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Abstract. Assume that £1, €2, ... are independent and identically distributed non-negative random
variables having the (O-exponential distribution. Suppose that 7 is a nonnegative non-degenerate
at zero integer-valued random variable independent of £, &2, . ... In this paper, we consider the
conditions for 7 under which the distribution of random sum &; 4 &2 4 - - - 4- &, remains in the class
of O-exponential distributions.
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1 Introduction

Let &1,&5,... be independent copies of a random variable (r.v.) & with distribution
function (d.f.) F¢. Let n be a nonnegative non-degenerate at zero integer-valued r.v.
independent of {1, &2, ... }. We suppose that F is O-exponential and we find minimal
conditions under which the d.f.

Fs () =P +&+--+ &, <)

=Y P =n)PE+&+  +& <)
n=0

=Y P(n=n)F"(x)
n=0

belongs to the class of O-exponential distributions as well. Here and elsewhere in this
paper, F*" denotes the n-fold convolution of d.f. F'. Theorem 1 below is the main result
of this paper. Before the exact formulation of this theorem, we recall the definition of
O-exponential and some related d.f.’s classes. In all definitions below, we assume that
F(r)=1-F(x) >0forallz € R.

*The authors are supported by a grant (No. MIP-13079) from the Research Council of Lithuania.

(© Vilnius University, 2015


mailto:svetlana.danilenko@vgtu.lt
mailto:jonas.siaulys@mif.vu.lt

448 S. Danilenko, J. jiaulys

Definition 1. For v > 0, by £(-y) we denote the class of exponential d.f.s, i.e. F' € L()
if for any fixed real y,

lim M =e Y,

In the case v = 0, class £(0) is called the long-tailed distribution class and is denoted
by L.

Definition 2. A d.f. F' belongs to the dominated varying-tailed class (F' € D) if for any
fixedy € (0,1),
F
lim sup f(xy) < o0

Definition 3. A d.f. F'is O-exponential (F' € OL) if for any fixed y € R,

F F
0< liminfM < limsupw < 00.

It is easy to see that the following inclusions hold:

DcOL  LcCOL, U cw coc.
720

In [2,3], Cline claimed that d.f. Fs, remains in the class £(v) if Fr € L(v) and 7 is
any nonnegative non-degenerate at zero integer-valued r.v. Albin [1] observed that Cline’s
result is false in general. He obtained that d.f. F's, remains in the class £(y) if F belongs
to the class £(v) and Ee®” < oo for each § > 0. In order to prove this claim, author used
the upper estimate

F*n(x — t) vt

T (2) < (T4¢)e, (1)
provided thate > 0,t € R, F € L(7),z > n(c; —t) + t and ¢; = ¢1(g, t) is sufficiently
large such that

F(z—1t)

F(x)

for x > cq (see [1, Lemma 1]). Unfortunately, the obtained estimate holds for positive
t only. If ¢ is negative, then the above estimate is incorrect in general. This fact was
shown by Watanabe and Yamamuro (see [8, Remark 6.1]). Thus, the Cline proposition
that P(& + & + - - + &, < ) belongs to the class £(7) remains not proved.

In this paper, we investigate a wider class, OL, instead of the class £(v). We show
that the d.f. of the sum & + & + --- + &, remains in the class OL, if r.v. n satisfies
the conditions similar to that in [1]. The following theorem is the main statement in this
paper.

Theorem 1. Let &, &2, . . . be independent copies of a nonnegative r.v.  with d.f. Fe. Letn
be a nonnegative, non-degenerate at zero, integer-valued and independent of {£1,&a, ...}
rv. with d.f. F,,. If Fe belongs to the class OL and F,(6z) = O(y/xF¢(z)) for each
6 €(0,1), then Fs, € OL.

< (1+4¢e)e
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A detailed proof of Theorem 1 is presented in Section 3. Note that the proof is similar
to that of Theorem 6 in [5].

The following assertion actually shows that Albin’s conditions for the counting r.v. n
are sufficient for d.f. Fis, to remain in the class OL. The proof of the following corollary
is also presented in Section 3.

Corollary 1. Let &1,&s, . .. be a sequence of independent nonnegative r.v.s with common
df. Fe € OL.

(i) DL P&+ -+ + &, < x) belongs to the class OL for each fixed n € N.
(ii) Let n be a r.v. which is nonnegative, non-degenerate at zero, integer-valued and
independent of {&1, &2, .. .}. If Ee®" < oo for each ¢ > 0, then Fs, € OL.

2 Auxiliary lemmas

Before proving our main results, we give three auxiliary lemmas. The first lemma is
well known classical estimate for the concentration function of a sum of independent and
identically distributed r.v.s. The proof of Lemma 1 can be found in [6] (see Theorem 2.22),
for instance.

Lemma 1. Let X, Xo,..., be a sequence of independent r.v.s with a common non-
degenerate d.f. Then there exists a constant cs, independent of A and n, such that

sipP(z < X1+ Xo+ -+ X, <24+ A) < oA+ 1)n~ /2
zeR

forall X > 0 and all n € N.

The second auxiliary lemma is due to Shimura and Watanabe (see [7, Prop. 2.2]). The
lemma describes an important property of a d.f. from the class OL.

Lemma 2. Let F' be a d.f. from the class OL. Then there exists positive A such that

lim e?*F(z) = .
T—>00
The last auxiliary lemma is crucial in the proof of Theorem 1. The elements of the

statement below can be found in [4] (see the proof of Theorem 3(b)). Inequality (1), which
is a particular case of the statement below, is proved in [1] (see Lemma 2.1). Leipus and
Siaulys [5] generalized Albin’s inequality (1) for an arbitrary d.f. with unbounded support.
The analytical proof of Lemma 3 is given in [5] (see proof of Lemma 4). In this paper, we
present another, completely probabilistic proof of the lemma below having in mind the
importance of the statement.

Lemma 3. Let d.f F be such that F(x) > 0 for all x € R. Suppose that

sup L(f —*)

<dy
o>dy  F ()
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for some positive constants t, di and ds > t. Then, foralln = 1,2, ..., we have:

F*n(z —t
ap  @—t)

<dj.
exn(do—t)+t  F*7(z)

Proof of Lemma 3. Let X be ar.v. with d.f. F'. Then the condition of Lemma 3 says that

P(X >x—1)
sup ——————=

<d 2
z>do P(X > 37) ! @)

for some positive ¢, dy, ds > t, and we need to prove that

P(SY >z —1t)
sup

<d (3)
> (nd2—t)+t P(S'r)f > 1‘) !

for all n € N, where Sff =X1+4+---+X,,and X7, X5, ... are independent copies of X.
The proof is proceeded by induction on n. According to condition (2), inequality (3)
holds for n = 1. Suppose now that N > 1. For arbitrary real z, z and ¢t > 0, we obtain
P(SJ)\?H > as) = P(Sﬁ + Xny1 >z, Xyp1 <z — z)
—&—P(Sﬁ + Xyi1 >z, Sx < z)
+P(Xy41 > —2)P(Sy > 2)
> P(Sfé > —Xni1, 2 — XNyl = z)
+P(XN+1 >x—S])§, x—S])\f >x—z—|—t)
+P(Xyy1 >z —2)P(Sy > 2). 4)
If we replace x by x — ¢ and z by 2z — ¢ then we get

P(Syy>2—t) =P(Sy + Xns1>2—t, Xnp1 <7 —2)
+P(Sy + Xyy1 >z —t, Sy <z—1t)
+P(Xnj1 >3 —2)P(Sy >z —t)
:P(SJ)V( >r—Xyy1—t o —Xnq 22)
+P(Xnp1 >z — Sy —t, x— Sn >x—z+t)
+P(Xyy1 >z —2)P(Sx >z —1t). 5)
R.v.s X1, Xo, ... are independent. Therefore,
P(Sﬁ >r—Xyy1—t,x— Xnp1 2 z)
=E(E(Lsxs0 xy, -0 la-xyi2} | 2= X1 =1y))
= E(l{y>z}E(1{Sf§>y—t} | r—XNy1= y))
=Bl P (S8 >y - 1))
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P(S¥ >y—1) X
<sup—2N Y7 Vg p(s¥ >
BT > g DLz P (SN > )
P(SX >y—t
—aup BN Y p(oX Xz Xyaz2). ()

vz P(SY > )
where 1 4 denotes the indicator function of an event A. Similarly,

P(XNH>x—S])V(—t7w—S])§>x—z+t)

P(X —t
< swp (Xnt1>y—1)
y=x—z+t P(XN+1 > y)

P(XN+1>$—S])§,$—S])V(>JJ—Z+75). 7

Using estimates (4)—(7), we obtain

P(S¥ >z —t) <max{sup P(SX >y—1) P(X>y—t)} ®
P(SX, >x)

SN T U gy A Td Y
y=z P(SJ)\,( > y) y=z—z+t P(X > y)

ifr,zeR,t>0and N > 1.

Suppose now that (3) is satisfied for n = N. We will show that (3) holds for n =
N+ 1.

Condition (2) and estimate (8) imply, taking z = zy = Na/(N + 1) +t/(N + 1)
andwy =x — 2y +t=x/(N+1)+ Nt/(N + 1), that

P(S¥ ., >z —1t)
P(SY > )

P(SY¥ —t P(X —t
< max{ sup % sup (>y)} <d
YZZN P(SN > y) YZwN P(X > y)

ife > (N +1)(d2 — t) + t, because, in this case,
zn 2 N(de —t)+t and wy > do.

So, estimate (3) holds for n = N + 1 and the validity of (3) for all n follows by
induction. O
3 Proofs of main results
In this section, we present detailed proofs of our main results.

Proof of Theorem 1. First, we show that

Fs (z —a) P(S, >z —a)
lim sup —22— = limsup —n =~ 2 < 9
T TE () el RS, s % ©)

for each a € R.
If a < 0, then P(S, > z —a) < P(S, > ) forall z € R, and estimate (9) is
obvious.
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Suppose now that a > 0. Since F; € OL, we derive that

lim sup &

=c3 (10)

for some finite positive quantity c3 maybe depending on a. So, there exists some K =
K, > a4+ 1 such that

F,
sup M < 2c3. (11)
o>k Fe(x)
Applying Lemma 3, we obtain that
P n - W r—a
sup M = sup g < 263, (12)
z2n(K—a)+a P(S, > ) z>2n (K—a)+ta Ff*n(x)

where and below S, =& + &+ -+ &, if n e N
For an arbitrarily chosen positive z, we have

P(S, > z) Z (S, >xz)P Z (&1 > 2)P(n=n)
—1 n=1
=Fe(x)P(n > 1). (13)

If z > K, then, using (12), we get:

T—a T—a
P —4)=P —a,n<
(Sy >z —a) (Sn>x a, n Ka) (S > — an>Ka)

= Z P(S,>z—a)P(n=n)
n<(z—a)/(K—a)

+ Z P(S, >z —a)P(n=n)

n>(z—a)/(K—a)

<2 Y, P(S,>2)Pn=n)
n<(z—a)/(K—a)

+ Z P(S, >z —a)P(n=mn)

n>(z—a)/(K—a)

+ Z P(S, > z)P(n=n)

n>(z—a)/(K—a)

— Z P(S, > 2)P(n=n)

n>(zx—a)/(K—a)
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< ey Z P(S, > z)P(n=n)
n=1

+ Z P(z—a<S,<z)P(n=n) (14)
n>(z—a)/(K—a)

with ¢4 = max{2cs, 1}.
According to Lemma 1, we obtain

1
supP(x —a < S, <z) <c(a+1)—

zeR \/ﬁ’

where the constant c5 is independent of a and n. Thus, inequality (14) implies

P(n =
P(S, >z —a) <caP(S,;, > z) +c5(a+1) Z (ann)
n>(z—a)/(K—a)

K—a r—a
<C4P(S">x)+c5“m—a(a+1)P(n>K—a> (15)
provided that x > K.

Inequalities (13) and (15) imply that, for z > K, it holds
P(Sn>a:—a)< esvVK —a(a+1) F(x—a)

< cg+ —
P(S,>x) ' Va—aP(y>Ee(x) "\K —a
Consequently,
P —
lim sup PlS, >z -a)

w lim sup E((x — QE(K —a)) lim sup @
P(n=>1) zsoo VT —aFg(r—a) ao00 Fe(x)
(a+ VK - Fy(z/(K —a))

a
lim su —

Scetes

= c4 + C3C5 < 00

due to equality (10) and requirement F;,(6x) = O(y/z F¢(z)) which holds for arbitrary
d € (0,1). Therefore, relation (9) is satisfied for for all a € R.
It remains to prove that

Fi B i
it 752@ =D e PG> 20

>0,
T—00 an (x) T—00 P(S77 > ;[;)

where a is an arbitrarily chosen real number. But this relation follows from the proved
estimate (9), because o
P(S, >z) > Fe(x)P(n>1)>0
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for each positive number x, and so

lim inf P(S, >z —a) _ (

, P(S,>z+a)\
1 - 0.
Im in P(Sn N x) 1m sup > >

The last inequality, together with estimate (9), implies that d.f. Fs, belongs to the class
OL. Theorem 1 is proved. O

Proof of Corollary 1. Part (i) of Corollary 1 is evident. So we only prove part (ii). Let
d € (0,1). According to the Markov inequality, we have

Fy(0x) = P(n > 6x) = P(e¥ > e¥%) < e W Eel" (16)

for each y > 0. The d.f. F¢ belongs to the class OL. Therefore, Lemma 2 implies that
eA?T¢(z) — oo as  — oo. for some positive A.
Choosing y = A/ > 0 in (16), we obtain:

Fol0) o Bem 1 1 paamsm g
Va Fe(z) — e /o Fe(z) VredrFe(z) 00
because Ee®” is finite for an arbitrarily positive € according to the main condition of
Corollary 1. The statement of Corollary 1 follows now from Theorem 1. O
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