
Ra 1k
- /(mt + An1)V - (nyuy + (nqua)) do
RS
=11+ 1)+ Is5. (54)

First, we have

7/A01(n1t+)\n1)dx< /(”u (Vny) )derC’(e)/((D291)2+(D91)2) dx.

R3 R3 R3

By integrating by parts, we can obtain

0+1
I = /(mt + Any)V - ((1 — 1:_n1>Vn1) dx

Rf}
1d 0y +1 , 041\ 1/6,+1 ,
= —— 1— 1— _ .
2dt ( 1+n1)|vnl dx+/[A< 1+n1> 2<1+n1)j|v"1| dz
R3 R3

So, (51)—(53) give

1d 0, +1
h<2dt/<1—1 >v Pz + AWV (1)

1+ny

For the estimate of I, we will use the following equality

—1
V'Ul = m(ﬂlt‘i’ﬂl ~Vn1), (55)
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which comes from (43). And it implies that

/nlt Zu’f(v U ) g, d
R3 k

k 2 .k

2 Uy N1ay, MUY
p— d
Zk /("”{%Hnl)]x,f (1+n1)2) !

n Z/ NN Ut - VL NgNig, V- U + Ny - Vg, dx
1 —+ TL1)2 ]. —+ ny ’

Since the last term above is

wFnyu
17e1tl
E / - Vnig, de

k p3

_ Z/ ufuinignig, o, da

1 + ni1
o ululnlzktnlm ulul
*72/ T dzx Z/(l—l—n) NN, Ao,

kol s kol s

and

1 2
Z ullcullnll’ktnlml = 5 Z (ullc) (n%xk)t + Z ulfull (nlwknlxz)t‘

k.l k=l k>l

Then we have

1d (u’fm uful nyg, m
L <=— Ik 1717wy L dx
PN odt / L4+m Z/ L4 m
RS
+ C/l( )(IIVAL? + llnell* + ||Vu1|| %)

Now, we rewrite I3 as follows,
I3 = /(nlt + Anp)V - (n1u1 + (n1u1)t) dx
R3

= /nlt(th cup +n1Veour +Veoupng +Vng cug + Ve (nlul)) dx

R3

— //\an (n1u1 + (nlul)t) dz

R3

7
= E I3,j7
Jj=1
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where I3 ; represents every term in the above equality respectively. First,

1
5/niV~u1 dx

R3

|]3’1 + 13’2| = < C/l(t)HnuHQ.

By using (55) for V - uy;, we have

1d nyn?
YL Qe+ CA@) (Vi ]? + [ ]?)-
1

To3 < ——
33394t ) 1+n
RS

The estimation of other terms, {I. 3,5 } j>4 18 similar, so we omit the details. Combining
above inequalities gives

1d nyn?
<s— [ —H

d A(t 2 2 \VZTHIE: 2y
sdt | T+m x4+ CA)([Vna | + lnaell® + [Vur |* + [lua ||?)
RS

Thus, if A(T") < o is sufficiently small, we obtain for all ¢ € [0, T]]

d
T (n},+|Vni|?*+An?) dz + /(n%t+/\|Vn1|2) dz + /(nlfnz)(nqu/\nl) dz
R3 R3 R3

< CA®)|Jur|3 + C(e)|| (D01, V0| (56)

Similarly, from (47) with ¢ = 2, we can show

d
5/(n§t+|vn2\2+)\n§) dx—l—/(n%t—i—)\\VnQP) da — /(nl—nz)(n2t+)\n2) dx
R3 RS RS

< CAW)Juzlf + C()[|[(D?05, V0)]” (57)

Moreover, noting that

1d
/(m —ng)(n1e + Any —ngy — Ang) dz = 5% /(m —ny)? dx—l—)\/(nl —ny)*da,

R3 R3 R3

which together with (56)—(57) yields

— 2
i | v )+ 50 g

dtRS 5 2
+/ { Z (n3, + N Vni[*) + A(nq — ng)ﬂ dz
Rs =12
< CA®) (Jur ]l + |luzll3) + C(e)||(D?61, V01, D?05, V65) y|2. (58)
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Estimate B. Next, multiplying (48) by u; (i = 1, 2) and integrating it over R? gives

1d

T u?dx—i—/ufdx—/(nl—i—Q)V u;do + (— /Vsﬁuldx
R? R3 R3
R3

By (43), (46), we have

1d )
th (uf + n; )dx+/ufdx—/0iv-uidx+(—1)’/V¢uidx
R3 R3 R3
1+6;
:/uz(l— 1InA>Vnidx—/ui-(ui-Vui)dx—/Vni-(mui)dz
R3 ! R3 R3

= H1 —|—H2—|—H3

From (53), we have
Hy < CAR)([IVrl* + [lus ).

It is easy to see that
Hy + Hy < CA®) (|Vna]|* + [Jug ).

By combining the above estimates and the assumption (25), we get for ¢ = 1,2

;jt/(u +n)dx+/u dx—/QV u;dz + (— /V@uldx

R3

< CAD) (Vnal? + [Jusl?)- (59)

Moreover, we can deal with the coupled term as follows:

—R[VQ(ul — Uus)

:/Q(V'Ul _V'UQ) /@A@H—/V@ ULNy —’LLQTLQ)

]R3 R3

2o / Vo[ da — maxc{ ||z [[naf| oo } [IV@I* + fus |72 + [luzl*]
Rd

5dt/|V¢|2dx—CA( )(1+ —3/2\\(u1,u2,v¢)\2,
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which together with (59) gives

1d
55/(uf—kn%+u§+n§+|V@|2)dx+/(uf+u§)dx
RS RS
—/(91V'U1 +92V’U,2)d$
R3

< CAW)||(Vnr, Vg, ur, us)|* + C1 + )72 (wr, ua, VO) |2, (60)
Estimate C. By differentiating (48) with respect to z; and integrating its product with
Uiz, (¢ = 1,2) over R3, respectively, we have

1d

5& (\uixl\2+|nml\2) do:Jr/\uml\zdo:—/va‘um dx

R3 R3

/vnm,uzzl dz + /V@xlum dx

= /ulLl : Qil‘l dx
R3

Similar to the proof of (59), by (43), we have

1d

2dt (|Vui\2+\Vm\2)dx+/|VuZ\2dx+ /wpmum dz— /emv Uiz, d

3
CZ H/um Qiz, dx| + ‘/ QTmet dzx

1
+ ’ /nm <nl+1(uz . Vn,-)ml> dz }
R3

By symmetry, such as

Uj - ]. (7 2
/ e (Vg )nig, do = i/v (nl n 1>(nm) dz,
RS

R3

we have after some tedious but straightforward calculation that

1d
Sq (|V 1\2+\Vnz\ dx+/|VuZ\2dx /va Uiz, dz+(— /V@;cluul dz
R3

R3

CAW)|Vnill*.
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From (23) and (24), we also have the following estimate:

- /Vdsz; (ulazl - uQQTI)

= /@ml (Vg —Vug,,) =— @mZA¢11t+/V@mZ(U1ﬂ1 — U2N2)a,

R3 R3 R3
2dt/|v¢rl|2dx70/1 (Y1, Vg, s, uz, Vur, V)|,

R3

Therefore,
d
T (Z (IVwil* + [Vn[?) +IV2@IQ> de+ ) /|Vui|2dx
Rs “i=12 i=1,2 %5
-> /%v.um dz
i= 12
CA(t >(||vm||2 + V2| + llua|If + [luzll?). (61)

Estimate D. Multiplying (49) by (3/2)0; (i = 1,2), and taking the derivatives of (49)
with respect to x; and multiplying the resultant equation by (3/2)0;,, (i = 1,2), then
integrating it over R?, after a length and straightforward computation, we have

/ 6? dx +/(293+(vei)2> dx—&—/&-v-uidx
R3

/s 0;dz < CA(t )/(92 +(V60;)* + (Vn)?* + (Vu)* +uf) do (62)

e~ W

d 3
a *(Qixl)Z dx + / (2(913”)2 + (V9m)2> dz + /Omv - Uijg, dz
R3 R3

R3

= g / Siz,0iz, dr < CA(t) / ((052,) + (V0iz,)* 4+ (V1i)* + (Vuy)?) dz. (63)
R3 R3

Combining (58), (60) and (61)—(63), we obtain

d
5 3 Dl + ([ s8I} + 1V @I + 3 [l nies T )[[* a3 + 16513

i=1,2 i=1,2

<CAW) Y [na, Vo) |* + llwill? + 116:13]

i=1,2

+ CAW) 1+ )72 ||(ur, ua, V). (64)
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Estimate E. Similarly, taking the |«|th derivatives of (47), the (Jo| + 1)th derivatives
of (48), and the (|| 4+ 1)th derivatives of (49) for 1 < |a| < 3, with respect to the
space variable, respectively, furthermore, multiplying the resultant equations by D!y, +
AD!eln;, Dlel+1y; and DI*1+16; with i = 1,2, respectively, then integrating them over
R3, we have

S5 Ut + 101, ) + |2 v
i=1,2

+ 3 1D na|[* 4+ D (g, oI} + || D1 ]

i=1,2
2
<OAW) D [[[(Tmama)[[; + lluall + 16:12). (65)
i=1,2
Summing up together for all 0 < || < 3, estimate (50) follows immediately. O

Proof of Theorem 1. Suppose that (ny,m1,01,n9,ma, 02, V&) € (H*)S x H5 corre-
spond respectively to the smooth solutions of the bipolar non-isentropic Euler—Poisson
system (7) for t € [0, T, subject to initial data (8). First, if A(¢) is rather small, we have

%(5@) + |v¢>(t)\j) +CD(t) < C(1+ t)—3/2A(t)yvqs(t)|2. (66)

By the Gronwall’s inequality, we get
t
E(t) + |V¢(t)\i + C/D(T) dr < £(0) + |v¢(0)yj + CA3(t), (67)
0

where V& is explained as (30) as ¢ = 0 and £(0) + |VP(0)|4 < COy. Hence, from (67)
and Lemma 3, we have
A(t) < COy + C(A®))?, te0,T]. (68)
By standard continuous argument, we know that there exist constant C' such that
A(t) < COy, t€]0,T)] (69)
when the initial data @y > 0 is sufficiently small. And estimate (68) implies that assump-

tion (25) is valid for all the time ¢ € [0, T']. Furthermore, it is easy to get estimates (4)—(6).
The proof of Theorem 1 is completed. O
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