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Abstract. Assume that ξ1, ξ2, . . . are independent and identically distributed non-negative random
variables having the O-exponential distribution. Suppose that η is a nonnegative non-degenerate
at zero integer-valued random variable independent of ξ1, ξ2, . . . . In this paper, we consider the
conditions for η under which the distribution of random sum ξ1+ ξ2+ · · ·+ ξη remains in the class
of O-exponential distributions.
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1 Introduction

Let ξ1, ξ2, . . . be independent copies of a random variable (r.v.) ξ with distribution
function (d.f.) Fξ. Let η be a nonnegative non-degenerate at zero integer-valued r.v.
independent of {ξ1, ξ2, . . . }. We suppose that Fξ is O-exponential and we find minimal
conditions under which the d.f.

FSη (x) := P(ξ1 + ξ2 + · · ·+ ξη 6 x)

=

∞∑
n=0

P(η = n)P(ξ1 + ξ2 + · · ·+ ξn 6 x)

=

∞∑
n=0

P(η = n)F ∗ξ
n(x)

belongs to the class of O-exponential distributions as well. Here and elsewhere in this
paper, F ∗n denotes the n-fold convolution of d.f. F . Theorem 1 below is the main result
of this paper. Before the exact formulation of this theorem, we recall the definition of
O-exponential and some related d.f.’s classes. In all definitions below, we assume that
F (x) = 1− F (x) > 0 for all x ∈ R.
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Definition 1. For γ > 0, by L(γ) we denote the class of exponential d.f.s, i.e. F ∈ L(γ)
if for any fixed real y,

lim
x→∞

F (x+ y)

F (x)
= e−γy.

In the case γ = 0, class L(0) is called the long-tailed distribution class and is denoted
by L.

Definition 2. A d.f. F belongs to the dominated varying-tailed class (F ∈ D) if for any
fixed y ∈ (0, 1),

lim sup
x→∞

F (xy)

F (x)
<∞.

Definition 3. A d.f. F is O-exponential (F ∈ OL) if for any fixed y ∈ R,

0 < lim inf
x→∞

F (x+ y)

F (x)
6 lim sup

x→∞

F (x+ y)

F (x)
<∞.

It is easy to see that the following inclusions hold:

D ⊂ OL, L ⊂ OL,
⋃
γ>0

L(γ) ⊂ OL.

In [2, 3], Cline claimed that d.f. FSη remains in the class L(γ) if Fξ ∈ L(γ) and η is
any nonnegative non-degenerate at zero integer-valued r.v. Albin [1] observed that Cline’s
result is false in general. He obtained that d.f. FSη remains in the class L(γ) if Fξ belongs
to the class L(γ) and Eeδη <∞ for each δ > 0. In order to prove this claim, author used
the upper estimate

F ∗n(x− t)
F ∗n(x)

6 (1 + ε)eγt, (1)

provided that ε > 0, t ∈ R, F ∈ L(γ), x > n(c1 − t) + t and c1 = c1(ε, t) is sufficiently
large such that

F (x− t)
F (x)

6 (1 + ε)eγt

for x > c1 (see [1, Lemma 1]). Unfortunately, the obtained estimate holds for positive
t only. If t is negative, then the above estimate is incorrect in general. This fact was
shown by Watanabe and Yamamuro (see [8, Remark 6.1]). Thus, the Cline proposition
that P(ξ1 + ξ2 + · · ·+ ξη 6 x) belongs to the class L(γ) remains not proved.

In this paper, we investigate a wider class, OL, instead of the class L(γ). We show
that the d.f. of the sum ξ1 + ξ2 + · · · + ξη remains in the class OL, if r.v. η satisfies
the conditions similar to that in [1]. The following theorem is the main statement in this
paper.

Theorem 1. Let ξ1, ξ2, . . . be independent copies of a nonnegative r.v. ξ with d.f. Fξ. Let η
be a nonnegative, non-degenerate at zero, integer-valued and independent of {ξ1, ξ2, . . .}
r.v. with d.f. Fη . If Fξ belongs to the class OL and Fη(δx) = O(

√
xFξ(x)) for each

δ ∈ (0, 1), then FSη ∈ OL.
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A detailed proof of Theorem 1 is presented in Section 3. Note that the proof is similar
to that of Theorem 6 in [5].

The following assertion actually shows that Albin’s conditions for the counting r.v. η
are sufficient for d.f. FSη to remain in the class OL. The proof of the following corollary
is also presented in Section 3.

Corollary 1. Let ξ1, ξ2, . . . be a sequence of independent nonnegative r.v.s with common
d.f. Fξ ∈ OL.

(i) D.f. P(ξ1 + · · ·+ ξn 6 x) belongs to the class OL for each fixed n ∈ N.
(ii) Let η be a r.v. which is nonnegative, non-degenerate at zero, integer-valued and

independent of {ξ1, ξ2, . . .}. If Eeεη <∞ for each ε > 0, then FSη ∈ OL.

2 Auxiliary lemmas

Before proving our main results, we give three auxiliary lemmas. The first lemma is
well known classical estimate for the concentration function of a sum of independent and
identically distributed r.v.s. The proof of Lemma 1 can be found in [6] (see Theorem 2.22),
for instance.

Lemma 1. Let X1, X2, . . . , be a sequence of independent r.v.s with a common non-
degenerate d.f. Then there exists a constant c2, independent of λ and n, such that

sup
x∈R

P(x 6 X1 +X2 + · · ·+Xn 6 x+ λ) 6 c2(λ+ 1)n−1/2

for all λ > 0 and all n ∈ N.

The second auxiliary lemma is due to Shimura and Watanabe (see [7, Prop. 2.2]). The
lemma describes an important property of a d.f. from the class OL.

Lemma 2. Let F be a d.f. from the class OL. Then there exists positive ∆ such that

lim
x→∞

e∆xF (x) =∞.

The last auxiliary lemma is crucial in the proof of Theorem 1. The elements of the
statement below can be found in [4] (see the proof of Theorem 3(b)). Inequality (1), which
is a particular case of the statement below, is proved in [1] (see Lemma 2.1). Leipus and
Šiaulys [5] generalized Albin’s inequality (1) for an arbitrary d.f. with unbounded support.
The analytical proof of Lemma 3 is given in [5] (see proof of Lemma 4). In this paper, we
present another, completely probabilistic proof of the lemma below having in mind the
importance of the statement.

Lemma 3. Let d.f. F be such that F (x) > 0 for all x ∈ R. Suppose that

sup
x>d2

F (x− t)
F (x)

6 d1
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for some positive constants t, d1 and d2 > t. Then, for all n = 1, 2, . . . , we have:

sup
x>n(d2−t)+t

F ∗n(x− t)
F ∗n(x)

6 d1.

Proof of Lemma 3. Let X be a r.v. with d.f. F . Then the condition of Lemma 3 says that

sup
x>d2

P(X > x− t)
P(X > x)

6 d1 (2)

for some positive t, d1, d2 > t, and we need to prove that

sup
x>(nd2−t)+t

P(SXn > x− t)
P(SXn > x)

6 d1 (3)

for all n ∈ N, where SXn = X1+ · · ·+Xn, and X1, X2, . . . are independent copies of X .
The proof is proceeded by induction on n. According to condition (2), inequality (3)

holds for n = 1. Suppose now that N > 1. For arbitrary real x, z and t > 0, we obtain

P
(
SXN+1 > x

)
= P

(
SXN +XN+1 > x, XN+1 6 x− z

)
+P

(
SXN +XN+1 > x, SXN 6 z

)
+P(XN+1 > x− z)P

(
SXN > z

)
> P

(
SXN > x−XN+1, x−XN+1 > z

)
+P

(
XN+1 > x− SXN , x− SXN > x− z + t

)
+P(XN+1 > x− z)P

(
SXN > z

)
. (4)

If we replace x by x− t and z by z − t then we get

P
(
SXN+1 > x− t

)
= P

(
SXN +XN+1 > x− t, XN+1 6 x− z

)
+P

(
SXN +XN+1 > x− t, SXN 6 z − t

)
+P(XN+1 > x− z)P

(
SXN > z − t

)
= P

(
SXN > x−XN+1 − t, x−XN+1 > z

)
+P

(
XN+1 > x− SXN − t, x− SXN > x− z + t

)
+P(XN+1 > x− z)P

(
SXN > z − t

)
. (5)

R.v.s X1, X2, . . . are independent. Therefore,

P
(
SXN > x−XN+1 − t, x−XN+1 > z

)
= E

(
E
(
1{SXN>x−XN+1−t}1{x−XN+1>z}

∣∣ x−XN+1 = y
))

= E
(
1{y>z}E

(
1{SXN>y−t}

∣∣ x−XN+1 = y
))

= E
(
1{y>z}P

(
SXN > y − t

))
http://www.mii.lt/NA
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6 sup
y>z

P(SXN > y − t)
P(SXN > y)

E
(
1{y>z}P

(
SXN > y

))
= sup

y>z

P(SXN > y − t)
P(SXN > y)

P
(
SXN > x−XN+1, x−XN+1 > z

)
, (6)

where 1A denotes the indicator function of an event A. Similarly,

P
(
XN+1 > x− SXN − t, x− SXN > x− z + t

)
6 sup
y>x−z+t

P(XN+1 > y − t)
P(XN+1 > y)

P
(
XN+1 > x− SXN , x− SXN > x− z + t

)
. (7)

Using estimates (4)–(7), we obtain

P(SXN+1 > x− t)
P(SXN+1 > x)

6 max

{
sup
y>z

P(SXN > y − t)
P(SXN > y)

, sup
y>x−z+t

P(X > y − t)
P(X > y)

}
(8)

if x, z ∈ R, t > 0 and N > 1.
Suppose now that (3) is satisfied for n = N . We will show that (3) holds for n =

N + 1.
Condition (2) and estimate (8) imply, taking z = zN = Nx/(N + 1) + t/(N + 1)

and wN = x− zN + t = x/(N + 1) +Nt/(N + 1), that

P(SXN+1 > x− t)
P(SXN+1 > x)

6 max

{
sup
y>zN

P(SXN > y − t)
P(SXN > y)

, sup
y>wN

P(X > y − t)
P(X > y)

}
6 d1

if x > (N + 1)(d2 − t) + t, because, in this case,

zN > N(d2 − t) + t and wN > d2.

So, estimate (3) holds for n = N + 1 and the validity of (3) for all n follows by
induction.

3 Proofs of main results

In this section, we present detailed proofs of our main results.

Proof of Theorem 1. First, we show that

lim sup
x→∞

FSη (x− a)
FSη (x)

= lim sup
x→∞

P(Sη > x− a)
P(Sη > x)

<∞ (9)

for each a ∈ R.
If a 6 0, then P(Sη > x − a) 6 P(Sη > x) for all x ∈ R, and estimate (9) is

obvious.
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Suppose now that a > 0. Since Fξ ∈ OL, we derive that

lim sup
x→∞

Fξ(x− a)
Fξ(x)

= c3 (10)

for some finite positive quantity c3 maybe depending on a. So, there exists some K =
Ka > a+ 1 such that

sup
x>K

Fξ(x− a)
Fξ(x)

6 2c3. (11)

Applying Lemma 3, we obtain that

sup
x>n(K−a)+a

P(Sn > x− a)
P(Sn > x)

= sup
x>n (K−a)+a

F ∗nξ (x− a)
F ∗nξ (x)

6 2c3, (12)

where and below Sn = ξ1 + ξ2 + · · ·+ ξn if n ∈ N.
For an arbitrarily chosen positive x, we have

P(Sη > x) =

∞∑
n=1

P(Sn > x)P(η = n) >
∞∑
n=1

P(ξ1 > x)P(η = n)

= F ξ(x)P(η > 1). (13)

If x > K, then, using (12), we get:

P(Sη > x− a) = P

(
Sη > x− a, η 6

x− a
K − a

)
+P

(
Sη > x− a, η > x− a

K − a

)
=

∑
n6(x−a)/(K−a)

P(Sn > x− a)P(η = n)

+
∑

n>(x−a)/(K−a)

P(Sn > x− a)P(η = n)

6 2c3
∑

n6(x−a)/(K−a)

P(Sn > x)P(η = n)

+
∑

n>(x−a)/(K−a)

P(Sn > x− a)P(η = n)

+
∑

n>(x−a)/(K−a)

P(Sn > x)P(η = n)

−
∑

n>(x−a)/(K−a)

P(Sn > x)P(η = n)
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6 c4

∞∑
n=1

P(Sn > x)P(η = n)

+
∑

n>(x−a)/(K−a)

P(x− a < Sn 6 x)P(η = n) (14)

with c4 = max{2c3, 1}.
According to Lemma 1, we obtain

sup
x∈R

P(x− a < Sn 6 x) 6 c5(a+ 1)
1√
n
,

where the constant c5 is independent of a and n. Thus, inequality (14) implies

P(Sη > x− a) 6 c4P(Sη > x) + c5(a+ 1)
∑

n>(x−a)/(K−a)

P(η = n)√
n

6 c4P(Sη > x) + c5

√
K − a
x− a

(a+ 1)P

(
η >

x− a
K − a

)
(15)

provided that x > K.
Inequalities (13) and (15) imply that, for x > K, it holds

P(Sη > x− a)
P(Sη > x)

6 c4 +
c5
√
K − a(a+ 1)

√
x− aP(η > 1)Fξ(x)

Fη

(
x− a
K − a

)
.

Consequently,

lim sup
x→∞

P(Sη > x− a)
P(Sη > x)

6 c4 + c5
(a+ 1)

√
K − a

P(η > 1)
lim sup
x→∞

Fη((x− a)/(K − a))√
x− aFξ(x− a)

lim sup
x→∞

Fξ(x− a)
Fξ(x)

= c4 + c3c5
(a+ 1)

√
K − a

P(η > 1)
lim sup
x→∞

Fη(x/(K − a))√
xFξ(x)

<∞

due to equality (10) and requirement Fη(δx) = O(
√
xFξ(x)) which holds for arbitrary

δ ∈ (0, 1). Therefore, relation (9) is satisfied for for all a ∈ R.
It remains to prove that

lim inf
x→∞

FSη (x− a)
FSη (x)

= lim inf
x→∞

P(Sη > x− a)
P(Sη > x)

> 0,

where a is an arbitrarily chosen real number. But this relation follows from the proved
estimate (9), because

P(Sη > x) > Fξ(x)P(η > 1) > 0
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for each positive number x, and so

lim inf
x→∞

P(Sη > x− a)
P(Sη > x)

=

(
lim sup
x→∞

P(Sη > x+ a)

P(Sη > x)

)−1
> 0.

The last inequality, together with estimate (9), implies that d.f. FSη belongs to the class
OL. Theorem 1 is proved.

Proof of Corollary 1. Part (i) of Corollary 1 is evident. So we only prove part (ii). Let
δ ∈ (0, 1). According to the Markov inequality, we have

Fη(δx) = P(η > δx) = P
(
eyη > eyδx

)
6 e−δyxEeyη (16)

for each y > 0. The d.f. Fξ belongs to the class OL. Therefore, Lemma 2 implies that
e∆xFξ(x)→∞ as x→∞. for some positive ∆.

Choosing y = ∆/δ > 0 in (16), we obtain:

Fη(δx)√
x Fξ(x)

6
Eeyη

eδyx
√
xFξ(x)

=
1√
x

1

e∆xFξ(x)
Ee(∆/δ)η →

x→∞
0

because Eeεη is finite for an arbitrarily positive ε according to the main condition of
Corollary 1. The statement of Corollary 1 follows now from Theorem 1.
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