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Abstract. We consider Dirichlet boundary value problem for systems of two second-order
differential equations with nonlinear continuous and bounded functions in right-hand sides. We
prove the existence of a nontrivial solution to the problem comparing behaviors of solutions of
auxiliary Cauchy problems at zero solution and at infinity.
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1 Introduction

The system
x′′ = −k2x, y′′ = −`2y (1)

describes two independent harmonic oscillators. Each of equations in (1) is elementary
solvable and the general solution of (1) is known.

A couple of functions (x(t), y(t)), which satisfy (1) when visualized on the xy-plane
can form somewhat complicated figures. These figures are known as Lissajeux ones and
they can be shown using oscilloscopes.

A system
x′′ + k2x = ϕ(x, y), y′′ + `2y = ψ(x, y) (2)

is much more complicate due to possibly nonlinear terms in the right-hand sides. This
system can be interpreted as description of motion of a particle of unit mass in a force
field defined by the vector(

−k2x+ ϕ(x, y),−`2y + ψ(x, y)
)
.

If we are interested in motions which start and end at the origin, we should consider
system (2) together with the boundary conditions

x(0) = y(0) = x(1) = y(1) = 0. (3)
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In this paper, we consider the boundary value problem (2), (3). A vector function
(x(t), y(t)) with C2[0, 1] components is a solution if it turns (2) to identity and satisfies
conditions (3).

Suppose that the following conditions are fulfilled:

(A1) coefficients k, ` are positive and k, ` /∈ {πn: n ∈ N};
(A2) functions ϕ,ψ ∈ C(R2,R) are bounded;
(A3) ϕ(0, 0) = ψ(0, 0) = 0;
(A4) ϕx, ϕy, ψx, ψy ∈ C(R2,R).

Assumption (A1) implies that the homogeneous problem

x′′ + k2x = 0, y′′ + `2y = 0,

x(0) = y(0) = x(1) = y(1) = 0

has only the trivial solution. Then in view of the boundedness of the functions ϕ, ψ (A2),
problem (2), (3) is known to be solvable [5, Chap. 2, §2]. Under the assumption (A3), it
has the trivial solution. Therefore, conditions for the existence of a nontrivial solution of
(2), (3) are desirable. In this paper, we provide the conditions for nontrivial solvability of
(2), (3) exploiting properties of two-dimensional vector fields.

The paper is organized as follows. Section 2 contains basic theorems of the theory of
vector fields and some propositions concerning the vector field induced by solutions of
the linear systems. In Section 3, the homotopy results for vector field of a given nonlinear
system and vector fields of the respective limiting systems at zero and at infinity are
formulated and proved. In the next section, different cases with respect to the coefficients
of the limiting linear systems are considered and a rotation of a vector field (winding num-
ber) is calculated. The main result about nontrivial solvability of boundary value problem
under consideration is formulated in the third subsection of Section 4. In Section 5, an
application of the main result is shown, the corresponding examples are analyzed.

2 Tools

We use the theory of vector fields based on the popular sources [2, 3, 4].

2.1 Vector fields

Given (α, β) ∈ R2, we denote by (x(t;α, β), y(t;α, β)) the solution of (2) such that

x(0) = y(0) = 0, x′(0) = α, y′(0) = β. (4)

Define the mapping

Φ : R2 → R2, Φ(α, β) =
(
x(1;α, β), y(1;α, β)

)
, (5)

which is well defined since the solutions of (2), (4) are uniquely defined by the initial data
(0, 0, α, β) in view of assumption (A4).
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Using Wintner’s theorem [1, p. 3] and seeing the assumption (A2), can be proved that
a solution of (2), (4) (x(t;α, β), y(t;α, β)) is extendable to the whole interval [0, +∞)
and, therefore, to the interval [0, 1] for all (0, 0, α, β).

Definition 1. (See [3, p. 27].) A critical point of the vector field Φ is an isolated point
(α, β) in the domain of Φ, where Φ(α, β) = (0, 0).

Any critical point generates a solution to problem (2), (3). In order to look for nontriv-
ial solutions of (2), (3), we investigate Φ(α, β) and show that, under certain conditions,
there exist (α, β) 6= (0, 0) such that Φ(α, β) = (0, 0).

It is convenient for our purposes to consider the initial conditions (4) in the form

x(0) = y(0) = 0, x′(0) = R cos θ, y′(0) = R sin θ, 0 6 θ < 2π. (6)

The initial values are located on circles CR of radius R, where R varies from zero to
infinity:

CR =
{

(α, β) ∈ R2: α2 + β2 = R2
}
, R ∈ (0,+∞).

In what follows, we make use of Brower degree deg(Φ,CR, (0, 0)), which is identical
with γ(Φ;CR) – the rotation of a vector field Φ on a circle CR. γ(Φ;CR) always is an
integer, it is the number of revolutions made by a vector Φ(α, β) during point (α, β) runs
through a circle CR.

Since our considerations are based on the theory developed in the book [3], we prefer
formulate the results, both auxiliary and main ones, in terms of rotations of the vector
fields.

Theorem 1. (See [3, Thm. 3.1].) Suppose a continuous vector field Φ does not have
critical points in a closed domain Ω. Then a rotation of a vector field γ(Φ;G) on the
boundary G of Ω is zero.

Corollary 1. In conditions of the above theorem, if γ(Φ;G) 6= 0, then there is a critical
point in Ω.

Definition 2. (See [3, p. 33].) Two vector fields Φ and Ψ defined in some closed domain
Ω ⊂ R2 are called homotopic if there exists continuous function F(M ;µ) (M ∈ Ω,
0 6 µ 6 1) satisfying F(M ; 0) = Φ(M) and F(M ; 1) = Ψ(M) for any M ∈ Ω.

Theorem 2. (See [3, Thm. 4.1].) Let G be a closed Jordan curve. If the vector fields Φ
and Ψ are homotopic on G, then the rotations of the vector fields γ(Φ;G) and γ(Ψ ;G) are
equal.

Definition 3. (See [3, p. 36].) A vector field Ψ is the principal part of the vector field Φ
if Φ(M) = Ψ(M) + ω(M), where ‖ω(M)‖ < ‖Ψ(M)‖.

Theorem 3. (See [3, Thm. 4.6].) A vector field Φ(M) is homotopic to its principal part
Ψ(M).
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In order to count a rotation of the vector field Φ, let us transfer the vectors Φ(α, β)
such that their beginning will be at the origin O = (0, 0). Then the ends of these vectors
will depict a closed curve

Φ(CR) = ΓR =
{

(x, y) ∈ R2: x = x(1;R cos θ,R sin θ), y = y(1;R cos θ,R sin θ),

0 6 θ < 2π
}
.

So, a rotation of the vectors Φ(α, β) is the same as a rotation of the radius-vectors of the
points on the curve ΓR, therefore, it is equal to a winding number of a closed curve ΓR
around the origin O

γ(Φ;CR) = n(ΓR,O).

Theorem 4. (See [4, Thm. 2.8.13].) Under a continuous deformation of a vector field
and a closed curve, the winding number does not change as long as curve does not pass
through a critical point of a field.

So, in accordance with the general theory of planar vector fields, any change in
γ(Φ;CR) = n(ΓR,O), when R varies from zero to infinity, means that the vector field Φ
passes through a critical point which is not the origin and this, in turn, means that a non-
trivial solution to problem (2), (3) emerges.

2.2 Linear systems

The vector field Φ(α, β) = (x(1;α, β), y(1;α, β)) for (α, β) ∈ CR can be computed
explicitly for solutions of the linear system

x′′ = ax+ by, y′′ = cx+ dy. (7)

Lemma 1. (See [6, Lemma 3.1].) Let (x(t;R cos θ, R sin θ), y(t;R cos θ, R sin θ)) be
a solution of problem (7), (6), then

x(1;R cos θ, R sin θ) = A1R cos θ +B1R sin θ,

y(1;R cos θ, R sin θ) = A2R cos θ +B2R sin θ.
(8)

Remark. Lemma above was proved in [6] for all particular cases with respect to the
coefficients a, b, c, d.

Lemma 2. (See [6, Prop. 3.1].) IfA1/A2 6= B1/B2, then for 0 6 θ < 2π, Eqs. (8) define
an ellipse K(

A2
2 +B2

2

)
x2 − 2(A1A2 +B1B2)xy +

(
A2

1 +B2
1

)
y2 = (A1B2 −A2B1)2 (9)

with a center at the origin.
If A1/A2 = B1/B2 = q, then for 0 6 θ < 2π, Eqs. (8) define a segment of a straight

line y = x/q when x ∈ [−R
√
A2

1 +B2
1 ;R

√
A2

1 +B2
1 ].
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Remark. Using substitutions ξ = A2x − A1y and η = B2x − B1y, Eq. (9) can be
reduced to the form ξ2 + η2 = (A1B2 −A2B1)2.

Corollary 2. Mapping Φlin : R2 → R2 defined by (5) for the linear system (7) (whatever
the coefficients a, b, c, d be) maps every circle CR centered at the origin into either an
ellipse or a segment of a straight line centered at the origin.

If a closed Jordan curve Γ in vector field Φ is given by

x = x(θ), y = y(θ), 0 6 θ < 2π,

then a winding number of this curve around the origin may be calculated by Poincaré
formula [3], [4]

n(Γ,O) =
1

2π

2π∫
0

x(θ)y′(θ)− y(θ)x′(θ)

x2(θ) + y2(θ)
dθ. (10)

Proposition 1.

γ(Φlin;CR) = n(K,O) =

{
1 if A1B2 −A2B1 > 0,

−1 if A1B2 −A2B1 < 0.

Proof. The proof follows from (8), (10) by direct computation.

3 Comparison of vector fields

We produce our results by comparison of the vector field Φ(α, β) on circles CR of small
and large radiuses R.

3.1 The vector field at zero

We can get information about solutions around the trivial one using the system of equa-
tions of variations

u′′ + k2u = ϕx(0, 0)u+ ϕy(0, 0)v,

v′′ + `2v = ψx(0, 0)u+ ψy(0, 0)v.
(11)

Consider the equations of variations (11) together with the initial conditions on the
unit circle C1

u(0) = v(0) = 0, u′(0) = cos θ, v′(0) = sin θ, 0 6 θ < 2π. (12)

Since we operate with the initial data given on a circle, we will refer to this problem as
a generalized Cauchy problem for Eqs. (11).

We can prove the following auxiliary result about solutions of the Cauchy prob-
lems (2), (6).
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Lemma 3. Let (x(t), y(t)) be a solution of the nonlinear Cauchy problem (2), (6) (θ is
fixed). IfR→ 0, then (x(t), y(t)) tends to (Ru(t), Rv(t)), where (u(t), v(t)) is a solution
of the linear problem (11), (12).

Proof. A solution (x(t), y(t)) of system (2) subject to the initial conditions (6) can be
treated as a solution of the system

x′′ + k2x = ϕx(0, 0)x+ ϕy(0, 0)y + ε1(t, x, y, R),

y′′ + `2y = ψx(0, 0)x+ ψy(0, 0)y + ε2(t, x, y, R),

where ε1 and ε2 tend to zero as R tends to zero uniformly in (t, x, y), t ∈ [0, 1],
x2 + y2 < R2.

Functions ũ(t) = x(t)−Ru(t) and ṽ(t) = y(t)−Rv(t) satisfy

ũ′′ + k2ũ = ϕx(0, 0)ũ+ ϕy(0, 0)ṽ + ε1,

ṽ′′ + `2ṽ = ψx(0, 0)ũ+ ψy(0, 0)ṽ + ε2,
(13)

ũ(0) = ṽ(0) = 0, ũ′(0) = ṽ′(0) = 0. (14)

Since ε1 and ε2 tend to zero as R → 0, the solution (ũ(t), ṽ(t)) of (13), (14) uniformly
tends to the trivial one as a solution of homogeneous linear Cauchy problem. Therefore,
(x(t), y(t))→ (Ru(t), R v(t)) as R→ 0.

Consider a vector field Φ defined by solutions of (2), (6) on a circle CR of fixed
radiusR. Denote by Φ0 a vector field defined by solutions of the system of variations (11)
and consider this field on the unit circle C1 (denote by Φ0|C1

) and on a circle of fixed
radius CR (denote by Φ0|CR

). Compare the fields Φ and Φ0 when radius R tends to zero.

Theorem 5. A vector field Φ0 is a principal part of Φ for sufficiently small R and

γ(Φ;CR) = γ(Φ0;C1).

Proof. Let (x(t; θ), y(t; θ)) = (x(t;R cos θ,R sin θ), y(t;R cos θ,R sin θ)) be a solution
of problem (2), (6), then on a circle of fixed radius R,

Φ =
(
x(1; θ), y(1; θ)

)
.

If (u(t; θ), v(t; θ)) = (u(t; cos θ, sin θ), v(t; cos θ, sin θ)) is a solution of equations
of variations (11), which satisfies normalized initial conditions (12), then on the unit
circle C1,

Φ0|C1 =
(
u(1; θ), v(1; θ)

)
.

Since system (11) is linear and Lemma 1 is valid,

Φ0|CR
=
(
Ru(1; θ), Rv(1; θ)

)
.

For any point M on a circle CR, a vector field Φ can be represented as

Φ(M) = Φ0|CR
(M) + σ1(M).
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Since

‖σ1(M)‖ =
∥∥Φ(M)− Φ0|CR

(M)
∥∥

=

√(
x(1; θ)−Ru(1; θ)

)2
+
(
y(1; θ)−Rv(1; θ)

)2
.

In accordance with Lemma 3, ∥∥σ1(M)
∥∥ −→
R→0

0,

then for sufficiently small R, ‖σ1(M)‖ < ‖Φ0|CR
(M)‖, therefore, Φ0 is a principal

part of Φ and the rotations of the vector fields γ(Φ;CR) and γ(Φ0;CR) are equal (see
Theorems 3 and 2). Notice that γ(Φ0;CR) = γ(Φ0;C1), thus, γ(Φ;CR) = γ(Φ0;C1) for
sufficiently small R.

3.2 The vector field at infinity

A linear system
z′′ + k2z = 0, w′′ + `2w = 0 (15)

describes the behavior of solutions of nonlinear system (2) at infinity.
Consider Eqs. (15) together with the initial conditions on the unit circle C1

z(0) = w(0) = 0, z′(0) = cos θ, w′(0) = sin θ, 0 6 θ < 2π. (16)

Lemma 4. Let (x(t), y(t)) be a solution of the nonlinear Cauchy problem (2), (6) (θ is
fixed). If R → ∞, then (x(t)/R, y(t)/R) tends to (z(t), w(t)), where (z(t), w(t)) is
a solution of the linear problem (15), (16).

Proof. The functions z̃(t) = x(t)/R− z(t) and w̃(t) = y(t)/R− w(t) satisfy

z̃′′ + k2z̃ =
ϕ(x, y)

R
, w̃′′ + `2w̃ =

ψ(x, y)

R
, (17)

z̃(0) = w̃(0) = z̃′(0) = w̃′(0) = 0. (18)

Under assumption (A2), the right-hand sides of the equations in (17) tend to zero as
R → ∞, then solution (z̃(t), w̃(t)) of (17), (18) uniformly tends to the trivial one
as a solution of homogeneous linear Cauchy problem. Therefore, (x(t)/R, y(t)/R) →
(z(t), w(t)) as R→∞.

Denote by Φ∞ a vector field defined by solutions of system (15) and consider this
field on the unit circle C1 (denote by Φ∞|C1 ) and on a circle of fixed radius CR (denote
by Φ∞|CR

). Compare the fields Φ and Φ∞ when radius R tends to infinity.

Theorem 6. A vector field Φ∞ is a principal part of Φ for large enough R and

γ(Φ;CR) = γ(Φ∞;C1).
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Proof. Let (x(t; θ), y(t; θ)) = (x(t;R cos θ,R sin θ), y(t;R cos θ,R sin θ)) be a solution
of problem (2), (6), then on a circle of fixed radius R,

Φ =
(
x(1; θ), y(1; θ)

)
.

If (z(t; θ), w(t; θ)) = (z(t; cos θ, sin θ), w(t; cos θ, sin θ)) is a solution of system (15),
which satisfies normalized initial conditions (16), then on the unit circle C1,

Φ∞|C1
=
(
z(1; θ), w(1; θ)

)
.

Since system (15) is linear and Lemma 1 is valid,

Φ∞|CR
=
(
Rz(1; θ), Rw(1; θ)

)
.

For any point M on a circle CR, a vector field Φ can be represented as

Φ(M) = Φ∞|CR
(M) + σ2(M).

Since

‖σ2(M)‖ =
∥∥Φ(M)− Φ∞|CR

(M)
∥∥

=

√(
x(1; θ)−Rz(1; θ)

)2
+
(
y(1; θ)−Rw(1; θ)

)2
.

In accordance with Lemma 4, a solution (x(t), y(t)) tends to (Rz(t), Rw(t)) as R tends
to infinity, thus, ∥∥σ2(M)

∥∥ −→
R→∞

0

and, for large enough R, ‖σ2(M)‖ < ‖Φ∞|CR
(M)‖, therefore, Φ∞ is a principal part

of Φ and the rotations of the vector fields γ(Φ;CR) and γ(Φ∞;CR) are equal (see Theo-
rems 3 and 2). Notice that γ(Φ∞;CR) = γ(Φ∞;C1), thus, γ(Φ;CR) = γ(Φ∞;C1) for
large enough R.

4 Investigation of limiting linear systems

We have two limiting linear systems, namely, system (11), which describes the behavior
of solutions of nonlinear system (2) near the trivial solution and uncoupled linear sys-
tem (15), which describes the behavior of solutions of (2) at infinity.

4.1 Investigation of uncoupled linear system at infinity

The vector field Φ∞ on the unit circle C1 can be computed explicitly for solutions of
system (15).

Proposition 2. Let (z(t; θ), w(t; θ)) be a solution of problem (15), (16), then

z(1; θ) =
sin k

k
cos θ, w(1; θ) =

sin `

`
sin θ. (19)
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For 0 6 θ < 2π, Eqs. (19) define a closed curve Γ∞, which is an ellipse

Γ∞:
k2

sin2 k
z2 +

`2

sin2 `
w2 = 1.

Proposition 3.

γ(Φ∞;C1) = n(Γ∞,O) =

{
1 if sin k sin ` > 0,

−1 if sin k sin ` < 0.

Proof. The proof follows from (19), (10) by direct computation.

4.2 Investigation of limiting linear system at zero

The limiting system at zero is given by (11) and after regrouping the terms it looks

u′′ =
(
ϕx(0, 0)− k2

)
u+ ϕy(0, 0)v,

v′′ = ψx(0, 0)u+ (ψy(0, 0)− `2)v,

or
u′′ = au+ bv, v′′ = cu+ dv, (20)

where

a = ϕx(0, 0)− k2, b = ϕy(0, 0), (21)
c = ψx(0, 0), d = ψy(0, 0)− `2.

The characteristic equation for (20) is

λ4 − (a+ d)λ2 + (ad− bc) = 0. (22)

A form of solution of the system (20) and therefore a vector field Φ0 depends on values
of a, b, c, d, but in all cases the following results are valid.

Proposition 4. Let u(t; θ), v(t; θ)) be a solution of system (20), which satisfy (12), then

u(1; θ) = A1 cos θ +B1 sin θ,

v(1; θ) = A2 cos θ +B2 sin θ.
(23)

If A1/A2 6= B1/B2, then for 0 6 θ < 2π, Eqs. (23) define an ellipse Γ0 = Φ0(C1)
centered at the origin and

γ(Φ0; C1) = n(Γ0,O) =

{
1 if ∆ > 0,

−1 if ∆ < 0,

where ∆ = A1B2 −A2B1.

Calculations of a winding number of an ellipse Γ0 around the origin (or calculations
of a rotation of a vector field Φ0 on the unit circle C1) in particular cases was conducted
in the work [6]. Therefore, we omit the proofs for the cases below and provide only
formulations.

Nonlinear Anal. Model. Control, 20(2):175–189
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Case 1. If the conditions

(C1) (a− d)2 + 4bc > 0, ad− bc > 0, a+ d < 0

hold, then the characteristic equation (22) has two pairs of conjugate purely imaginary
roots

λ1,2 = ±m1i, m1 =

√
−a− d+

√
(a− d)2 + 4bc

2
,

λ3,4 = ±m2i, m2 =

√
−a− d−

√
(a− d)2 + 4bc

2
.

Proposition 5. If conditions (C1) are fulfilled, then

γ(Φ0;C1) = n(Γ0,O) =

{
1 if sinm1 sinm2 > 0,

−1 if sinm1 sinm2 < 0.

Case 2. If the conditions

(C2) (a− d)2 + 4bc > 0, ad− bc < 0

hold, then the characteristic equation (22) has a pair of opposite real roots and a pair of
conjugate purely imaginary roots

λ1,2 = ±s, s =

√
a+ d+

√
(a− d)2 + 4bc

2
,

λ3,4 = ±mi, m =

√
−a− d+

√
(a− d)2 + 4bc

2
.

Proposition 6. If conditions (C2) are fulfilled, then

γ(Φ0;C1) = n(Γ0,O) =

{
1 if sinm > 0,

−1 if sinm < 0.

Case 3. If the conditions

(C3) ad− bc = 0, a+ d < 0

hold, then the characteristic equation (22) has a pair of conjugate purely imaginary roots
and a double zero

λ1,2 = 0, λ3,4 = ±ni, n =
√
−(a+ d).

Proposition 7. If conditions (C3) are fulfilled, then

γ(Φ0; C1) = n(Γ0,O) =

{
1 if sinn > 0,

−1 if sinn < 0.
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Cases 4–9. If the conditions

(C4) (a− d)2 + 4bc > 0, ad− bc > 0, a+ d > 0

hold, then the characteristic equation (22) has two pairs of opposite real roots

λ1,2 = ±s1, s1 =

√
a+ d+

√
(a− d)2 + 4bc

2
,

λ3,4 = ±s2, s2 =

√
a+ d−

√
(a− d)2 + 4bc

2
.

If the conditions

(C5) (a− d)2 + 4bc = 0, a+ d > 0

hold, then the characteristic equation (22) has multiple real roots

λ1,2 =

√
a+ d

2
= r, λ3,4 = −

√
a+ d

2
= −r.

If the conditions

(C6) (a− d)2 + 4bc = 0, a+ d < 0

hold, then the characteristic equation (23) has multiple imaginary roots

λ1,2 = pi, λ3,4 = −pi, p =

√
−a+ d

2
.

If the condition

(C7) (a− d)2 + 4bc < 0

holds, then the characteristic equation (22) has the complex roots

λ1,2,3,4 = ±δ ± µi, where δ 6= 0, µ2 − δ2 = −a+ d

2
.

If the conditions

(C8) ad− bc = 0, a+ d > 0

hold, then the characteristic equation (22) has a pair of opposite real roots and a double
zero

λ1,2 = 0, λ3,4 = ±q, q =
√
a+ d.

If the conditions

(C9) ad− bc = 0, a+ d = 0

hold, then only zero is multiple root of the characteristic equation (22)

λ1,2,3,4 = 0.
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Proposition 8. If one of conditions (C4)–(C9) is fulfilled, then

γ(Φ0;C1) = n(Γ0,O) = 1.

4.3 Main result

It follows from the above considerations that the following result is true.

Theorem 7. Let conditions (A1) to (A4) hold. Let Φ0 and Φ∞ are vector fields defined
by solutions of the linear problems (11), (12) and (15), (16), respectively. If

γ(Φ0;C1)γ(Φ∞;C1) = −1,

then problem (2), (3) has at least one nontrivial solution.

For any of the above cases, an appropriate theorem may be formulated about the
existence of a nontrivial solution of the boundary value problem (2), (3). For instance, the
following theorem is valid.

Theorem 8. Let conditions (A1) to (A4) and (C1) hold. If sin k sin ` sinm1 sinm2 < 0,
where ±m1i, ±m2i (m1,m2 > 0) are the roots of the characteristic equation for the
linear system (20) with (21), then the nonlinear problem (2), (3) has at least one nontrivial
solution.

5 Examples

Example 1. Consider the problem

x′′ + 50x = 16 sin(y + 3x2),

y′′ + 22y = −12 arctanx,

x(0) = y(0) = x(1) = y(1) = 0.

(24)

In this case, k2 = 50, `2 = 22, ϕ = 16 sin(y + 3x2) and ψ = −12 arctanx, condi-
tions (A1) to (A4) hold.

A behavior of solutions of given system at infinity may be described by solutions of
the linear problem

z′′ + 50z = 0, w′′ + 22w = 0.

Since sin k sin ` = sin
√

50 sin
√

22 ≈ −0.709 < 0, then γ(Φ∞;C1) = −1.
Since ϕx(0, 0) = 0, ϕy(0, 0) = 16, ψx(0, 0) = −12, ψy(0, 0) = 0, then the linear

system
u′′ = −50u+ 16v, v′′ = −12u− 22v (25)

describes a behavior of solutions of system in (24) near the trivial solution. The coef-
ficients of system (25) satisfy conditions (C1) (see Case 1). Since sinm1 sinm2 =
sin
√

38 sin
√

34 ≈ 0.052 > 0, γ(Φ0;C1) = 1.
Therefore, applying Theorem 8, there exists at least one nontrivial solution of the

given problem (24). We have computed it. Fig. 1a illustrates a solution of (24) with initial
data x′(0) = 3.6834, y′(0) = 1.6284, Fig. 1b shows phase portrait of this solution.
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(a) (b)

Fig. 1. Nontrivial solution of problem (24).

Example 2. For the problem

x′′ +
π2

4
x = 3 arctanx+ arctan y,

y′′ +
9π2

4
y = sin y,

x(0) = y(0) = x(1) = y(1) = 0,

(26)

the limiting linear systems, which describe a behavior of solutions of system in (26) at
infinity and near the trivial solution, are following:{

z′′ + π2

4 z = 0,

w′′ + 9π2

4 w = 0,

{
u′′ = (3− π2

4 )u+ v,

v′′ = (1− 9π2

4 )v,

We obtain that sin k sin ` = sin(π/2) sin(3π/2) = −1 < 0, then γ(Φ∞;C1) = −1.
One has that a = 3− π2/4, b = 1, c = 0, d = 1− 9π2/4, thus, conditions (C2) hold.

Since sinm = sin
√
−1 + 9π2/4 ≈ −0.9943 < 0, γ(Φ0;C1) = −1 and, therefore, no

conclusion can be made about solvability of problem (26).
In fact, calculations show that the first and the second zeros t1(α) and t2(α) of

solutions y(t;α) of the Cauchy problems

y′′ +
9π2

4
y = sin y, y(0) = 0, y′(0) = α

satisfy the inequalities t1(α) < 1 and t2(α) > 1 for all α 6= 0 and never pass through
t = 1. Therefore, no nontrivial solutions of problem (26).

Example 3. Consider the problem

x′′ + (π + 0.1)2x = arctan(x+ y2),

y′′ + 49y = 10 arctan y,

x(0) = y(0) = 0 = x(1) = y(1)

(27)
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(a) (b)

(c)

Fig. 2. Nontrivial solutions of problem (27): (a) x′(0) = −5.27309, y′(0) = −2.88183; (b) x′(0) =
−1.33054, y′(0) = −2.88182.

and two corresponding limiting linear systems at infinity and at zero, respectively, both
systems are uncoupled:{

z′′ + (π + 0.1)2z = 0,

w′′ + 49w = 0,

{
u′′ + ((π + 0.1)2 − 1)u = 0,

v′′ + 39v = 0.

The vector fields Φ∞ and Φ0 induced by solutions of the linear systems above have
the same rotation, indeed sin(π + 0.1) sin

√
49 ≈ −0.0656, thus, γ(Φ∞;C1) = −1;

sin
√

(π + 0.1)2 − 1 sin
√

39 ≈ −0.0022, thus, γ(Φ0;C1) = −1.
Theorem 7 establishes the sufficient condition for nontrivial solvability of the prob-

lem. In the case of a given problem (27), this condition is not fulfilled, but we have
computed two different solutions of (27). In addition, the initial values of y for these
solutions differ little from each other. Their graphs and phase portraits are shown in
Fig. 2.

6 Conclusions

Solutions of systems of the type (2) define mappings Φ : R2 → R2. These mappings map
the circles CR of initial values into closed curves in x(1)y(1)-plane. The image of circle
CR is simply ellipse ΓR in case system (2) is linear. A winding number of an ellipse ΓR
around the origin O is equal to 1 or −1.
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A behavior of solutions of nonlinear system (2) near the trivial solution and at in-
finity can be described by two limiting linear systems (11) and (15), respectively. Under
some additional conditions with respect to the coefficients of limiting linear systems, the
winding numbers of ellipses Γ0 and Γ∞ are different. This means that the boundary value
problem (2), (3) has at least one nontrivial solution.

In a case the winding numbers of Γ0 and Γ∞ around the origin are equal, no conclu-
sion can be made about nontrivial solvability of problem (2), (3), further investigation is
needed.
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