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Abstract. In this paper, the finite-time synchronization problem for chaotic Cohen–Grossberg
neural networks with unknown parameters and time-varying delays is investigated by using finite-
time stability theory. Firstly, based on the parameter identification of uncertain delayed neural
networks, a simple and effective feedback control scheme is proposed to tackle the unknown
parameters of the addressed network. Secondly, by modifying the error dynamical system and using
some inequality techniques, some novel and useful criteria for the finite-time synchronization of
such a system are obtained. Finally, an example with numerical simulations is given to show the
feasibility and effectiveness of the developed methods.

Keywords: Cohen–Grossberg neural network, finite-time synchronization, parameter identifica-
tion, time-varying delay.

1 Introduction

Over the past decades, Cohen–Grossberg neural network (CGNN) model has been ex-
tensively studied by many researchers due to its broad application in many areas such as
parallel computation, associative memory, signal processing, especially in solving some
difficult optimization problems [2, 7, 33]. There are many papers concerning stability
analysis and periodic oscillation of CGNNs [6, 8, 21, 24, 35, 36]. On the other hand, since
neural network systems may also exhibit oscillation or chaotic behaviors, synchronization
of chaotic CGNNs has attracted tremendous attention by many researchers from a wide
range of disciplines. The study of the synchronization of chaotic CGNNs is also an im-
portant step for both understanding brain science and designing coupled neural networks
for real world applications.
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Being a unique and very relevant nonlinear phenomenon, chaos has been intensively
investigated in the context of several specific problems arising in physics, mathematics,
engineering science, and secure communication, etc. Synchronization means two or more
systems which are either chaotic or periodic share a common dynamical behavior and it
has been shown that this common behavior can be induced by coupling or by external
force. Due to this property, chaos synchronization has been successfully applied in a va-
riety of fields, including secure communication, chemical and biological systems, human
heartbeat regulation, information science, image processing, and harmonic oscillation
generation, etc. [9,10,20,29]. Up to now, a wide variety of approaches have been proposed
for synchronization of chaotic systems, such as adaptive control [18, 28], observer-based
control [26], impulsive control [17, 25], fuzzy control [16, 37], coupling control [15],
periodically intermittent control [4, 12, 13], and so on.

However, most of the above mentioned studies have assumed that the parameters of
chaotic systems are known in advance. But in many practical situations, the parameters
of chaotic systems are inevitably perturbed by external inartificial factors and the values
of these parameters cannot be exactly known in advance, and the synchronization will be
destroyed and broken by the effects of these uncertainties. Therefore, the investigation of
synchronizing two chaotic systems with unknown parameters has become an important
research issue [19,22,31]. In [14], by combining the adaptive control and linear feedback
with update law, the authors investigated the synchronization of a class of chaotic Hopfield
neural networks with known or unknown parameters. Based on the Lyapunov stability
theory and by utilizing adaptive linear feedback control technique, the synchronization
problem of chaotic CGNNs with unknown parameters and mixed time-varying delays
was studied in [11]. Nevertheless, the works in [11] concerning the synchronization of
CGNNs mainly focus on the Lipschitzian amplification gains and unknown parameters.
There are no results for the synchronization of CGNNs with the general amplification
functions, unknown parameters and time-varying delays. Therefore, it is interesting to
study this problem both in theory and in applications, so there exists an open room for
further improvement.

Another thing is worth to note that, all of the methods mentioned above, have been
used to guarantee the asymptotic stability or exponential stability of the synchronization
error dynamics. This means that the trajectories of the slave system can reach to the
trajectories of the master system over the infinite horizon. In the practical engineering
process, however, it is more reasonable that synchronization objective is realized in a finite
horizon. To achieve faster synchronization in control systems, an effective method is
using finite-time control techniques. Finite-time synchronization means the optimality
in convergence time. Moreover, the finite-time control techniques have demonstrated
better robustness and disturbance rejection properties [3, 5, 30]. In [1], by introducing
nonsingular terminal sliding surface and designing adaptive controller, the authors studied
the finite-time chaos synchronization problem between two different chaotic systems with
unknown parameters. In [27], based on the finite-time stability theory and by designing
feedback controller, the authors investigated the finite-time synchronization problem be-
tween two chaotic cellular neural networks with constant delays. Nevertheless, the given
updated laws in [27] are highly complex and are not easily applicable. Whether it is
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possible to realize the finite-time synchronization and parameter identification of chaotic
neural networks by designing simpler updated laws is an interesting problem to study both
in theory and in applications.

Motivated by the above discussions, in this paper, we deal with the problem of finite-
time topology identification and synchronization for chaotic CGNNs with time-varying
delays and unknown parameters. Based on the adaptive feedback control and finite-time
convergence theory, we establish some useful sufficient conditions on the finite-time
synchronization of addressed model.

The rest of the paper is organized as follows. In Section 2, the master system and
the slave system are introduced. In addition, some assumptions and definitions together
with some useful lemmas needed in this paper are presented. Next section is devoted
to investigate the finite-time topology identification and synchronization between two
chaotic CGNNs with time-varying delays. In Section 4, an example with its numerical
simulations is given to illustrate the effectiveness of the obtained results. Finally, some
general conclusions are drawn in Section 5.

2 Preliminaries

Consider the following n-dimensional CGNNs with time-varying delays:

ẋi(t) = ai
(
xi(t)

)[
−bi
(
xi(t)

)
+

n∑
j=1

cijfj
(
xj(t)

)
+

n∑
j=1

dijgj
(
xj
(
t− τj(t)

))
+ Ii

]
, (1)

where i ∈ I , {1, 2, . . . , n}, n > 2, denotes the number of neurons in the neural
network; xi corresponds to the state variable of the ith unit; ai represents an amplification
function; bi is an appropriate behaved function; fj and gj are the activation functions;
τj(t) corresponds to the transmission delay along the axon of the jth unit and satisfy
τj(t) > 0 for t > 0, and Ii denotes the external input. Concerning coefficients cij , dij
denote respectively, the synaptic connection weight and the delayed synaptic connection
weight of the unit j on the unit i.

Throughout the paper, we always use i, j ∈ I, unless otherwise stated. The initial
conditions associated with system (1) are given by

xi(s) = ϕi(s), s ∈ [−τ, 0], (2)

where τ = maxi∈I{supt∈R+ τi(t)}, ϕi(s) ∈ C([−τ, 0], R), which denotes the Banach
space of all continuous functions mapping [−τ, 0] into R with∞−norm defined by

‖ϕ‖∞ = max
i∈I

{
sup

s∈[−τ,0]

∣∣ϕi(s)∣∣}.
http://www.mii.lt/NA
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In this paper, we refer to model (1) as the master system, the slave system is given as
follows:

ẏi(t) = ai
(
yi(t)

)[
−bi
(
yi(t)

)
+

n∑
j=1

c̃ijfj
(
yj(t)

)
+

n∑
j=1

d̃ijgj
(
yj
(
t− τj(t)

))
+ Ii

]
+ ui(t), (3)

where yi(t) corresponds to the slave state variable of the ith neuron; c̃ij and d̃ij are
estimated values of synaptic connection weights cij and dij , respectively; ui(t) indicates
the control input. The initial conditions associated with system (3) are given by

yi(s) = φi(s), s ∈ [−τ, 0], φi(s) ∈ C
(
[−τ, 0], R

)
. (4)

The goal of this paper is to design and implement suitable controller ui(t) for the slave
system and parameters’ adaptive estimation laws of c̃ij and d̃ij such that the controlled
slave system (3) could be synchronous with the master system (1) in a finite time T , and
all the parameters c̃ij(t) → cij , d̃ij(t) → dij as t → T , c̃ij(t) = cij , d̃ij(t) = dij for
t > T .

Let ei(t) = yi(t)−xi(t) for i ∈ I, then from systems (1) and (3), the error dynamical
system can be derived as

ėi(t) = ai
(
yi(t)

)[
−bi
(
yi(t)

)
+

n∑
j=1

c̃ijfj
(
yj(t)

)
+

n∑
j=1

d̃ijgj
(
yj
(
t− τj(t)

))
+ Ii + ũi(t)

]
+ ai

(
xi(t)

)[
bi
(
xi(t)

)
−

n∑
j=1

cijfj
(
xj(t)

)
−

n∑
j=1

dijgj
(
xj
(
t− τj(t)

))
− Ii

]
, (5)

where ũi(t) = ui(t)/ai(yi(t)).
It is clear that the finite-time synchronization problem between systems (1) and (3)

can be transformed to the equivalent problem of the finite-time stabilization of the error
system (5).

Throughout this paper, we assume that the following assumptions are satisfied.

Assumption 1. ai(·) ∈ C(R,R+) and there exist positive constants ai and ai such that

ai 6 ai(u) 6 ai for all u ∈ R.

Assumption 2. For each i, bi(u) is continuous and there exists a positive constant ηi such
that

bi(u)− bi(v)

u− v
> ηi for u, v ∈ R and u 6= v.
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Assumption 3. The activation functions fj , gj are continuous and there exist Lipschitz
constants L1

j , L2
j such that, for each j ∈ I,∣∣fj(u)− fj(v)
∣∣ 6 L1

j |u− v|,
∣∣gj(u)− gj(v)

∣∣ 6 L2
j |u− v| for all u, v ∈ R.

Definition 1. The array of systems in the neural networks are said to be finite-time
synchronized and topology identified if there exists a constant T > 0 such that

lim
t→T

(
yi(t)− xi(t)

)
= lim
t→T

(
c̃ij(t)− cij

)
= lim
t→T

(
d̃ij(t)− dij

)
= 0

for any i, j ∈ I, and yi(t) − xi(t) = c̃ij(t) − cij = d̃ij(t) − dij = 0 if t > T . The
constant T called the settling time.

Lemma 1. (See [30].) Assume that a continuous, positive-definite function V (t) satisfies
the following differential inequality:

V̇ (t) 6 −αV η(t) ∀t > t0, V (t0) > 0,

where α > 0, 0 < η < 1 are two constants. Then, for any given t0, V (t) satisfies the
following inequality:

V 1−η(t) 6 V 1−η(t0)− α(1− η)(t− t0), t0 6 t 6 T,

and

V (t) ≡ 0 ∀ t > T

with T given by

T = t0 +
V 1−η(t0)

α(1− η)
.

Lemma 2. (See [1].) For a1, a2, . . . , an ∈ R, the following inequality holds:

|a1|+ |a2|+ · · ·+ |an| >
√
|a21|+ |a22|+ · · ·+ |a2n|.

3 Main results

In this section, we will derive some criteria to guarantee the finite-time synchronization
between master system (1) and slave system (3).

Suppose that xi(t), yi(t) are the arbitrary solutions of systems (1) and (3) with initial
conditions ϕi, φi, respectively, and let

ẽi(t) =

yi(t)∫
xi(t)

ds

ai(s)
, i ∈ I. (6)
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Calculating the time derivative of ẽi(t) along the trajectories of systems (1) and (3), we
get

˙̃ei(t) = −bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

cijfj
(
ej(t)

)
+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
+ ũi(t), (7)

where c̄ij = c̃ij − cij , d̄ij = d̃ij − dij , bi(ei(t)) = bi(yi(t)) − bi(xi(t)), fj(ej(t)) =
fj(yj(t))− fj(xj(t)) and gj(ej(t− τj(t))) = gj(yj(t− τj(t)))− gj(xj(t− τj(t))).

From Assumption 1, we have

|ei(t)|
ai

6
∣∣ẽi(t)∣∣ 6 |ei(t)|

ai
, i ∈ I. (8)

It is not difficult to see that limt→T ei(t) = 0 if only if limt→T ẽi(t) = 0. Thus, to
study the finite-time stabilization of the error system (4), we only need to study the finite-
time stabilization of the corresponding modified error system (7). In order to achieve this
aim, we design finite-time controller ũi(t) in system (7) as follows:

ũi(t) = bi
(
ei(t)

)
−

n∑
j=1

cijfj
(
ej(t)

)
−

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
− k sign

(
ẽi(t)

)
, (9)

where k > 0 denotes a tunable constant.
In addition, to tackle the unknown parameters, we propose the following updating

laws:

˙̃cij(t) = −pij
[
ẽi(t)fj

(
yj(t)

)
+

k
√
pij

sign
(
c̃ij − cij

)]
,

˙̃
dij(t) = −qij

[
ẽi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign
(
d̃ij − dij

)]
,

(10)

where pij and qij are arbitrary positive constants.

Theorem 1. Under Assumption 1, if the modified error system (7) is controlled with the
control laws (9) and adaptive laws (10), then the synaptic connection weight coefficients
cij and dij of network (1) can be identified with c̃ij and d̃ij , and the slave network (3)
can synchronize with the master network (1) in a finite time

T1 =
V 1/2(0)√

2k
, (11)

where V (0) = (1/2)
∑n
i=1 ẽ

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/pij)(c̃ij(0)− cij)2 + (1/2)×∑n

i=1

∑n
j=1(1/qij)(d̃ij(0) − dij)2. Here c̃ij(0) and d̃ij(0) are the initial values of the

adaptive parameters c̃ij and d̃ij , respectively.
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Proof. Consider the following Lyapunov function:

V (t) =
1

2

n∑
i=1

ẽ2i +
1

2

n∑
i=1

n∑
j=1

1

pij
c̄2ij +

1

2

n∑
i=1

n∑
j=1

1

qij
d̄2ij ,

where c̄ij = c̃ij − cij , d̄ij = d̃ij − dij . It is obvious that ˙̄cij = ˙̃cij and ˙̄dij =
˙̃
dij . Taking

the time derivative of V (t), one has

V̇ (t) =

n∑
i=1

ẽi ˙̃ei +

n∑
i=1

n∑
j=1

1

pij
c̄ij ˙̄cij +

n∑
i=1

n∑
j=1

1

qij
d̄ij

˙̄dij . (12)

Introducing ˙̃ei(t) from (7) and adaptive laws (10) into (12), we have

V̇ (t) =
n∑
i=1

ẽi

[
−bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+ ũi(t) +

n∑
j=1

cijfj
(
ej(t)

)
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))]

−
n∑
i=1

n∑
j=1

c̄ij

[
ẽi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̄ij)

]

−
n∑
i=1

n∑
j=1

d̄ij

[
ẽi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̄ij)

]
.

Replacing ũi(t) from (9) into the above equation and using |u| = sign(u)u, gives

V̇ (t) =

n∑
i=1

ẽi

[
−bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+

n∑
j=1

cijfj
(
ej(t)

)
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
+ bi

(
ei(t)

)
−

n∑
j=1

cijfj
(
ej(t)

)
−

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
− k sign

(
ẽi(t)

)]

−
n∑
i=1

n∑
j=1

c̄ij

[
ẽi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̄ij)

]

−
n∑
i=1

n∑
j=1

d̄ij

[
ẽi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̄ij)

]

= −k
n∑
i=1

|ẽi| − k
n∑
i=1

n∑
j=1

1
√
pij
|c̄ij | − k

n∑
i=1

n∑
j=1

1
√
qij
|d̄ij |.
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Using Lemma 2, we get

V̇ (t) 6 −
√

2k

(
1

2

n∑
i=1

ẽ2i +
1

2

n∑
i=1

n∑
j=1

1
√
pij

c̄2ij +
1

2

n∑
i=1

n∑
j=1

1
√
qij
d̄2ij

)1/2

= −
√

2kV 1/2(t).

Therefore, from Lemma 1, the modified error system (7) will converge to zero within T1.
That is, the error system (5) will converge to zero within T1. Thus, under the control
laws (9) and updated laws (10), the two chaotic CGNNs are synchronized and identified
simultaneously in the finite-time T1. The proof of Theorem 1 is completed.

Remark 1. If limt→T ė(t) exists, then we have limt→T ė(t) = 0 for limt→T e(t) = 0. By
error system (7), we can obtain limt→T

∑n
j=1 c̄ijfj(yj(t)) = 0 and limt→T

∑n
j=1 d̄ij ×

gj(yj(t − τj(t))) = 0. When {fj(yj(t))}nj=1 and {gj(yj(t − τj(t)))}nj=1 are linearly
independent on the orbit {fj(yj(t))}nj=1 and {gj(yj(t − τj(t)))}nj=1, respectively, of
synchronization manifold, then limt→T c̄ij = 0 and limt→T d̄ij = 0 (see [23, 34]). We
can get that limt→T c̃ij = cij and limt→T d̃ij = dij for i, j ∈ I; that is, the uncertain
synaptic connection strengths cij and dij can be successfully identified in the finite-time.

Remark 2. According to Theorem 1, for all i, j ∈ I, the following properties are
guaranteed:

1. ei, c̃ij , d̃ij ∈ L∞ ∩ L2;
2. limt→T xi = yi, limt→T c̃ij = cij , limt→T d̃ij = dij , c̃ij = cij , d̃ij = dij for
t > T ;

3. limt→T ˙̃cij = 0, limt→T
˙̃
dij = 0.

Assume that the synaptic connection weight coefficients cij or dij of the master
system (1) are known, i.e. c̃ij = cij or d̃ij = dij . Then, from Theorem 1, we can obtain
the following corollaries.

Corollary 1. Suppose Assumption 1 hold and c̃ij = cij for all i, j ∈ I. If we use finite-
time controller (9) and the following updating laws:

˙̃
dij(t) = −qij

[
ẽi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̃ij − dij)
]
, (13)

where qij are arbitrary constants and k denotes a tunable constant, then the synaptic
connection weight coefficients dij of network (1) can be identified with d̃ij , and the slave
network (3) can synchronize with the master network (1) in a finite time

T2 =
V 1/2(0)√

2k
, (14)

where V (0) = (1/2)
∑n
i=1 ẽ

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/qij)(d̃ij(0)− dij)2.

Nonlinear Anal. Model. Control, 20(3):348–366
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Corollary 2. Suppose Assumption 1 hold and d̃ij = dij for all i, j ∈ I. If we use finite-
time controller (9) and the following updating laws:

˙̃cij(t) = −pij
[
ẽi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̃ij − cij)
]
, (15)

where pij are arbitrary constants and k denotes a tunable constant, then the synaptic
connection weight coefficients cij of network (1) can be identified with c̃ij , and the slave
network (3) can synchronize with the master network (1) in a finite time

T3 =
V 1/2(0)√

2k
, (16)

where V (0) = (1/2)
∑n
i=1 ẽ

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/pij)(c̃ij(0)− cij)2.

Corollary 3. Suppose Assumption 1 hold and c̃ij = cij , d̃ij = cij for all i, j ∈ I.
Using the finite-time controller (9), the slave network (3) can synchronize with the master
network (1) in a finite time

T4 =
V 1/2(0)√

2k
, (17)

where V (0) = (1/2)
∑n
i=1 ẽ

2
i (0).

In system (1), if the amplification function ai(u) ≡ 1 for all u ∈ R and i ∈ I, then
the mater system (1) become

ẋi(t) = −bi
(
xi(t)

)
+

n∑
j=1

cijfj
(
xj(t)

)
+

n∑
j=1

dijfj
(
xj
(
t− τj(t)

))
+ Ii. (18)

Definitely, the Assumption 1 is satisfied in this case. Accordingly, the slave system is
reduced to the following form:

ẏi(t) = −bi
(
yi(t)

)
+

n∑
j=1

c̃ijfj
(
yj(t)

)
+

n∑
j=1

d̃ijgj
(
yj
(
t− τj(t)

))
+ Ii + ui(t). (19)

In this case, we have ẽi(t) = ei(t) and ũi(t) = ui(t). Thus, from Theorem 1, we have
the following corollary.

Corollary 4. If we use the following finite-time controller:

ui(t) = bi
(
ei(t)

)
−

n∑
j=1

cijfj
(
ej(t)

)
−

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
− k sign

(
ei(t)

)
(20)

and updating laws

˙̃cij(t) = −pij
[
ei(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̃ij − cij)
]
,

˙̃
dij(t) = −qij

[
ei(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̃ij − dij)
]
,

(21)
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where pij , qij are arbitrary constants, k denotes a tunable constant, then the synaptic
connection weight coefficients cij and dij of network (18) can be identified with c̃ij and
d̃ij , and the slave network (19) can synchronize with the master network (18) in a finite
time

T5 =
V 1/2(0)√

2k
, (22)

where V (0) = (1/2)
∑n
i=1 ẽ

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/pij)(c̃ij(0)− cij)2 + (1/2)×∑n

i=1

∑n
j=1(1/qij)(d̃ij(0) − dij)2. Here c̃ij(0) and d̃ij(0) are the initial values of the

adaptive parameters c̃ij and d̃ij , respectively.

Remark 3. In the Theorem 1 and above four corollaries, by using special adaptive
controller and updating laws, we achieved the finite-time synchronization between two
chaotic CGNNs and their parameters were successfully identified. However, the used
control law ui(t) is somehow expensive and not easily applicable, especially if the pa-
rameters of the master system satisfy some special condition. Below, we will modify the
adaptive laws ui(t) to improve the applicability of our results.

Suppose that the activation functions gi are bounded, and let

ēi(t) = sign
(
yi(t)− xi(t)

) yi(t)∫
xi(t)

ds

ai(s)
. (23)

Then, from master system (1) and slave system (3), we have the following modified error
system:

˙̄ei(t) = sign
(
ei(t)

)[
−bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

cijfj
(
ej(t)

)
+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
+

ui(t)

ai(yi(t))

]
, (24)

where c̄ij , d̄ij , bi(ei(t), fj(ej(t)), gj(ej(t−τj(t))) are the same as in (7). From Assump-
tion 1, it is easy to check that

|ei(t)|
ai

6 ēi(t) 6
|ei(t)|
ai

. (25)

Thus, the finite-time stabilization of the error system (5) is equal to the finite-time stabi-
lization of the corresponding modified error system (24).

Theorem 2. Assume that Assumptions 1–3 hold and activation functions gi satisfy the
inequality ∣∣gi(u)

∣∣ 6Mi for all u ∈ R, i ∈ I. (26)
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If the modified error system (24) is controlled with the following updative laws:

˙̃cij(t) = −pij
[
ēi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̃ij − cij)
]
,

˙̃
dij(t) = −qij

[
ēi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̃ij − dij)
] (27)

and control laws

ui(t) =

n∑
j=1

kijej(t)− ai
(
yi(t)

)
(k̄i + k) sign

(
ei(t)

)
, (28)

where kii 6 0 and k̄i > 0, and if all the control strengths kij , k̄i satisfy the inequality

max

{
max
i∈I

{
−ai

(
ηi −

kii
ai

)
+

n∑
j=1

ĉij +

n∑
j=1,j 6=i

k̂ij

}
,

max
i∈I

{
n∑
j=1

Mj |dij | − k̄i

}}
< 0, (29)

where ĉij = (|cij |L1
jaj + |cji|L1

i ai)/2, k̂ij = |kij |aj/(2ai) + |kji|ai/(2aj), then the
synaptic connection weight coefficients cij and dij of network (1) can be identified with
c̃ij and d̃ij , and the slave network (3) can synchronize with the master network (1) in
a finite time

T6 =
V 1/2(0)√

2k
, (30)

where V (0) = (1/2)
∑n
i=1 ē

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/pij)(c̃ij(0)− cij)2 + (1/2)×∑n

i=1

∑n
j=1(1/qij)(d̃ij(0) − dij)2. Here c̃ij(0) and d̃ij(0) are the initial values of the

adaptive parameters c̃ij and d̃ij , respectively.

Proof. Consider the following Lyapunov function:

V (t) =
1

2

n∑
i=1

ē2i +
1

2

n∑
i=1

n∑
j=1

1

pij
c̄2ij +

1

2

n∑
i=1

n∑
j=1

1

qij
d̄2ij .

Calculating the time derivative of V (t) along the trajectories of modified error system (24),
from the adaptive laws (27), we have

V̇ (t) =

n∑
i=1

ēi ˙̄ei +

n∑
i=1

n∑
j=1

1

pij
c̄ij ˙̄cij +

n∑
i=1

n∑
j=1

1

qij
d̄ij

˙̄dij

=

n∑
i=1

ēi sign
(
ei(t)

)[
−bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

cijfj(ej(t))

+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
+

ui(t)

ai(yi(t))

]
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−
n∑
i=1

n∑
j=1

c̄ij

[
ēi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̄ij)

]

−
n∑
i=1

n∑
j=1

d̄ij

[
ēi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̄ij)

]
.

Replacing ui(t) from (28) into the above equation, from Assumptions 2–3 and inequal-
ity (25), one has

V̇ (t) =

n∑
i=1

ēi sign
(
ei(t)

)[
−bi
(
ei(t)

)
+

n∑
j=1

c̄ijfj
(
yj(t)

)
+

n∑
j=1

cijfj
(
ej(t)

)
+

n∑
j=1

d̄ijgj
(
yj
(
t− τj(t)

))
+

n∑
j=1

dijgj
(
ej
(
t− τj(t)

))
+

n∑
j=1

kijej(t)

ai(yi(t))
− (k̄i + k) sign

(
ei(t)

)]

−
n∑
i=1

n∑
j=1

c̄ij

[
ēi(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̄ij)

]

−
n∑
i=1

n∑
j=1

d̄ij

[
ēi(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̄ij)

]

6 −
n∑
i=1

ai

(
ηi −

kii
ai

)
ē2i (t) +

n∑
i=1

n∑
j=1

ajL
1
j |cij |ēi(t)ēj(t)

+

n∑
i=1

n∑
j=1

Mj |dij |ēi(t) +

n∑
j=1,j 6=i

aj
ai
|kij |ēi(t)ēj(t)

− (k̄i + k)

n∑
i=1

ēi − k
n∑
i=1

n∑
j=1

1
√
pij
|c̄ij | − k

n∑
i=1

n∑
j=1

1
√
qij
|d̄ij |.

By inequality (29) and a2 + b2 > 2ab, we get

V̇ (t) 6
n∑
i=1

[
−ai

(
ηi −

kii
ai

)
+

n∑
j=1

ĉij +

n∑
j=1,j 6=i

k̂ij

]
ē2i (t) +

n∑
i=1

n∑
j=1

Mj |dij |ēi

−
n∑
i=1

k̄iēi − k
n∑
i=1

ēi − k
n∑
i=1

n∑
j=1

1
√
pij
|c̄ij | − k

n∑
i=1

n∑
j=1

1
√
qij
|d̄ij |

6 −k
n∑
i=1

ēi − k
n∑
i=1

n∑
j=1

1
√
pij
|c̄ij | − k

n∑
i=1

n∑
j=1

1
√
qij
|d̄ij |.
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Using Lemma 2, we have

V̇ (t) 6 −
√

2k

(
1

2

n∑
i=1

ē2i +
1

2

n∑
i=1

n∑
j=1

1
√
pij

c̄2ij −
1

2

n∑
i=1

n∑
j=1

1
√
qij
d̄2ij

)1/2

= −
√

2kV 1/2(t).

Therefore, from Lemma 1, the modified error system (24) will converge to zero within
T6. That is, the error system (5) will converge to zero within T6. Thus, under the control
laws (28) and updated laws (27), the two chaotic CGNNs are synchronized and identified
simultaneously in the finite-time T6. The proof of Theorem 2 is completed.

When ai(u) ≡ 1, for master-slave systems (18) and (19), we have the following
corollary.

Corollary 5. Assume that Assumptions 2–3 hold and activation functions gi satisfy in-
equality (26). Using the following adaptive laws:

˙̃cij(t) = −pij
[
ei(t)fj

(
yj(t)

)
+

k
√
pij

sign(c̃ij − cij)
]
,

˙̃
dij(t) = −qij

[
ei(t)gj

(
yj
(
t− τj(t)

))
+

k
√
qij

sign(d̃ij − dij)
] (31)

and control laws

ui(t) =

n∑
j=1

kijej(t)− (k̄i + k) sign
(
ei(t)

)
, (32)

where control strengths kij and k̄i satisfy the following inequality:

max

{
max
i∈I

{
−(ηi−kii)+

n∑
j=1

ĉij+

n∑
j=1,j 6=i

k̂ij

}
, max
i∈I

{
n∑
j=1

Mj |dij |−k̄i

}}
< 0, (33)

where ĉij = (|cij |L1
j+|cji|L1

i )/2, k̂ij = (1/2)(|kij |+|kji|), then the synaptic connection
weight coefficients cij and dij of network (18) can be identified with c̃ij and d̃ij , and the
slave network (19) can synchronize with the master network (18) in a finite time

T7 =
V 1/2(0)√

2k
, (34)

where V (0) = (1/2)
∑n
i=1 e

2
i (0) + (1/2)

∑n
i=1

∑n
j=1(1/pij)(c̃ij(0)− cij)2 + (1/2)×∑n

i=1

∑n
j=1(1/qij)(d̃ij(0) −dij)2. Here c̃ij(0) and d̃ij(0) are the initial values of the

adaptive parameters c̃ij and d̃ij , respectively.

Remark 4. In this paper, we introduce the adaptive controlling method to guarantee
the finite-time synchronization and topology identification of CGNNs with uncertain pa-
rameters and time-varying delays. In this section, there are many results concerning the
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asymptotic or exponential synchronization and topology identification [11, 13, 14, 19, 22,
23, 31, 34]. However, to the best of our knowledge, there is no results on the finite-time
topology identification between two CGNNs with uncertain parameters and time-varying
delays. Obviously, our results have optimality in the convergence time of synchronization
and topology identification, which are essential to a practical system. Hence, the results
obtained in this paper have a better performance than those of previous works about
topology identification and synchronization problem.

Remark 5. Compared to Theorem 1, the designed control laws ui(t) in Theorem 2 are
simple and easy to implement. In Theorem 2, however, the condition |gi(u)| 6 Mi is
required to derive the main results. Thus, when the activation functions gi are bounded,
Theorem 2 is more practical than Theorem 1 to some extent.

Remark 6. When ai(u) ≡ 1, bi(u) ≡ biu and τi(t) ≡ τ , model (1) can be degenerated
to the following cellular neural network:

ẋi(t) = −bixi(t) +

n∑
j=1

cijfj
(
xj(t)

)
+

n∑
j=1

dijgj
(
xj(t− τ)

)
+ Ii,

which is studied in [27]. It is not difficult to see that Theorem 1 includes the main results
in [27] as a special cases. From this point, our results are more general and have a greater
applicability.

Remark 7. From the Eqs. (11), (14), (16), (17), (22), (30) and (34) we know that the
convergence time T proportional to the inverse of tunable constant k. Therefore, a greater
k results in shorter convergence time T . On the other hand, according to the control input
in Eqs. (9), (20), (28) and (32), it is obvious that the control input ui(t) is proportional to
the value of k. This means that a greater k results in a larger ui(t). Therefore, the tunable
constant k should be selected in accordance with the convergence time T to be short and
the control input ui(t) not to be very large, considering the designer requirements.

Remark 8. Recently, based on LaSalle’s invariance principle, the topology identification
problem for complex networks without delays or with constant delays has been exten-
sively investigated by using an adaptive controlling technique [32, 38]. Nevertheless, the
finite-time structure identification of complex networks with time-varying delays is not
concerned to the best of our knowledge. So, it is an interesting problem concerning the
finite-time synchronization and topology identification for complex networks with time-
varying delays.

4 Numerical simulations

In this section, an example is given to illustrate the effectiveness of proposed finite-time
synchronization schemes.

For n = 2, consider the following delayed CGNNs system:

ẋi(t) = ai(xi(t))

[
−bi
(
xi(t)

)
+

2∑
j=1

cijfj
(
xj(t)

)
+

2∑
j=1

dijgj
(
xj
(
t− τj(t)

))]
, (35)
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where fj(u) = gj(u) = tanh(u), b1(u) = 1.2u, b2(u) = 1.8u, c11 = 1.8, c12 = −0.1,
c21 = −2, c22 = 0.4, d11 = −1.7, d12 = −0.6, d21 = 0.5, d22 = −2.5 and

a1(u) = 0.9− 0.1

1 + u2
, a2(u) = 1.4 +

0.1

1 + u2
, τ1(t) = τ2(t) =

et

(1 + et)
.

The numerical simulation of system (35) is represented in Fig. 1, which shows that
system (35) has a chaotic attractor.

It is not difficult to check that L1
1 = L1

2 = L2
1 = L2

2 = 1, 0.8 6 a1(u) 6 0.9,
1.4 6 a2(u) 6 1.5, M1 = M2 = 1, and

b1(u)− b1(v)

u− v
> 1.2,

b2(u)− b2(v)

u− v
> 1.8 for u, v ∈ R,

which shows that η1 = 1.2, η2 = 1.8. Therefore, Assumptions 1–3 are all satisfied.
For convenience, we assume that only the four parameters c11, c12, d12, d21 will be

identified. Accordingly, the slave system is given as follows:

ẏi(t) = ai
(
yi(t)

)[
−bi
(
yi(t)

)
+

2∑
j=1

c̃ijfj
(
yj(t)

)
+

2∑
j=1

d̃ijgj
(
yj
(
t− τj(t)

))]
+ ui(t), (36)

where ai, bi, fj , τj are the same as in system (35) and c̃11 = 1.8, c̃12 = −0.1, d̃12 = −0.6,
c̃22 = −2.5. The initial values chosen as c̃21(0) = 1.2, c̃22(0) = −1.4, d̃12(0) = 3,
d̃21(0) = −3, y1(s) = 0.8, y2(s) = 1.3, s ∈ (−1, 0).

According to Theorem 2 and Eq. (28), the control inputs can be presented as follows:

ui(t) =

n∑
j=1

kij ēj(t)− (k̄i + k) sign
(
ei(t)

)
, i = 1, 2,

where ēj(t) = sign(yj(t)− xj(t))
∫ yj(t)
xj(t)

ds/aj(s), and the updating laws of the param-
eters can be obtained as

˙̃c21(t) = −p21
[
ē2(t)f1

(
y1(t)

)
+

k
√
p21

tanh(c̃21 − c21)

]
,

˙̃c22(t) = −p22
[
ē2(t)f2

(
y2(t)

)
+

k
√
p22

tanh(c̃22 − c22)

]
,

˙̃
d12(t) = −q12

[
ē1(t)g2

(
y2
(
t− τ2(t)

))
+

k
√
q12

tanh(d̃12 − d12)

]
,

˙̃
d21(t) = −q21

[
ē2(t)g1

(
y1
(
t− τ1(t)

))
+

k
√
q21

tanh(d̃21 − d21)

]
,

(37)

where the discontinuous sign function is replaced by continuous tanh function.
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Fig. 1. The chaotic attractor of system (35). Fig. 2. The evaluation of synchronization errors.

Fig. 3. Synchronization curves of x1 and y1. Fig. 4. Synchronization curves of x2 and y2.

Let

χi = −ai
(
ηi −

kii
ai

)
+

n∑
j=1

ĉij +

n∑
j=1,j 6=i

k̂ij , ξi =

n∑
j=1

Mj |dij | − k̄i, i = 1, 2,

where ĉij = (|cij |L1
jaj + |cji|L1

i ai)/2, k̂ij = |kij |aj/(2ai) + |kji|ai/(2aj). Choosing
k11 = −6.1, k12 = −5.6, k21 = k22 = 0, k̄1 = 2.1, k̄2 = 3.2, k = 2 and pij = qij = 1,
by simple computation, χ1 = −3.7872, χ2 = −6.1717, ξ1 = −0.1000, ξ2 = −0.2000.
Thus, the inequality (29) in the Theorem 2 is satisfied. Therefore, according the Theo-
rem 2, the controlled uncertain slave system (36) is synchronized with the master sys-
tem (35) in a finite time T6 = 3.9250 and its parameters satisfy

lim
t→T

(
c̃21(t)− c21

)
= lim
t→T

(
c̃22(t)− c22

)
= lim
t→T

(
d̃12(t)− d12

)
= lim
t→T

(
d̃21(t)− d21

)
= 0.

The time evolution of synchronization errors are shown in Fig. 2 and the synchro-
nization between systems (35) and (36) is verified in Figs. 3 and 4. Figure 5 gives the
identification of uncertain or unknown parameters c̃21, c̃22, d̃12 and d̃21. It is clear that the
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Fig. 5. Parameters identification of the neural networks (35) and (36).

unknown parameters converge to some bounded values in a finite time and the identifica-
tion of system parameters is very successful.

5 Conclusion

In this paper, we investigate the finite-time topology identification and synchronization
problem between two chaotic CGNNs with time-varying delays. Based on the adap-
tive feedback control and finite-time convergence theory, some novel and useful finite-
time synchronization criteria have been obtained. Finally, an illustrative example with
its numerical simulations is given to demonstrate the effectiveness and feasibility of the
proposed synchronization method. Besides, a very interesting fact is revealed that the
more the uncertain parameters are the longer in time to achieve finite-time synchronization
of chaotic CGNNs will be.
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