
http://dx.doi.org/10.15388/NA.2015.3.10
Nonlinear Analysis: Modelling and Control, Vol. 20, No. 3, 455–468 ISSN 1392-5113

Modelling of catalytic reactivity of inhomogeneous
surfaces in monomer-monomer reactions∗

Vladas Skakauskas1, Pranas Katauskis

Faculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
vladas.skakauskas@mif.vu.lt; pranas.katauskis@mif.vu.lt

Received: March 6, 2014 / Revised: October 15, 2014 / Published online: March 31, 2015

Abstract. The kinetics of a A1 + A2 → A1A2 reaction on inhomogeneous surfaces with
continuously distributed adsorption sites is investigated numerically using two phenomenological
models. One of them includes: the bulk diffusion of reactants from a bounded vessel towards
the adsorbent and the product bulk one from the adsorbent into the same vessel, adsorption and
desorption of molecules of both reactants, and surface diffusion of adsorbed and product particles
before their desorption. The other model describes surface reaction provided that concentrations
of both reactants at the surface are given. Both models are based on the Langmuir–Hinshelwood
reaction mechanism coupled with the Eley–Rideal step. Two surface diffusion mechanisms are
used. According to one of them, the diffusion flux of the adsorbed and product particles is
described by the standard Fick law, while in the other one the surface diffusion flux is based on
the particle jumping into a nearest vacant adsorption site. Simulations were performed using the
finite difference technique. The kinetic rate constants, Eley–Rideal steps, and surface diffusion
mechanisms influence on the catalytic reactivity of surfaces is studied.

Keywords: heterogeneous reactions, adsorption, desorption, surface diffusion.

1 Introduction

Simulations are of central importance in study of kinetics in heterogeneous catalysis and
catalysts design in chemical industry [1,2,6,7,13,14]. The bibliography of the current state
of modelling in theoretical research of monomer-monomer reactions on inhomogeneous
surfaces includes a lot of papers based on the Monte Carlo simulations technique and
a considerably less number of works is devoted to numerical or analytical solving of
mean-field models. The bibliography of papers based on the Monte Carlo simulations can
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be found, e.g., in [5] and [12]. Moreover, a short review of papers is given in [12]. Some
mean-field models are solved numerically or studied analytically in [3, 10, 12, 13].

A common feature of the previous reports dealing with adsorption and surface re-
actions is that the partial pressures of both reactants at the surface are assumed to be
given constants and product desorption from the surface is supposed to be instantaneous.
Exclusive is paper [10] in which the distribution of adsorption sites is stepwise but both
reactants diffuse towards the surface from a bounded pool.

In this paper, by employing a mean-field approach and its numerical simulations we
consider two models of monomer-monomer heterogeneous reaction, A1 + A2 → B,
B = A1A2, on catalytic surfaces with continuous (not stepwise) arrangement of ad-
sorption sites which are assumed to be active in reaction. Note that the spillover ef-
fect does not arise on the surfaces with continuously distributed adsorption sites. One
model involves: (i) the bulk diffusion of both reactants from a bounded vessel with an
impermeable boundary toward the adsorbent and the reaction product bulk one from
the adsorbent into the same vessel, (ii) adsorption, desorption, and surface diffusion of
adsorbed particles of each reactant. The other model describes surface reactions provided
that concentrations of both reactants at the surface are given. Both models are based on
the Langmuir–Hinshelwood surface reaction mechanism coupled with the Eley–Rideal
step. In particular, models based only on the Langmuir–Hinshelwood (LH) or Eley–
Rideal (ER) mechanisms are also studied. In both models, we use two surface diffusion
mechanisms. According to one of them, the diffusion flux of the adsorbed and product
particles is described by the standard Fick law, while in the other one the surface dif-
fusion flux is based on the particle jumping into a nearest vacant adsorption site [4].
Adsorption, desorption, surface and bulk diffusion are allowed to proceed at a constant
temperature.

The goal of this paper is the numerical study of the influence of the surface diffusion
mechanisms, bulk and surface diffusivity of both reactants and surface diffusivity of prod-
uct particles, desorption rate constant of product particles, adsorption sites arrangement,
and the LH or ER steps on the reactivity of catalyst surfaces.

The paper is organized as follows. In Section 2, we present the models. In Section 3,
we discuss numerical results. A summary of main results in Section 4 concludes the paper.

2 The model

We study the problem of two-molecular catalytic heterogeneous reaction, A1 +A2 → B,
on surfaces with continuously (nonuniformly) distributed adsorption sites by using a
mean-field approach. We assume that all sites are equivalent and active in reaction so
that both reactants compete for the adsorption site. Let the reactants A1, A2 and product
B = A1A2 of concentrations a1(t, x), a2(t, x), and b(t, x) occupy a bounded domain
Ω = {x = (x1, x2, x3): xi ∈ [0, l], i = 1, 2, 3} with boundary S̃ = S1 ∪ S2, where
S2 = {x = (x1, x2, x3): xi ∈ [0, l], i = 1, 3, x2 = 0} and S1 = S̃ \ S2. Here t is
time, x is a position, S2 is the surface of the adsorbent, and S1 is a surface impermeable
to the reactants and product. It is evident that x2 > 0 for S1. Let s(x) be the surface
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density of the adsorption sites and let ui(t, x) = s(x)θi(t, x), i = 1, 2, 3, be densities of
the adsorption sites occupied by the adsorbed molecules of reactants A1, A2, and product
B, respectively. Here θi is a surface coverage. Then s(1 − θ1 − θ2 − θ3) is density of
free adsorption sites. Since, according to the Langmuir–Hinshelwood hypotheses, one
reactant molecule adsorbs on only one adsorption site, functions u1, u2, and u3 also
present densities of adsorbed molecules at point x at time t of reactants A1, A2, and
particles of the product B. Reaction between one molecule of reactant A1 located in an
adsorption site and one molecule of reactant A2 located in the other adsorption site forms
one product molecule located in one adsorption site. The other one becomes free. Let k11,
k21 and k−11, k−21 be the adsorption and desorption rates constants for reactants A1 and
A2, respectively, k1 and k2 – reaction rate constants in the ER reaction, k3 – reaction rate
constant in the LH reaction step. To simplify the model, we restrict ourselves to the case
where the adsorption sites density, s, depends only on variable x1 and the initial values
a10 and a20 of concentrations a1 and a2 do not depend on x3. In this case, we can reduce
the three-dimensional problem into two-dimensional one.

In what follows, we consider the case where the product molecules desorb slowly from
the catalyst surface. To construct the model, we first employ the Langmuir–Hinshelwood
reaction mechanism

A1 + S
k11
�
k−11

A1S, A2 + S
k21
�
k−21

A2S, A1S +A2S
k3→A1A2S + S.

Here S is a free adsorption site. In principle, the product B = A1A2 may be formed via
one or both Eley–Rideal steps

A1 +A2S
k1→A1A2S, A2 +A1S

k2→A1A2S.

Since product particles desorb slowly, we join the last step A1A2S
k4→A1A2 + S, where

k4 is a product particles desorption rate constant.
In what follows, we apply two surface diffusion mechanisms. In one of them, the

diffusion flux of the adsorbed particles of the ith species is described by the standard Fick
law,

Ji = −κui∇ui (1)

with constant surface diffusivity κui
, i = 1, 2, 3, while in the other one the surface

diffusion flux is based on the mechanism of the particle jumping into a nearest vacant
adsorption site [4],

Ji = −κ̃ui

(
(s− u1 − u2 − u3)∇ui − ui∇(s− u1 − u2 − u3)

)
. (2)

Here∇ is the gradient operator and κ̃ui , i = 1, 2, 3, is a constant surface diffusion coeffi-
cient. According to formula (2), flux Ji is sum of two fluxes. One of them is proportional
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to −∇ui while the other one is proportional to the gradient of the free adsorption sites.
To derive equations for densities u1, u2, u3, we employ the mass action law and Eqs. (1)
and (2), getting

∂tu1 = k11a1

(
s−

3∑
j=1

uj

)
− k−11u1 − k3u1u2 − k2a2u1 + κu1

∂2u1
∂x21

,

∂tu2 = k21a2

(
s−

3∑
j=1

uj

)
− k−21u2 − k3u1u2 − k1a1u2 + κu2

∂2u2
∂x21

,

∂tu3 = k3u1u2 + k1u2a1 + k2u1a2 − k4u3 + κu3

∂2u3
∂x21

(3)

in the case of Eq. (1) and

∂tu1 = k11a1

(
s−

3∑
j=1

uj

)
− k−11u1 − k3u1u2 − k2a2u1

+ κ̃u1

(
(s− u2 − u3)

∂2u1
∂x21

− u1
∂2(s− u2 − u3)

∂x21

)
,

∂tu2 = k21a2

(
s−

3∑
j=1

uj

)
− k−21u2 − k3u1u2 − k1a1u2

+ κ̃u2

(
(s− u1 − u3)

∂2u2
∂x21

− u2
∂2(s− u1 − u3)

∂x21

)
,

∂tu3 = k3u1u2 + k1u2a1 + k2u1a2 − k4u3

+ κ̃u3

(
(s− u2 − u1)

∂2u3
∂x21

− u3
∂2(s− u2 − u1)

∂x21

)

(4)

in the case of Eq. (2). Here x1 ∈ (0, l), x2 = 0, t > 0, and ∂t signifies the partial
derivative with respect to time.

We add to systems (3) and (4) the initial

u1|t=0 = u2|t=0 = u3|t=0 = 0 (5)

and boundary conditions at points x1 = 0 and x1 = l,

∂u1
∂x1

=
∂u2
∂x1

=
∂u3
∂x1

= 0, t > 0. (6)

We also formulate the conditions ∂s/∂x1 = 0 at points x1 = 0 and x1 = l.
Systems (3) and (4) involve unknown values of concentrations a1 and a2 at the catalyst
surface. To close these systems, we add equations for the bulk diffusion of both reactants.
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Diffusion of the reactants A1 and A2 toward the adsorbent and the product B from the
adsorbent away into the same vessel is described by the systems:

∂ta1 = κa1

(
∂2a1
∂x21

+
∂2a1
∂x22

)
, (x1, x2) ∈ (0, l)× (0, l), t > 0,

∂na1|S1
= 0, t > 0,

κa1∂na1|S2
= −

(
k11a1

(
s−

3∑
j=1

uj

)
− k−11u1 + k1a1u2

)∣∣∣∣∣
S2

, t > 0,

a1|t=0 = a10, (x1, x2) ∈ (0, l)× (0, l),

(7)

∂ta2 = κa2

(
∂2a2
∂x21

+
∂2a2
∂x22

)
, (x1, x2) ∈ (0, l)× (0, l), t > 0,

∂na2|S1
= 0, t > 0,

κa2∂na2|S2
= −

(
k21a2

(
s−

3∑
j=1

uj

)
− k−21u2 + k2a2u1

)∣∣∣∣∣
S2

, t > 0,

a2|t=0 = a20, (x1, x2) ∈ (0, l)× (0, l),

(8)

and

∂tb = κb

(
∂2b

∂x21
+
∂2b

∂x22

)
, (x1, x2) ∈ (0, l)× (0, l),

∂nb|S1
= 0, t > 0,

κb∂nb|S2
= k4u3|S2

, t > 0,

b|t=0 = 0, (x1, x2) ∈ (0, l)× (0, l).

(9)

Here ∂nf , f = a1, a2, b, is the outward normal derivative. Each of systems (3), (5)–(9)
and (4)–(9) possess two mass conservation laws∫

Ω

(ai + b) dx+

l∫
0

(ui + u3) dx1 =

∫
Ω

ai0 dx, i = 1, 2, (10)

and determines densities ui (or surface coverages θi) for all x ∈ S2 and concentrations
a1, a2, and b of reactants A1, A2, and product B for all (x1, x2) ∈ (0, l) × (0, l) and
t > 0.

We also study systems (3) and (4) with given constant concentrations a1 and a2 at the
surface S2. In the case of constant s and positive kinetic coefficients, the unique solutions
of systems (3) and (4) asymptotically tend to the positive steady-state point,

u1 =
1

2q1q5
(h1 +

√
h21 + h2), u2 =

sk11a1 − q3u1
q4 + q5u1

,

u3 =
1

k4
(k3u1u2 + k1u2a1 + k2u1a2),
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where

h1 = sq0q5 − q1q4 + q2q3,

h2 = 4sq1q5k11a1k3(k−21 + k1a1)

(
1 +

k11a1
k4

)
,

q0 = k3(k11a1 − k21a2),

q1 =

(
1 +

k2a2
k4

)
q0 + k3

(
1 +

k21a2
k4

)
(k−11 + k2a2),

q2 =

(
1 +

k1a1
k4

)
q0 − k3

(
1 +

k11a1
k4

)
(k−21 + k1a1),

q3 = k11a1

(
1 +

k2a2
k4

)
+ k−11 + k2a2,

q4 = k11a1

(
1 +

k1a1
k4

)
, q5 = k3

(
1 +

k11a1
k4

)
.

The main characteristic that we study in this paper is the surface S2 specific conversion
rate of molecules of both reactants into the product ones (turn-over rate or turn-over
frequency) determined by the formula

z =

∫ l
0
k4u3 dx1∫ l
0
sdx1

. (11)

We also study the other function

z1 =

∫ l
0
(k3u1u2 + k1a1u2 + k2a2u1) dx1∫ l

0
sdx1

(12)

which describes the specific conversion rate of molecules of both reactants into product
ones but before their desorption from the surface S2.

In the case where k11a1 = k21a2 and s = const, from the steady-state version of
system (3) it follows that (i) u1 = s, u2 = u3 = 0 if k−11 = k2 = 0 and (ii) u2 = s,
u1 = u3 = 0 if k−21 = k1 = 0. Hence, by definition, z1 and z are equal to zero. Applying
the Lienard–Chipard criterion [8] it is easy to prove that these steady-state points are
asymptotically stable. This means that the catalyst surface becomes poisoned by reactant
A1 or A2. Numerical experiments show that z and z1 increase in time, reach maximal
values, and then tend to zero.

In the case of only one ER step (k3 = 0), from system (3) it follows (mathematically
strongly) that z and z1 do not depend on the specific continuous adsorption sites distribu-
tion preserving the same

∫ 1

0
s(x1) dx1. Numerical experiments (see next section) exhibit

the same result for the LH or coupled LH and ER reaction mechanisms.
Using the dimensionless variables t̄ = t/T , x̄i = xi/l, āi = ai/a∗, s̄ = s/(la∗),

k̄i1 = ki1Ta∗, k̄−i1 = k−i1T , k̄3 = k3T , k̄i = kiTa∗, κ̄ai = κaiT/l
2, κ̄b = κbT/l

2,
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¯̃κuj = κ̃uja∗T/l, ūj = uj/(la∗), κ̄uj = κujT/l
2, where i = 1, 2, j = 1, 2, 3, and T, l,

a∗ are the characteristic dimensional units, we rewrite Eqs. (3)–(9) in the same form, but
in dimensionless variables.

3 Numerical results

To solve systems (3) and (4) with given values of a1 and a2 at the surface S2, we
applied an implicit difference scheme. Systems (3), (5)–(9) and (4)–(9) were solved by
using an implicit difference scheme based on the alternating direction method [9]. For
all calculations, we used the following dimensional data: T = 1 s, l = 10−1 cm,
a∗ = 10−11 mol cm−3, s∗ = la∗ = 10−12 mol cm−2, and

ki1 ∈
[
109, 1011

]
cm3 mol−1 s−1, k−i1, k3 ∈

[
3 · 10−3, 1

]
s−1,

κai , κb, κuj
∈
[
5 · 10−7, 10−3

]
cm2 s−1,

(13)

where i = 1, 2, j = 1, 2, 3. The range of kinetic parameters given in (13) was taken
from [11] while the other parameters are the model ones. Particles of size 10−1 cm can be
used in the design of the supported catalysts. In the case where values of ki1, κui , κai for
all values of indices are equal, we use k = ki1, κu = κui

, κa = κai for short. Of course,
the case where ki1, κui

do not depend on values of indices is not realistic. However, it is
useful for study of many different physico-chemical processes. In calculations, we used
k = 0.0166, k1 = k2 = 0.5k11 or 0, and κ̃ui = κui (dimensional surface diffusion
coefficients are different), and

s =
1

2

(
sin2 mπx1

2
+ 1

)
with natural m

and
1∫

0

s(x1) dx1 = 0.75 or s = 0.75,

a10 =
(1 + α11 sin2(πx1))(1 + α12 sin(πx2/2))

1 + 0.5α11

1 + 2α12

π
,

a20 =
(1 + α21 sin2(πx1))(1 + α22 sin(πx2/2))

1 + 0.5α21

1 + 2α22

π

with αij = 1. The model values of dimensionless ki1, κui
are given in the captions of

figures. The use of initial functions of this type was motivated by the intention to get an
appreciable influence of the bulk diffusion of both reactants in the initial stage, i.e., to have
the initial distribution being far from of the equilibrium. Numerical results are illustrated
in Figs. 1–7 with κu = 1 for Figs. 1, 2, κ̃u = κu = 0.5 for Figs. 3, 4, and κu = 0.5 for
Figs. 5–7. Plots in Figs. 1 and 2 correspond to system (3), (5)–(9). The comparison of z
determined by systems (3), (5)–(9) and (4)–(9) is given in Fig. 3, while Fig. 4 shows the
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Fig. 1. Influence of product desorption rate constant k4 on the behaviour of the turn-over rate z determined by
system (3), (5)–(9) for k1 = k2 = 0.5k11, k3 = 0.03, k−11 = k−21 = 0.00166, κa = 0.1. k4 = 0.01 (1),
0.1 (2), 0.5 (3).

0 200 400 600 800 1000

0,000

0,001

0,002

0,003

0,004

z

t [s]

1

3

2

4

Fig. 2. Dependence of z from system (3), (5)–(9) on the diffusivity κa and constant k3 for k1 = k2 = 0.5k11,
k4 = 0.01, k−11 = k−21 = 0.00166. k3 = 0.03, κa = 0.1 (1) and 0.01 (2); k3 = 1, κa = 0.1 (3) and
0.01 (4).

comparison of z corresponding to systems (3) and (4) with given a1 and a2 at the catalyst
surface. Figures 5–7 correspond to system (3) with given concentrations a1 and a2 at the
catalyst surface.

Figure 1 illustrates the dependence of the turn-over rate z on the product desorption
rate constant k4 for the case where k1 = k2 = 0.5k11, k3 = 0.03, k−11 = k−21 =
0.00166, κa = 0.1. For small time, Fig. 1 depicts a notable decrease of the turn-over
rate z as product desorption rate constant, k4, decreases and a vice-versa behaviour as
time increases. This effect is evident because the product particles poison the catalyst.
This leads to a smaller uptake of reactants in the vessel compared to that corresponding
to a larger k4 and, hence, reaction proceed longer.
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(a)

(b)

Fig. 3. Effect of surface diffusion mechanisms (solid line – system (3), (5)–(9), dashed line – system (4)–
(9)) and parameter k1 = k2 on the function z: k1 = k2 = 0 (a), k1 = k2 = 0.5k11 (b). k4 = 0.5,
k−11 = k−21 = 0.0166 (1) and k−11 = k−21 = 0.00166 (2); k4 = 0.01, k−11 = k−21 = 0.0166 (3)
with κa = 0.1 and k3 = 0.03.

Figure 2 depicts the influence of the bulk diffusivity κa and reaction rate constant k3
in the LH step on the behaviour of z for the case where k1 = k2 = 0.5k11, k4 = 0.01,
k−11 = k−21 = 0.00166. From this figure we see that, for small time, the growth of
k3 or κa increases z. But for large time, it behaves vice-versa. To clarify this effect, the
argument used for explanation of the effect discussed in Fig. 1 can be also applied.

Figure 3 presents the comparison of the dependence of z determined by systems (3),
(5)–(9) and (4)–(9) on the parameter k1 = k2 which is equal to zero in Fig. 3a and to
0.5k11 in Fig. 3b. To construct both figures, we used k3 = 0.03 and κa = 0.1. Values
of the other parameters are as follows: k4 = 0.5, k−11 = k−21 = 0.0166 for curves 1,
k4 = 0.5, k−11 = k−21 = 0.00166 for curves 2, k4 = 0.01, k−11 = k−21 = 0.0166 for
curves 3. We see that, for small time, the function z grows as k−11 = k−21 decreases and

Nonlinear Anal. Model. Control, 20(3):455–468
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Fig. 4. Effect of surface diffusion mechanisms (solid line – system (3), dashed line – system (4) with a1 =
a2 = 1) and parameters k4 and k−11 = k−21 on z in case of k1 = k2 = 0 and k3 = 0.03: k4 = 0.5,
k−11 = k−21 = 0.0166 (1) and k−11 = k−21 = 0.00166 (2); k4 = 0.01, k−11 = k−21 = 0.0166 (3).

behaves vice-versa for long time. For small time, this effect is obvious due to growing
number of reacting particles. The long-time behaviour of z can be explained by applying
the argument used for Figs. 1 and 2. Comparison of plots depicted in these figures shows
that involving of the ER step for one or both reactants remarkably increases z compared
to that corresponding to the model based only on the LH mechanism.

Plots in Fig. 3 also demonstrate the influence of two different surface diffusion mech-
anisms on the the behaviour of z determined by systems (3), (5)–(9) and (4)–(9). The
diffusion mechanism [4] increases z only for small time and slightly decreases it for large
time. This increase is appreciable only in the case of the absence of the ER steps (compare
both Figs. 3). Calculations show that maximal increase is about 5.5–6.3%.

Figure 4 illustrates the influence of two surface diffusion mechanisms and parameters
k4 and k−11 = k−21 on the behaviour of z determined by systems (3) and (4) with given
a1 and a2 in the case of the absence of the ER steps. All plots corresponding to both
diffusion mechanisms are monotonic in time. As in Fig. 3, the diffusion mechanism [4]
increases values of z. Maximal increase is about 5%.

Plots in Fig. 5 illustrate the dependence of z on k3, k4, and k−11 = k−21. Fig. 5a
corresponds to k1 = k2 = 0, k3 = 0.03 (solid line) and k3 = 0.01 (dashed line).
In Fig. 5b, all plots correspond to k1 = k2 = 0.5k11, k3 = 0.03 (solid line) and k3 = 0
(dashed line). Values of the other parameters are as follows: k4 = 0.5, k−11 = k−21 =
0.0166 for curve 1 and k−11 = k−21 = 0.00166 for curve 2, k4 = 0.01, k−11 = k−21 =
0.0166 for curve 3. We stress that in the case where k3 = 0 reaction occurs via only ER
steps while in the case where k1 = k2 = 0 reaction is governed by the LH mechanism.
Figure 4 shows that, for k1 = k2, z monotonically tends in time to asymptotic values
depending on parameters under consideration and decreases as k4 decreases or k−11 =
k−21 increases.

http://www.mii.lt/NA



Modelling in monomer-monomer reactions 465

(a)

(b)

Fig. 5. Influence of parameters k3, k4, and k−11 = k−21 on the behaviour of z determined by system (3) with
a1 = a2 = 1: (a) k1 = k2 = 0, k3 = 0.03 (solid line) and k3 = 0.01 (dashed line), (b) k1 = k2 = 0.5k11,
k3 = 0.03 (solid line) and k3 = 0 (dashed line). k4 = 0.5, k−11 = k−21 = 0.0166 (1) and k−11 =
k−21 = 0.00166 (2); k4 = 0.01, k−11 = k−21 = 0.0166 (3).

Figure 6 depicts the influence of parameters k2, k−11, k−21, and k4 on the behaviour
of z for k3 = 0.03 in the cases k1 = k2 = 0 (solid line) and k1 = 0, k2 = 0.5k11 (dashed
line). Values of the other parameters are the same as those used for Fig. 5. This figure
shows that in case of k1 = 0, k2 = 0.5k11 and large k4, function z is non-monotonic in
time. It increases, reaches a maximum value, which grows as k−11 = k−21 decreases,
and then tends to an asymptotic value that is smaller than that corresponding to a larger
value of k−11 = k−21.

Calculations show that z determined by system (3), (5)–(9) with constant initial
concentrations of both reactants and z1 determined by Eqs. (3) with given constant
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Fig. 6. Influence of k1, k2, k−11 = k−21, and k4 on z from system (3) with a1 = a2 = 1 for k3 = 0.03
in the cases k1 = k2 = 0 (solid line) and k1 = 0, k2 = 0.5k11 (dashed line). k4 = 0.5, k−11 = k−21 =
0.0166 (1) and k−11 = k−21 = 0.00166 (2); k4 = 0.01, k−11 = k−21 = 0.0166 (3).
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Fig. 7. Comparison of z (solid line) and z1 (dashed line) determined by Eqs. (3) with a1 = a2 = 1 at the
catalyst surface for different values of k4: 0.01 (1), 0.02 (2), 0.05 (3), 0.5 (4) for k3 = 0.03, k1 = k2 = 0 and
k−11 = k−21 = 0.0166.

concentrations a1 and a2 do not depend on the natural parameter m involved in the defi-
nition of s(x1) which preserves the same total number of adsorption sites and practically
do not depend of the diffusivity κu. The same result was also achieved for s = 0.75. As
we mentioned in Section 2, in the case of only one ER step, the independence of z and z1
on the specific type of s can be proved strongly.

Fig. 7 illustrates a convergence of z towards z1 as the product desorption rate constant,
k4, increases. This figure also shows that function z1 is non-monotonic in time for small
k4 and practically is independent of k4 for small time.
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4 Conclusions

To conclude the paper, we summarise the main results. In this paper, using a phenomeno-
logical (mean-field) approach in two-dimensional space, we studied numerically the model
of monomer-monomer surface reactions proceeding on the inhomogeneous catalytic sur-
faces coupled with the bulk diffusion of both reactants from the bounded vessel towards
the surface and the product bulk one from the surface into the same vessel. Adsorption,
desorption, and surface diffusion of the adsorbed and product particles and a slow product
desorption are taken into account. To describe the surface diffusion, two different mecha-
nisms were used: (i) the standard Fick law with a constant diffusivity, (ii) the mechanism
based on the particle jumping into a nearest vacant site [4]. The model where densities of
both reactants at the surface are given is also studied.

The main characteristic we studied was the catalytic surface specific conversion rate
(turn-over rate) of molecules of both reactants into the product ones. We analysed effects
of the desorption rate constants of adsorbed and product particles, bulk diffusivity of
reactants and mechanism of surface diffusion of both adsorbates and product particles,
reaction rate constants in the LH and ER steps on the turn-over rate and demonstrated
that:

1. In both models, the additional ER step for one or both reactants dramatically
increases the turn-over rate z compared to that corresponding to only one LH
mechanism.

2. In models (3), (5)–(9) and (4)–(9), the slow desorption of product particles re-
markably changes (decreases for small time but increases for long time) the turn-
over rate z. This is because the product particles poison the catalyst. This leads
to a smaller uptake of reactants in the vessel compared to that corresponding to
a larger value of k4 and, hence, reaction proceeds longer in case of small k4.
In models (3) and (4) with given concentrations of both reactants at the catalyst
surface, the slow desorption of product particles decreases z for all time. In the
case of these systems, the product particles also poison the catalyst surface but the
supply of reactants particles is constant.

3. Function z for system (3) or (4) with given a1 and a2 at the surface S2 is monotonic
in time for k1 = k2 > 0 and non-monotonic if only one of k1 and k2 is zero and k4
is large. In the latter case, z corresponding to system (3) or (4) and z corresponding
to Eqs. (3), (5)–(9) or (4)–(9) with k1 = k2 > 0 attain maximum values depending
on k4 and the other parameters and then tend to positive asymptotic values (in case
of systems (3), (4)) or zero (in case of systems (3), (5)–(9) or (4)–(9)) as time
grows. In case of systems (3), (5)–(9) and (4)–(9), z grows only for small t and
behaves vice versa for large t. If one of k1 or k2 is equal to zero and product
desorption rate constant, k4, is large, then z corresponding to system (3) or z
determined by (4) grow for small time, attain maximal values and then decrease to
positive asymptotic values.

4. z and z1 determined by systems (3), (5)–(9), (4)–(9), and (3), (4) for large time are
practically independent of κui , i = 1, 2, 3, and specific continuous (not stepwise)
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distribution of adsorption sites, s(x1), which preserves the same total number of
adsorption ones.

5. The increase of at least one of k3, k4, κa1 , κa2 , or decrease of k−11 = k−21

increases z(t) determined by system (3), (5)–(9) or (4)–(9) and the increase of k3
or decrease of k−11 = k−21 increases z corresponding to systems (3) or (4).

6. The diffusion mechanism based on the particle jumping into the nearest vacant
site [4] increases z compared to that corresponding to the the Fick law only for
small time and slightly decreases z for large time.
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