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Abstract. We give sufficient conditions for the existence of common fixed points for a pair of mixed
multi-valued mappings in the setting of 0-complete partial metric spaces. An example is given to
demonstrate the usefulness of our results over the existing results in metric spaces. Finally, we prove
a homotopy theorem via fixed point results.
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1 Introduction

In the last century, the concept of metric space was largely studied and generalized in
many directions. One of the most interesting is due to Matthews [17], which introduced
the concept of partial metric as a part of the study of denotational semantics of dataflow
networks. Several authors followed the ideas in [17] and proved many results, especially
in fixed point theory; see [1, 4, 5, 7, 10, 11, 15, 16, 19, 22, 25].

On the other hand, the study of multi-valued mappings received much attention in the
last decades, because of its applications in mathematical optimization, control theory and
differential inclusions [20]. We can say that this theory lies at the junction of topology,
theory of functions and nonlinear functional analysis. In particular, we recall that Nadler
[18] combined the concepts of contraction and multi-valued mapping by establishing the
following fixed point result.

Theorem 1. (See [18].) Let (X, d) be a complete metric space and T : X → CB(X) be
a multi-valued mapping satisfying H(Tx, Ty) 6 kd(x, y) for all x, y ∈ X , where k is
a constant such that k ∈ (0, 1) and CB(X) denotes the family of non-empty closed and
bounded subsets of X . Then T has a fixed point, that is, there exists a point u ∈ X such
that u ∈ Tu.
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Later on, a variety of generalizations, extensions and applications of this result ap-
peared in the literature [9, 12, 13, 14, 21, 23]. In particular, Aydi et al. [6] introduced the
concept of partial Hausdorff metric and extended Theorem 1 in the setting of partial metric
spaces.

Very recently, Aleomraninejad et al. [2] discussed the existence of fixed points for
multi-valued mappings in the classical setting of metric spaces. Precisely, they proved
fixed point theorems, which generalize known results in the literature, by using a suitable
continuous function. These results were generalized by Yingtaweesittikul [26] to the set-
ting of b-metric spaces. In view of the above considerations, we investigate the possibility
to extend the results in [2, 26] to the setting of partial Hausdorff metric spaces. Also, our
theorem and corollaries generalize and complement well known results in the literature
on partial metric spaces. An example is given to demonstrate the usefulness of our results
over the existing results in metric spaces. Finally, we prove a homotopy theorem via fixed
point results.

2 Preliminaries

The aim of this section is to give some definitions and known results needed in the sequel.
Let R+ be the set of all non-negative real numbers and N the set of all positive integers.

We start with some concepts related to partial metric spaces.

Definition 1. (See [17].) A partial metric on a non-empty set X is a mapping p : X ×
X → R+ such that, for all x, y, z ∈ X , the following conditions are satisfied:

(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(P2) p(x, x) 6 p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, y) 6 p(x, z) + p(z, y)− p(z, z).

A non-empty set X equipped with a partial metric p is called partial metric space. We
shall denote it by a pair (X, p).

If p(x, y) = 0, then (P1) and (P2) imply that x = y, but the converse does not hold
true always.

Notice that if p is a partial metric onX , then the mapping ps : X×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X . Also, each partial metric p on X generates a T0 topology γp on X ,
which has as a base, the family of the open balls (p-balls){Bp(x, ε): x ∈ X, ε > 0},
where

Bp(x, ε) =
{
y ∈ X: p(x, y) < p(x, x) + ε

}
for all x ∈ X and ε > 0.

Furthermore, limn→+∞ ps(xn, x) = 0 if and only if

p(x, x) = lim
n→+∞

p(xn, x) = lim
n,m→+∞

p(xn, xm).
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Definition 2. (See [3, 17].) Let (X, p) be a partial metric space. Then a sequence {xn}
is called:

(i) convergent, with respect to γp, if there exists some x in X such that p(x, x) =
limn→+∞ p(x, xn);

(ii) Cauchy sequence if there exists (and is finite) limn,m→+∞ p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges, with respect to γp, to a point x ∈ X such that p(x, x) =
limn,m→+∞ p(xn, xm).

A sequence {xn} in (X, p) is called 0-Cauchy if limn,m→+∞ p(xn, xm) = 0. Also,
we say that (X, p) is 0-complete if every 0-Cauchy sequence inX converges, with respect
to the partial metric p, to a point x ∈ X such that p(x, x) = 0.

Lemma 1. (See [3, 17].) Let (X, p) be a partial metric space. Then:

(i) A sequence {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in the metric space (X, ps);

(ii) (X, p) is complete if and only if the metric space (X, ps) is complete.

LetCBp(X) be the collection of all non-empty closed and bounded subsets ofX with
respect to the partial metric p. Consistent with Aydi et al. [6], closedness is taken from
(X, γp). Moreover, boundedness is given as follows: A is a bounded subset in (X, p) if
there exist x0 ∈ X and M > 0 such that, for all a ∈ A, we have a ∈ Bp(x0,M), that
is, p(x0, a) < p(x0, x0) +M . Then, for A,B ∈ CBp(X), x ∈ X , δp : CBp(X) ×
CBp(X)→ R+ define

p(x,A) = inf
{
p(x, a): a ∈ A

}
, δp(A,B) = sup

{
p(a,B): a ∈ A

}
,

p(A,B) = inf
{
p(x, y): x ∈ A, y ∈ B

}
, δp(B,A) = sup

{
p(b, A): b ∈ B

}
and

Hp(A,B) = max
{
δp(A,B), δp(B,A)

}
.

It is easy to show that p(x,A) = 0 implies that ps(x,A) = 0, where

ps(x,A) = inf
{
ps(x, a): a ∈ A

}
.

Proposition 1. (See [6].) Let (X, p) be a partial metric space. For allA,B,C ∈ CBp(X),
we have the following:

(i) δp(A,A) = sup{p(a, a): a ∈ A};
(ii) δp(A,A) 6 δp(A,B);

(iii) δp(A,B) = 0 implies that A ⊆ B;
(iv) δp(A,B) 6 δp(A,C) + δp(C,B)− infc∈C p(c, c).

Proposition 2. (See [6].) Let (X, p) be a partial metric space. For allA,B,C ∈ CBp(X),
we have the following:
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(H1) Hp(A,A) 6 Hp(A,B);
(H2) Hp(A,B) = Hp(B,A);
(H3) Hp(A,B) 6 Hp(A,C) +Hp(C,B)− infc∈C p(c, c);
(H4) Hp(A,B) = 0 ⇒ A = B.

The mapping Hp : CBp(X)×CBp(X)→ R+ is called the partial Hausdorff metric
induced by p. Every Hausdorff metric is a partial Hausdorff metric but the converse is not
true, see Example 2.6 in [6]. Also, a partial Hausdorff metric is not a partial metric, in
general.

Lemma 2. (See [3].) Let (X, p) be a partial metric space and A any non-empty set in
(X, p), then

a ∈ A ⇐⇒ p(a,A) = p(a, a),

where A denotes the closure of A with respect to the partial metric p. Notice that A is
closed in (X, p) if and only if A = A.

Lemma 3. (See [6].) Let (X, p) be a partial metric space, A,B ∈ CBp(X) and h > 1,
then, for any a ∈ A, there exists b(a) ∈ B such that p(a, b(a)) 6 hHp(A,B).

Theorem 2. (See [6].) Let (X, p) be a partial metric space. If T : X → CBp(X) is
a multi-valued mapping such that, for all x, y ∈ X , we have Hp(Tx, Ty) 6 kp(x, y),
where k ∈ (0, 1), then T has a fixed point, that is, there exists a point u ∈ X such that
u ∈ Tu.

Lemma 4. Let (X, p) be a partial metric space and T : X → CBp(X) a multi-valued
mapping. If {xn} ⊂ X is a sequence, xn → u and p(u, u) = 0, then

lim
n→+∞

p(xn, Tu) = p(u, Tu).

Remark 1. Notice that the proof of Lemma 4 is an immediate consequence of the fact
that the inequality

p(u, Tu)− p(u, xn) 6 p(xn, Tu) 6 p(xn, u) + p(u, Tu)

holds for all n ∈ N.

Very recently, Romaguera [22] introduced the concept of mixed multi-valued mapping
as follows.

Definition 3. (See [22].) Let (X, p) be a partial metric space. T : X → X ∪ CBp(X)
is called a mixed multi-valued mapping on X if T is a multi-valued mapping on X such
that, for each x ∈ X , |Tx| = 1 (i.e., Tx = {y} for some y ∈ X) or Tx ∈ CBp(X).

A self-mapping T : X → X and a multi-valued mapping T : X → CBp(X) are
mixed multi-valued mappings.

According to [2] and [26], we consider a continuous function g : (R+)5 → R+

satisfying the following conditions:
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1. g(1, 1, 1, 2, 0) = g(1, 1, 1, 0, 2) = h ∈ (0, 1);
2. g is sub-homogeneous, that is, for all (x1, x2, x3, x4, x5) ∈ (R+)5, α > 0, we

have

g(αx1, αx2, αx3, αx4, αx5) 6 αg(x1, x2, x3, x4, x5);

3. g is a nondecreasing function, that is, for xi, yi ∈ R+, xi 6 yi, i = 1, . . . , 5, we
have

g(x1, x2, x3, x4, x5) 6 g(y1, y2, y3, y4, y5)

and if xi, yi ∈ R+, xi < yi for i = 1, . . . , 4, then

g(x1, x2, x3, x4, 0) < g(y1, y2, y3, y4, 0),

g(x1, x2, x3, 0, x4) < g(y1, y2, y3, 0, y4).

In this case, we write g ∈ P; for results involving similar functions in metric spaces,
see [8] and the references therein.

Then we have the following lemma.

Lemma 5. If g ∈ P and u, v ∈ R+ are such that

u 6max
{
g(v, v, u, v + u, 0), g(v, v, u, 0, v + u),

g(v, u, v, v + u, 0), g(v, u, v, 0, v + u)
}
,

then u 6 hv.

Proof. Without loss of generality, we can suppose that u 6 g(v, v, u, v + u, 0). If v 6 u,
then

u 6 g(v, v, u, v + u, 0) 6 g(u, u, u, 2u, 0) 6 ug(1, 1, 1, 2, 0) = hu < u,

which is a contradiction. Thus, u < v and

u 6 g(v, v, u, v + u, 0) 6 g(v, v, v, 2v, 0) 6 vg(1, 1, 1, 2, 0) = hv.

3 Main results

Inspired by [2] and [26], we give the following results.

Lemma 6. Let (X, p) be a partial metric space and let F,G : X → X ∪ CBp(X) be
two mixed multi-valued mappings. Suppose that there exist α ∈ (0, 1) and g ∈ P such
that

min
{
αp(x, Fx), αp(y,Gy)

}
6 p(x, y)

implies that

Hp(Fx,Gy) 6 g
(
p(x, y), p(x, Fx), p(y,Gy), p(x,Gy)− p(x, x),

p(y, Fx)− p(y, y)
)

for all x, y ∈ X . Then Fix(F ) = Fix(G).
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Proof. Let x ∈ Fix(F ), then p(x, Fx) = p(x, x) and αp(x, Fx) < p(x, x). Thus, we
have

p(x,Gx) 6 Hp(Fx,Gx)

6 g
(
p(x, x), p(x, Fx), p(x,Gx), p(x,Gx)− p(x, x), 0

)
6 g
(
p(x, x), p(x, x), p(x,Gx), p(x,Gx) + p(x, x), 0

)
.

Using Lemma 5, we get p(x,Gx) 6 hp(x, x) 6 p(x, x). On the other hand, by (P2)
of Definition 1, we have p(x, x) 6 p(x,Gx) and so p(x, x) = p(x,Gx). Since Gx is
a closed set, we conclude that x ∈ Gx. Thus, Fix(F ) ⊆ Fix(G). Similarly, we deduce
that Fix(G) ⊆ Fix(F ). This completes the proof.

Theorem 3. Let (X, p) be a 0-complete partial metric space and let F,G : X → X ∪
CBp(X) be two mixed multi-valued mappings. Suppose that there exist α ∈ (0, 1) and
g ∈ P such that α(h+ 1) 6 1 and min{αp(x, Fx), αp(y,Gy)} 6 p(x, y) imply that

Hp(Fx,Gy) 6 g
(
p(x, y), p(x, Fx), p(y,Gy), p(x,Gy)− p(x, x),

p(y, Fx)− p(y, y)
)

for all x, y ∈ X . Then Fix(F ) = Fix(G) and Fix(F ) is a non-empty set.

Proof. By Lemma 6, Fix(F ) = Fix(G). Let r ∈ (h, 1) and x0 ∈ X . If x0 is not a fixed
point, choose x1 ∈ Fx0, then αp(x0, Fx0) < p(x0, x1). Consequently, we get

p(x1, Gx1) 6 Hp(Fx0, Gx1)

6 g
(
p(x0, x1), p(x0, Fx0), p(x1, Gx1), p(x0, Gx1)− p(x0, x0),

p(x1, Fx0)− p(x1, x1)
)

6 g
(
p(x0, x1), p(x0, x1), p(x1, Gx1), p(x0, x1) + p(x1, Gx1)

− p(x0, x0)− p(x1, x1), 0
)

6 g
(
p(x0, x1), p(x0, x1), p(x1, Gx1), p(x0, x1) + p(x1, Gx1), 0

)
.

By Lemma 5, we have p(x1, Gx1) 6 hp(x0, x1) < rp(x0, x1). Now, if x1 is not a fixed
point, there exists x2 ∈ Gx1 such that p(x1, x2) < rp(x0, x1). Since αp(x1, Gx1) <
p(x1, x2), we have

p(x2, Fx2) 6 Hp(Fx2, Gx1)

6 g
(
p(x1, x2), p(x2, Fx2), p(x1, Gx1), p(x2, Gx1)− p(x2, x2),

p(x1, Fx2)− p(x1, x1)
)

6 g
(
p(x1, x2), p(x2, Fx2), p(x1, x2), 0, p(x1, x2) + p(x2, Fx2)

− p(x1, x1)− p(x2, x2)
)

6 g
(
p(x1, x2), p(x2, Fx2), p(x1, x2), 0, p(x1, x2) + p(x2, Fx2)

)
.
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By Lemma 5, we get p(x2, Fx2) 6 hp(x1, x2) < rp(x1, x2). Again, if x2 is not a fixed
point, there exists x3 ∈ Fx2 such that p(x2, x3) < rp(x1, x2) < r2p(x0, x1). Thus, by
iterating this procedure, we can construct a sequence {xn} in X satisfying

x2n−1 ∈ Fx2n−2, x2n ∈ Gx2n−1, p(xn, xn+1) < rnp(x0, x1),

p(x2n, Fx2n) 6 hp(x2n−1, x2n), p(x2n−1, Gx2n−1) 6 hp(x2n−2, x2n−1).

The next step of the proof is to show that the sequence {xn} is a 0-Cauchy sequence.
Indeed, for each q ∈ N, we have

p(xn, xn+q)

6 p(xn, xn+1) + p(xn+1, xn+q)− p(xn+1, xn+1)

6 p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+q)− p(xn+1, xn+1)

− p(xn+2, xn+2)

6 p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+q−2, xn+q−1) + p(xn+q−1, xn+q)

−
n+q−1∑
k=n+1

p(xk, xk)

6 rnp(x0, x1) + rn+1p(x0, x1) + · · ·+ rn+q−2p(x0, x1) + rn+q−1p(x0, x)

= rnp(x0, x1)
[
1 + r + r2 + · · ·+ rq−1

]
6

rn

1− r
p(x0, x1).

Consequently, since
rn

1− r
p(x0, x1)→ 0 as n→ +∞,

we deduce that {xn} is a 0-Cauchy sequence and so, by 0-completeness of the space,
xn → x for some x ∈ X with p(x, x) = 0.

Now we claim that, for each n > 1, at least one of the following assertions holds:

αp(x2n, Fx2n) 6 p(x2n, x) or αp(x2n+1, Gx2n+1) 6 p(x2n+1, x).

Suppose to the contrary that

αp(x2n, Fx2n) > p(x2n, x) and αp(x2n+1, Gx2n+1) > p(x2n+1, x)

for some n > 1, then we have

p(x2n, x2n+1) 6 p(x2n, x) + p(x2n+1, x)− p(x, x)
< α

[
p(x2n, Fx2n) + p(x2n+1, Gx2n+1)

]
6 α

[
p(x2n, x2n+1) + hp(x2n, x2n+1)

]
= α(h+ 1)p(x2n, x2n+1).
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This leads to the contradiction α(h + 1) > 1, and so the claim is proved. By using the
assumption, for each n > 1 and p(x, x) = 0, either

Hp(Fx2n, Gx) 6 g
(
p(x2n, x), p(x2n, Fx2n), p(x,Gx),

p(x2n, Gx)− p(x2n, x2n), p(x, Fx2n)
)

or
Hp(Fx,Gx2n+1) 6 g

(
p(x, x2n+1), p(x, Fx), p(x2n+1, Gx2n+1),

p(x,Gx2n+1), p(x2n+1, Fx)− p(x2n+1, x2n+1)
)

holds. Consequently, one of the following cases occurs:

(a) There exists an infinite subset I ⊆ N such that

p(x2n+1, Gx) 6 Hp(Fx2n, Gx)

6 g
(
p(x2n, x), p(x2n, Fx2n), p(x,Gx), p(x2n, Gx)

− p(x2n, x2n), p(x, Fx2n)
)

for all n ∈ I;
(b) There exists an infinite subset J ⊆ N such that

p(Fx, x2n+2) 6 Hp(Fx,Gx2n+1)

6 g
(
p(x, x2n+1), p(x, Fx), p(x2n+1, Gx2n+1), p(x,Gx2n+1),

p(x2n+1, Fx)− p(x2n+1, x2n+1)
)

for all n ∈ J .

Thus, in case (a), we write

p(x,Gx) 6 p(x, x2n+1) + p(x2n+1, Gx)− p(x2n+1, x2n+1)

6 p(x, x2n+1)− p(x2n+1, x2n+1) + g
(
p(x2n, x), p(x2n, Fx2n), p(x,Gx),

p(x2n, Gx)− p(x2n, x2n), p(x, Fx2n)
)

6 p(x, x2n+1)− p(x2n+1, x2n+1) + g
(
p(x2n, x), p(x2n, x2n+1), p(x,Gx),

p(x2n, x) + p(x,Gx)− p(x2n, x2n), p(x, x2n+1)
)

6 p(x, x2n+1)− p(x2n+1, x2n+1) + g
(
p(x2n, x), p(x2n, x2n+1), p(x,Gx),

p(x2n, x) + p(x,Gx), p(x, x2n+1)
)

for all n ∈ I . Since g is continuous, passing to limit as n→ +∞, we obtain

p(x,Gx) 6 g
(
p(x, x), p(x, x), p(x,Gx), p(x, x) + p(x,Gx), 0

)
.

This implies, by Lemma 5, that p(x,Gx) 6 p(x, x) = 0 and so, by (P2) of Definition 1,
we deduce that p(x,Gx) = p(x, x) = 0, that is, x ∈ Gx and hence, Fix(G) =
Fix(F ) 6= ∅.
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On the other hand, in case (b), we have

p(x, Fx) 6 p(x, x2n+2) + p(x2n+2, Fx)− p(x2n+2, x2n+2)

6 p(x, x2n+2)− p(x2n+2, x2n+2) + g
(
p(x, x2n+1), p(x, Fx),

p(x2n+1, Gx2n+1), p(x,Gx2n+1), p(x2n+1, Fx)− p(x2n+1, x2n+1)
)

6 p(x, x2n+2)− p(x2n+2, x2n+2) + g
(
p(x, x2n+1), p(x, Fx),

p(x2n+1, x2n+2), p(x, x2n+2), p(x2n+1, x)+p(x, Fx)−p(x2n+1, x2n+1)
)

6 p(x, x2n+2)− p(x2n+2, x2n+2) + g
(
p(x, x2n+1), p(x, Fx),

p(x2n+1, x2n+2), p(x, x2n+2), p(x2n+1, x) + p(x, Fx)
)

for all n ∈ J . Since g is continuous, passing to limit as n→ +∞, we obtain

p(x, Fx) 6 g
(
p(x, x), p(x, Fx), p(x, x), 0, p(x, x) + p(x, Fx)

)
.

Also, by Lemma 5, we get p(x, Fx) 6 p(x, x) = 0 and so, by (P2) of Definition 1, we
deduce that p(x, Fx) = p(x, x), that is, x ∈ Fx. Thus, Fix(F ) 6= ∅. This completes the
proof.

The following corollary is an immediate consequence of Theorem 3 in the case of
a mixed multi-valued mapping.

Corollary 1. Let (X, p) be a 0-complete partial metric space and let T : X → X ∪
CBp(X) be a mixed multi-valued mapping. Suppose that there exist α ∈ (0, 1) and
g ∈ P such that α(h+ 1) 6 1 and αp(x, Tx) 6 p(x, y) imply that

Hp(Tx, Ty) 6 g
(
p(x, y), p(x, Tx), p(y, Ty), p(x, Ty)−p(x, x), p(y, Tx)−p(y, y)

)
for all x, y ∈ X . Then T has a fixed point.

Moreover, we give some particular cases of Corollary 1, which can be used in appli-
cations.

Corollary 2. Let (X, p) be a 0-complete partial metric space and let T : X → X ∪
CBp(X) be a mixed multi-valued mapping. Suppose that there exists r ∈ (0, 1) such that

1

r + 1
p(x, Tx) 6 p(x, y)

=⇒ Hp(Tx, Ty) 6 rmax
{
p(x, y), p(x, Tx), p(y, Ty)

}
(1)

for all x, y ∈ X . Then T has a fixed point.

Proof. Let g ∈ P be defined by g(x1, x2, x3, x4, x5) = rmax{x1, x2, x3}, where r ∈
(0, 1). Put α = 1/(r + 1). Since h = r < 1 and α(h+ 1) 6 1, by using Corollary 1, we
conclude that T has a fixed point.
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Corollary 3. Let (X, p) be a 0-complete partial metric space and let T : X → X ∪
CBp(X) be a mixed multi-valued mapping. Suppose that there exist a, b, c ∈ [0, 1) with
a+ b+ c < 1 such that

1

1 + a+ b+ c
p(x, Tx) 6 p(x, y)

=⇒ Hp(Tx, Ty) 6 ap(x, y) + bp(x, Tx) + cp(y, Ty) (2)

for all x, y ∈ X . Then T has a fixed point.

Proof. Let g ∈ P be defined by g(x1, x2, x3, x4, x5)=ax1+bx2+cx3, where a+b+c<1.
Put α = 1/(a+b+c+1). Since h = a+b+c < 1 and α(h+1) 6 1, by using Corollary
1, we conclude that T has a fixed point.

Here we give an example, which illustrates the use of Corollary 2. Also, we show that
this corollary is a valid generalization of the analogous result on metric spaces (see [2]).

Example 1. Consider the partial metric space (X, p) withX = {0, 1, 2} and p : X×X →
R+ given by

p(0, 0) = p(1, 1) = 0, p(2, 2) =
1

4
, p(0, 1) = p(1, 0) =

1

3
,

p(0, 2) = p(2, 0) =
2

5
, p(1, 2) = p(2, 1) =

11

15
.

Clearly, (X, p) is complete.
Also define T : X → CBp(X) by

Tx =

{
{0} if x ∈ {0, 1},
{0, 1} otherwise.

Now we get

max
{
p(x, Tx): x ∈ X

}
=

2

5
and min

{
p(x, y): x, y ∈ X, x 6= y

}
=

1

3
.

Note that, for each r ∈ [1/5, 1), we have

1

r + 1
p(x, Tx) 6 p(x, y)

for all x, y ∈ X with x 6= y. Putting r = 5/6, we get

Hp(T0, T1) = p(0, 0) = 0 6
5

6
max

{
p(0, 1), p(0, T0), p(1, T1)

}
,

Hp(T0, T2) = p(0, 1) =
1

3
=

5

6
p(0, 2) 6

5

6
max

{
p(0, 2), p(0, T0), p(2, T2)

}
,

Hp(T1, T2) = p(0, 1) =
1

3
<

5

6
p(1, 2) 6

5

6
max

{
p(1, 2), p(1, T1), p(2, T2)

}
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and hence, for all x, y ∈ X with x 6= y, condition (1) holds true. Also, condition (1)
holds trivially for x = y = 0, but is not applicable for x, y ∈ {1, 2} with x = y, since
1/(r + 1)p(x, Tx) 
 p(x, x). Thus, all the conditions of Corollary 2 are satisfied and
x = 0 is a fixed point of T .

Next, we consider the metric space (X, ps), where the metric ps, induced by the partial
metric p, is given by

ps(0, 0) = ps(1, 1) = ps(2, 2) = 0, ps(0, 1) = ps(1, 0) =
2

3
,

ps(1, 2) = ps(2, 1) =
73

60
, ps(0, 2) = ps(2, 0) =

11

20
.

We show easily that Corollary 2.5 of [2] is not applicable in this case. Indeed, since

1

r + 1
ps(0, T0) =

1

r + 1
ps(0, 0) = 0 6 ps(0, y)

is satisfied for each r ∈ (0, 1) and y ∈ X , then, for y = 2, we must have

Hps(T0, T2) 6 rmax
{
ps(0, 2), ps(0, T0), ps(2, T2)

}
.

After calculations, we get

Hps(T0, T2) = Hps

(
{0}, {0, 1}

)
=

2

3
and

max
{
ps(0, 2), ps(0, T0), ps(2, T2)

}
= max

{
11

20
, 0,

11

20

}
=

11

20
<

2

3
.

Thus, for each r ∈ (0, 1), we have

Hps(T0, T2) 
 rmax
{
ps(0, 2), ps(0, T0), ps(2, T2)

}
and so Corollary 2.5 of [2] does not hold with respect to the metric space (X, ps).

4 Homotopy result in 0-complete partial metric spaces

In this section, inspired by [24] and following a similar argument, we apply our Corol-
lary 3 to get a homotopy result. Before establishing our theorem, we need the following
proposition, which shows that if the multi-valued mapping T : X → CBp(X) has a fixed
point in X , then its self-distance is equal to zero.

Proposition 3. Let (X, p) be a partial metric space and let T : X → CBp(X) be a multi-
valued mapping satisfying (2). If z ∈ Tz for some z ∈ X , then p(x, x) = 0 for all x ∈ Tz,
and hence, Hp(Tz, Tz) = 0.
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Proof. Let z ∈ Tz ∈ CBp(X) so that, by Lemma 2, p(z, Tz) = p(z, z) andHp(Tz, Tz) =
δp(Tz, Tz) = supx∈Tz p(x, x). Consequently, assuming p(z, z) > 0, by (2) we get

Hp(Tz, Tz) 6 ap(z, z) + bp(z, Tz) + cp(z, Tz),

sup
x∈Tz

p(x, x) 6 (a+ b+ c)p(z, z), sup
x∈Tz

p(x, x) < p(z, z),

which yields to contradiction, because z ∈ Tz. This completes the proof.

Finally, we introduce the function η : [α, β]2 → R+ such that one of the following
conditions hold:

(η1) For all r, s, t, u, v ∈ [α, β], we have η(t, r) 6 η(t, s) + η(r, s) and η(u, v)→ 0
if u→ v;

(η2) For all s, t ∈ [α, β] and some L > 0, we have η(t, s) 6 L|t− s|.

Theorem 4. Let (X, p) be a 0-complete partial metric space, F be a closed subset of X
and U be a non-empty open subset of X with U ⊂ F . Let α, β ∈ R and T : F × [α, β]→
CBp(X) be a multi-valued operator satisfying the following conditions:

(i) x 6∈ T (x, t) for each x ∈ F \ U and each t ∈ [α, β];
(ii) There exist a, b, c ∈ [0, 1) with a+b+c < 1 and b 6 c such that, for all x, y ∈ F

and each t ∈ [α, β],
1

1 + a+ b+ c
p
(
x, T (x, t)

)
6 p(x, y)

implies that

Hp

(
T (x, t), T (y, t)

)
6 ap(x, y) + bp

(
x, T (x, t)

)
+ cp

(
y, T (y, t)

)
;

(iii) There exists M > 0 such that, for all t1, t2 ∈ [α, β] and each x ∈ F ,

Hp

(
T (x, t1), T (x, t2)

)
6Mη(t1, t2);

(iv) If x ∈ T (x, t), then T (x, t) = {x}.

If T (·, t1) has a fixed point in F for at least one t1 ∈ [α, β], then T (·, t) has a fixed point
in U for all t ∈ [α, β]. Furthermore, for any fixed t ∈ [α, β], the fixed point of T (·, t) is
unique.

Proof. Define the set

Q :=
{
t ∈ [α, β]: x ∈ T (x, t) for some x ∈ U

}
.

Since T (·, t1) has a fixed point in F for at least one t1 ∈ [α, β], that is, there exists x ∈ F
such that x ∈ T (x, t1) for at least one t1 ∈ [α, β] and (i) holds, therefore, Q 6= ∅. We
shall show that Q is both open and closed in [α, β] and so, by connectedness of [α, β],
Q = [α, β].
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Step I: Q is closed. Let {tn} be a sequence in Q and tn → s ∈ [α, β] as n → +∞.
We must show that s ∈ Q. Since tn ∈ Q for all n ∈ N, there exists xn ∈ U with
xn ∈ T (xn, tn) for all n ∈ N. Now, for n,m ∈ N with m > n, using (ii), (iii) and
Proposition 3, we obtain

Hp

(
T (xn, tm), T (xm, tm)

)
6 ap(xn, xm) + bp

(
xn, T (xn, tm)

)
+ cp

(
xm, T (xm, tm)

)
6 ap(xn, xm) + bHp

(
T (xn, tn), T (xn, tm)

)
,

that is,
Hp

(
T (xn, tm), T (xm, tm)

)
6 ap(xn, xm) + bMη(tn, tm).

Thus, using the last inequality, (iv), and (H3) of Proposition 2, we get

p(xn, xm) = Hp(T (xn, tn), T (xm, tm))

6 Hp

(
T (xn, tn), T (xn, tm)

)
+Hp

(
T (xn, tm), T (xm, tm)

)
− inf

x∈T (xn,tm)
p(x, x)

6 Hp

(
T (xn, tn), T (xn, tm)

)
+Hp

(
T (xn, tm), T (xm, tm)

)
6Mη(tn, tm) + ap(xn, xm) + bMη(tn, tm)

= (1 + b)Mη(tn, tm) + ap(xn, xm).

Since a < 1, we have

p(xn, xm) 6
1 + b

1− a
Mη(tn, tm).

From the properties of function η and the fact that tn → s as n → +∞, we deduce that
η(tn, tm)→ 0 as n→ +∞ and hence,

lim
n→+∞

p(xn, xm) = 0.

Therefore, the sequence {xn} is 0-Cauchy in F , (X, p) is 0-complete and F is closed.
This implies that there exists z ∈ F such that

lim
n→+∞

p(xn, z) = p(z, z) = 0.

Moreover, for all n ∈ N, we have

p
(
xn, T (xn, s)

)
6 Hp

(
T (xn, tn), T (xn, s)

)
6Mη(tn, s)

and hence, using again the properties of function η, it follows that

lim
n→+∞

p
(
xn, T (xn, s)

)
= 0.

This implies

lim
n→+∞

p
(
z, T (xn, s)

)
6 lim

n→+∞

(
p(z, xn) + p

(
xn, T (xn, s)

))
= 0.
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Next,

p(xn, T (z, s)) 6 Hp

(
T (xn, tn), T (z, s)

)
6 Hp

(
T (xn, tn), T (xn, s)

)
+Hp

(
T (xn, s), T (z, s)

)
− inf

x∈T (xn,s)
p(x, x)

6Mη(tn, s) + ap(xn, z) + bp
(
xn, T (xn, s)

)
+ cp

(
z, T (z, s)

)
,

that is,

p
(
xn, T (z, s)

)
6Mη(tn, s) + ap(xn, z) + bp

(
xn, T (xn, s)

)
+ cp

(
z, T (z, s)

)
.

From above, it follows easily that

p
(
z, T (z, s)

)
6 p(z, xn) + p

(
xn, T (z, s)

)
= p(z, xn) +Mη(tn, s) + ap(xn, z) + bp

(
xn, T (xn, s)

)
+ cp

(
z, T (z, s)

)
,

that is,

(1− c)p
(
z, T (z, s)

)
6 (1 + a)p(z, xn) +Mη(tn, s) + bp

(
xn, T (xn, s)

)
.

Since p(xn, T (xn, s))→ 0 as n→ +∞, 1−c > 0 and using the properties of function η,
from above inequality we deduce that p(z, T (z, s)) = 0. Therefore, z ∈ T (z, s), and from
(i) we obtain z ∈ U. Thus, s ∈ Q and hence, Q is closed in [α, β].

Step II: Q is open. Let t0 ∈ Q and x0 ∈ U with x0 ∈ T (x0, t0). Note that, for such t0,
Proposition 3 is applicable and hence,

p(x0, x0) = 0.

Since U is open, there exists r > 0 such that Bp(x0, r) ⊂ U . Now, assume ε =
((1 − k)/M)r > 0 with k = (a + b)/(1 − b) < 1. By definition of function η, we
can choose δ > 0 such that η(t, t0) < ε for all t ∈ (t0 − δ, t0 + δ).

Let t ∈ (t0 − δ, t0 + δ), then, for all x ∈ Bp(x0, r) = {x ∈ X: p(x, x0) 6 r +
p(x0, x0)} = {x ∈ X: p(x, x0) 6 r} (as p(x0, x0) = 0), we shall show that T (x, t) ⊂
Bp(x0, r) and hence, T : Bp(x0, r) → CBp(Bp(x0, r)). Let x ∈ Bp(x0, r), then we
have

Hp

(
T (x, t0), T (x0, t0)

)
6 ap(x, x0) + bp

(
x, T (x, t0)

)
+ cp

(
x0, T (x0, t0)

)
6 ap(x, x0) + b

[
p(x, x0) + p

(
x0, T (x, t0)

)]
+ cp(x0, x0).

Since p(x0, T (x, t0)) 6 Hp(T (x0, t0), T (x, t0)), we get

Hp

(
T (x, t0), T (x0, t0)

)
6 (a+ b)p(x, x0) + bHp

(
T (x0, t0), T (x, t0)

)
and so we deduce that

Hp

(
T (x, t0), T (x0, t0)

)
6
a+ b

1− b
p(x, x0) = kp(x, x0).
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Suppose y ∈ T (x, t), then using the last inequality, we obtain

p(y, x0) = p
(
y, T (x0, t0)

)
6 Hp

(
T (x, t), T (x0, t0)

)
6 Hp

(
T (x, t), T (x, t0)

)
+Hp

(
T (x, t0), T (x0, t0)

)
− inf

w∈T (x,t0)
p(w,w)

6Mη(t, t0) + kp(x, x0) < Mε+ kr 6 (1− k)r + kr = r.

Therefore, y ∈ Bp(x0, r) and so, for each fixed t ∈ (t0 − δ, t0 + δ), we have T (x, t) ⊂
Bp(x0, r). Thus, T (·, t) : Bp(x0, r) → CBp(Bp(x0, r)) and T (·, t) satisfies all the
conditions of Corollary 3 and has a fixed point in Bp(x0, r) ⊂ F. By (i), this fixed point
must be in U, therefore, (t0− δ, t0 + δ) ⊂ Q and hence, Q is open. Thus, Q = [α, β] and
T (·, t) has a fixed point in U for all t ∈ [α, β].

For uniqueness, fixed t ∈ [α, β], then there exists x ∈ F such that x ∈ T (x, t). If y is
another fixed point of T (·, t), then from (iv) we have

p(x, y) = Hp

(
T (x, t), T (y, t)

)
6 ap(x, y) + bp

(
x, T (x, t)

)
+ cp

(
y, T (y, t)

)
= ap(x, y) + bp(x, x) + cp(y, y) 6 (a+ b+ c)p(x, y) < p(x, y),

which is a contradiction. Therefore, for any fixed t ∈ [α, β], the fixed point of T (·, t) is
unique.

Acknowledgments. The authors gratefully acknowledge Editor and anonymous Re-
viewers for their carefully reading of the paper and helpful suggestions. C. Vetro is
member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Ap-
plicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

1. M. Abbas, T. Nazir, S. Romaguera, Fixed point results for generalized cyclic contraction
mappings in partial metric spaces, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A
Mat., 106:287–297, 2012.

2. S.M.A. Aleomraninejad, Sh. Rezapour, N. Shahzad, On fixed point generalizations of Suzuki’s
method, Appl. Math. Lett., 24:1037–1040, 2011.

3. I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl.,
157:2778–2785, 2010.

4. H. Aydi, Fixed point results for weakly contractive mappings in ordered partial metric spaces,
J. Adv. Math. Stud., 4:1–12, 2011.

5. H. Aydi, Common fixed points for four maps in ordered partial metric spaces, Fasc. Math.,
49:15–31, 2012.

6. H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on
partial metric spaces, Topology Appl., 159:3234–3242, 2012.

Nonlinear Anal. Model. Control, 20(2):159–174



174 M.S. Adamo, C. Vetro

7. H. Aydi, C. Vetro, W. Sintunavarat, P. Kumam, Coincidence and fixed points for contractions
and cyclical contractions in partial metric spaces, Fixed Point Theory Appl., 2012(124):1–18,
2012.

8. V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive
conditions, Fixed Point Theory Appl., 2012(105):1–8, 2012.

9. P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings,
J. Math. Anal. Appl., 192:655–666, 1995.

10. C. Di Bari, P. Vetro, Fixed points for weak ϕ-contractions on partial metric spaces, Interna-
tional Journal of Engineering, Contemporary Mathematics and Sciences, 1:5–13, 2011.

11. C. Di Bari, P. Vetro, Common fixed points for ψ-contractions on partial metric spaces, Hacet.
J. Math. Stat., 42:591–598, 2013.

12. L.S. Dube, S.P. Singh, On multivalued contraction mapping, Bull. Math. Soc. Sci. Math. Répub.
Soc. Roum., Nouv. Sér. 14:307–310, 1970.

13. K. Iseki, Multivalued contraction mappings in complete metric spaces, Rend. Semin. Mat. Univ.
Padova, 53:15–19, 1975.

14. S. Itoh, W. Takahashi, Single valued mappings, multivalued mappings and fixed point
theorems, J. Math. Anal. Appl., 59:514–521, 1977.

15. E. Karapınar, Weak φ-contraction on partial metric spaces, J. Comput. Anal. Appl., 14:206–
210, 2012.

16. P. Kumam, C. Vetro, F. Vetro, Fixed points for weak α-ψ-contractions in partial metric spaces,
Abstr. Appl. Anal., 2013:1–9, Article ID 986028, 2013.

17. S.G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728(1):183–197, 1994.

18. S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30:475–488, 1969.

19. D. Paesano, P. Vetro, Suzuki’s type characterizations of completeness for partial metric spaces
and fixed points for partially ordered metric spaces, Topology Appl., 159:911–920, 2012.
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