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Abstract. We propose necessary and sufficient conditions for a distribution (generalized function) f
of several variables to be positive definite. For this purpose, certain analytic extensions of f to
tubular domains in complex space Cn are studied. The main result is given in terms of the Cauchy
transform and completely monotonic functions.
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1 Introduction

A complex-valued function f on Rn is said to be positive definite if

n∑
j,k=1

f(xj − xk)cjck > 0 (1)

for any finite sets x1, . . . , xn ∈ Rn and for any c1, . . . , cn ∈ C. The Bochner theorem
(see, e.g., [5, p. 293] and [2, p. 58]) states that continuous f : Rn → C is positive definite
if and only if it is the Fourier transform of a positive finite measure µ on Rn, i.e.,

f(x) = µ̂(x) =

∫
Rn

ei(x,t) dµ(t),

x ∈ Rn. Here and later, for z and λ in Rn or in Cn, we write (z, λ) = z1λ1 + · · ·+ znλn.
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Distributional boundary values of analytic functions 211

Definition (1) cannot carry over to distributions (to generalized functions). Therefore,
it is convenient to replace (1) by∫

Rn

f(x)(ϕ ∗ ϕ?)(x) dx > 0, ϕ?(x) := ϕ(−x), (2)

where ϕ runs over L1(Rn) or ϕ runs over all continuous functions on Rn with compact
support. Here u ∗ v denotes the convolution

u ∗ v(x) =

∫
Rn

u(x− t)v(t) dt.

If f is continuous, then (2) is equivalent to (1) (see, e.g., [19, p. 420]). Property (2) can
be taken as a definition for positive definite distributions. Let us recall some notion. We
shall follow [21].

The Schwartz space S(Rn) consists of infinitely differentiable functions ω such that

sup
x∈Rn, |u|6k

∣∣(1 + ‖x‖2
)s
Du
xω(x)

∣∣ <∞
for all k, s ∈ N. Here u is a non-negative integer multi-index, |u| =

∑n
j=1 uj ,

‖x‖2 =
√
x21 + · · ·+ x2n,

and Du
x = Du1

x1
· · ·Dun

xn
, where

Dxj
=

∂

∂xj
.

The set of continuous linear functionals on S(Rn) is denoted by S′(Rn). Each f ∈
S′(Rn) is called a tempered distribution and the action of f on a test function ω ∈ S(Rn)
is written as (f, ω).

Let D(Rn) be the subspace of S(Rn) consisting of functions with a compact support.
The topology on D(Rn) is introduced as usual (see [21]). The elements of D′(Rn) are
called distributions. Note that D(Rn) ⊂ S(Rn) and S′(Rn) ⊂ D′(Rn) are true in the
sense of topological spaces.

A distribution f ∈ D′(Rn) is said to be positive definite if

(f, ϕ ∗ ϕ?) > 0 (3)

for all ϕ ∈ D(Rn). The Bochner–Schwartz theorem [21, p. 125] states that f ∈ D′(Rn)
is positive definite if and only if f is the Fourier transform of a non-negative tempered
measure on Rn. Recall that a non-negative measure η on Rn is said to be tempered if
there exists α, 0 6 α <∞ such that∫

Rn

(
1 + ‖x‖22

)−α
dη(x) <∞.
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212 S. Norvidas

There are many characterizations of positive definite functions (see, e.g., [8, pp. 70–
83]). As far as we known, it is perhaps surprising that there are almost no such results
for positive definite distributions. We mention only [17], where attention has been paid
to positive definite measures on R, i.e., to distributions of order zero, with applications to
a Volterra equation. See also [4] and [7].

Tillmann [20] proved that any f ∈ S′(R) with a compact support has a decomposition
into a positive and a negative distributional frequency parts

f = f(+) − f(−). (4)

Here f(+) is the boundary value (on R), in the sense of convergence in S′(R), of certain
g(+) that is analytic in the open upper half-plane C(+). Similarly, f(−) is the boundary
value of g(−) that is analytic in C(−) = −C(+). Note that (4) is a distributional counter-
part of the first Plemelj formula (see [12, p. 358], [1, pp. 155–157], and [13, pp. 4–5]).
Then {g(−), g(+)} defines a sectionally analytic function on C \R. It is called an analytic
representation of f ∈ S′(R). Note that an analytic representation of f is not unique and
differs from other representations by at most an entire function.

Let f ∈ S′(R). If, in addition, f has a compact support, then

K(f)(z) =
1

2πi

(
ft,

1

t− z

)
:=

1

2πi

(
f(·), 1

· − z

)
(5)

is well defined for all z ∈ C \ R. The function K(f)(z) is called the Cauchy transform
of f and gives an analytic representations for f (see, e.g., [3, p. 73]). Unfortunately,K(f)
does not exist, in general, for all f ∈ S′(R) (see [1, p. 156]). Even so, any f ∈ S′(R) has
a finite order %f (see [21, p. 77]). Therefore, if m > %f , then the following generalized
Cauchy transform (f, (z − t)−(m+1)) is well defined. We derived in [9] necessary and
sufficient conditions for f ∈ S′(R) to be a positive definite distribution in terms of this
generalized transform and completely monotonic functions. Let us recall that a function
θ : (a, b) → R, −∞ 6 a < b 6 ∞, is said to be completely monotonic if it is infinitely
differentiable and for its nth derivative functions θ(n)

(−1)nθ(n)(y) > 0

for each y ∈ (a, b) and all n = 0, 1, 2, . . . . Further, θ(y) is said to be absolutely monotonic
on (a, b) if a θ(−y) is completely monotonic on (−b,−a).

Theorem 1. (See [9, Thm. 1.3].) Let f ∈ S′(R) and let n be an integer such that 2n > %f .
Suppose a1, a2 ∈ R and a1 6= a2. Let

K̃(f, j)(z) = (−1)n
i

π

(
eiajtft,

1

(z − t)2n+1

)
(6)

for z ∈ C \ R and j = 1, 2. Then f is positive definite if and only if :

(i) y → K̃(f, j)(iy), j = 1, 2, are completely monotonic functions for y ∈ (0,∞);
(ii) y → −K̃(f, j)(iy), j = 1, 2, are absolutely monotonic functions for y ∈

(−∞, 0).
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Distributional boundary values of analytic functions 213

Although the Cauchy kernel (t − z)−1 /∈ S(R), it belongs to another Schwartz test
functions spaces DLp(R) for each 1 < p 6 ∞ (we give a precise definition later).
Thus, the usual Cauchy representation (5) seems possible for all f ∈ D′Lp

(R) ⊂ S′(R)
(see, e.g., [10, p. 457]). For this reason, we investigate in this paper positive definite
distributions in D′Lp

(Rn).
Let DLp(Rn), 1 6 p 6 ∞ (see [15, pp. 199–205]), denote the space of complex-

valued functions ϕ on Rn such thatDu
xϕ(x) ∈ Lp(Rn) for all non-negative integer multi-

indexes u. Obviously,
D
(
Rn
)
⊂ S

(
Rn
)
⊂ DLp

(
Rn
)
. (7)

The topology of DLp(Rn) is given in terms of countably family of seminorms

‖ϕ‖p,u =
∥∥Du

xϕ(x)
∥∥
Lp(Rn)

. (8)

Since ‖ · ‖p,0 is a norm, it follows that the family (8) defines on DLp(Rn) a sequentially
complete locally convex topology.

Suppose 1 < p, q <∞, 1/p+1/q = 1. According to Schwartz [15, p. 200], we define
D′Lp(Rn) as the dual space of DLq (Rn). Note that if ϕ ∈ DLp(Rn) and 1 6 p < ∞,
then

lim
x→∞

Du
xϕ(x) = 0 (9)

for all u (see [15, p. 200]). Hence, convergence in D(Rn) or in S(Rn) implies conver-
gence inDLp(Rn), 1 6 p <∞. This means that (7) is also true in the sense of topological
spaces. Hence, any f ∈ D′Lp(Rn) can be identified with a distribution in S′(Rn). Thus,
for any 1 < p <∞, we get

D′Lp

(
Rn
)
⊂ S′

(
Rn
)
⊂ D′

(
Rn
)
. (10)

We wish to study the Cauchy transform of f ∈ D′Lp(Rn) as an analytic representation
of f . For this purpose, let us define at first the Cauchy kernel of several variables. This
definition is related to a notion of convex cone. A set Γ ⊂ Rn is said to be a cone (with
vertex at zero) if x ∈ Γ implies αx ∈ Γ for all α > 0. The dual cone of Γ is defined by

Γ ∗ =
{
t ∈ Rn: (x, t) > 0 for all x ∈ Γ

}
.

Γ ∗ is always closed convex cone and (Γ ∗)∗ = chΓ , where chΓ denotes the convex hull
of Γ . We say that Γ is salient (acute) if chΓ does not contain any line (one-dimension
subspace of Rn). This is equivalent to the statement that the interior set of Γ ∗ is nonempty.
A cone Γ is said to be regular if Γ is an open salient convex cone.

Let {Λj}m1 be a family of regular cones. We say that {Λj}m1 covers Rn exactly if

m⋃
j=1

Λj = Rn (11)

and the Lebesgue measure of Λi ∩ Λj is equal to zero whenever i 6= j. Any ω =
(ω1, . . . , ωn) ∈ Rn whose entries ωk are −1 or 1 defines the cone Qω = {x ∈ Rn:

Nonlinear Anal. Model. Control, 20(2):210–225



214 S. Norvidas

xkωk > 0 for k = 1, . . . , n}. This cone Qω is called a quadrant in Rn and the collec-
tion of all 2n cones {Qω}ω covers Rn exactly. Note that Q(1,...,1) is called the positive
quadrant in Rn and is denoted by Rn+.

For an open cone Γ , the set TΓ = Rn+ iΓ = {z = x+ iy: x ∈ Rn, y ∈ Γ} is called
a tube domain in Cn. If Γ is regular, then the Cauchy kernel of Γ (or with respect to Γ )
is defined as

KΓ (z) =

∫
Γ∗

ei(z,t) dt, z ∈ TΓ . (12)

KΓ is analytic on TΓ [21, p. 143].
If f is a distribution on Rn, then

KΓ (f)(z) =
1

(2π)n
(
f(·),KΓ (z − ·)

)
=

1

(2π)n
(
ft,KΓ (z − t)

)
, z ∈ TΓ , (13)

is called the Cauchy (or Cauchy–Bochner) transform of f . For example, if n = 1, then
there are only two regular cones (−∞, 0) and (0,∞) in R. If Γ = (0,∞), then we see
that (13) coincides with the usual definition of the Cauchy transform (5).

The notion of completely monotonic functions on (0,∞) generalizes also to the case
of several variables. Note that cones are the natural domain for these functions. Let Γ be
a regular cone in Rn. The directional derivation and the directional difference of a function
θ : Γ → C along a = (a1, . . . , an) ∈ Γ are defined as follows: Daθ(y) = (a1Dy1 +· · ·+
anDyn)θ(y), and ∆aθ(y) = θ(y + a) − θ(y), respectively. Now θ is called completely
monotonic on Γ if

(−1)k∆γ1∆γ2 . . .∆γkθ(y) > 0, k = 0, 1, . . . ,

for each y ∈ Γ and all γ1, . . . , γk ∈ Γ . These conditions are equivalent to that θ ∈
C∞(Γ ) and

(−1)kDγ1Dγ2 . . . Dγkθ(y) > 0, y ∈ Γ, γ1, . . . , γk ∈ Γ, k = 0, 1, . . . (14)

(see [6, p. 172]).
Now we are able to describe positive definite distributions f ∈ D′Lp(Rn) in terms of

their Cauchy transform KΓ (f). The following theorem is the main result of the present
paper. To simplify the proofs, we will do here the case D′L2(Rn).

Theorem 2. Let f ∈ D′L2(Rn). Suppose that {Γj}m1 is a family of regular cones such
that {Γ ∗j }m1 covers Rn exactly. Then f is positive definite if and only if y → KΓj

(f)(iy),
y ∈ Γj , is completely monotonic on Γj for all j = 1, 2, . . . ,m.

We conclude this section with a few examples of positive definite distributions in
D′Lp(Rn). As usual, a function υ (or a measure µ) is identified with a distribution in
D′Lp(Rn) by the formula

(υ, ϕ) =

∫
Rn

υ(x)ϕ(x) dx

(
or (µ, ϕ) =

∫
Rn

ϕ(x) dµ(x)

)
, ϕ ∈ DLp

(
Rn
)
. (15)
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Now obviously, Lp(Rn) ⊂ D′Lp(Rn). Then any positive definite function υ ∈ Lp(Rn)
defines a regular positive definite distribution in D′Lp(Rn). Further, there exist measures
µ ∈ D′Lp(Rn), e.g., distributions of order zero, such that µ are positive definite. Indeed,
using (9), we see that any finite measure µ on Rn with non-negative Fourier transform µ̂
defines by (15) a positive definite distribution in D′Lp(Rn) for each 1 < p < ∞. For
example, let µ be any finite discrete non-negative symmetric measure on Rn such that

µ
(
{0}
)
> µ

(
Rn \ {0}

)
.

Obviously, µ̂ > 0 on Rn, so µ is positive definite. Finally, appropriate distributional
derivatives of µ give explicit examples of positive definite distributions in D′L2(Rn) of
any finite order.

2 Preliminaries and proofs

Let us start with some definitions and lemmas. We define the inverse Fourier transform
of a finite measure µ as

µ̌(ξ) =
1

(2π)n

∫
Rn

e−i(ξ,t) dµ(t). (16)

In the case if µ has a density ϕ in L1(Rn) or in S(Rn), then the inverse transform is
defined similarly. In addition, the inversion formula ˆ̌ϕ = ϕ holds for suitable ϕ.

We define the Fourier transform F [f ] of f ∈ S′(Rn) by(
F [f ], ψ

)
= (f, ψ̂), (17)

where ψ is any element of S(Rn). We can modify slightly definition (3) in the following
manner:

Lemma 1. f ∈ S′(Rn) is positive definite if and only if

(f, ω) > 0 (18)

for every positive definite ω ∈ S(Rn).

Proof. If both f ∈ S′(Rn) and ω ∈ S(Rn) are positive definite, then using the Bochner
theorem in S(Rn) and in S′(Rn), respectively, we get thatF [f ] is a nonnegative tempered
measure and that ω̌ is a nonnegative function in S(Rn). Hence, (F [f ], ω̌) may be defined
as usual integral (15). Then (17) implies that (f, ω) = (F [f ], ω̌) > 0. On the other hand,
if ϕ ∈ S(Rn), then the Fourier transform of ϕ ∗ ϕ? is equal to |ϕ̂|2. Hence, ϕ ∗ ϕ? is
positive definite. If now f ∈ S′(Rn) satisfies (18) for any positive definite ω ∈ S(Rn),
then we can set ω = ϕ ∗ ϕ?. Thus, (3) holds.

Remark 1. Since D(Rn) is dense in S(Rn), it follows that f ∈ S′(Rn) is positive
definite if and only if (18) is fulfilled for all ω ∈ D(Rn).

Nonlinear Anal. Model. Control, 20(2):210–225
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Lemma 2. Let ϕ ∈ DL2(Rn). If ϕ is positive definite, then there exists a sequence (ψk)
of positive definite ψk ∈ S(Rn), k = 1, 2, . . . , such that limk→∞ ψk = ϕ in DL2(Rn).

Proof. Take any non-negative σ ∈ S(Rn) supported on [−1, 1]n ⊂ Rn and such that∫
Rn

σ(x) dx = 1. (19)

For a > 0, we define σa(x) to be anσ(ax). Then σ̂a is positive definite. Set

ψk(x) = σ̂k(x)ϕ(x), (20)

k = 1, 2, . . . . The product of positive definite functions is positive definite. Hence, ψk is
positive definite. Using that σ̂a ∈ S(Rn) and that ϕ ∈ DL2(Rn) satisfies (9), we see that
ψk ∈ S(Rn), k = 1, 2, . . . .

Now we shall show that limk→∞ ψk = ϕ in DL2(Rn). Recall that (ψk), ψk ∈
DL2(Rn), converges to ϕ ∈ DL2(Rn) as k →∞ if

lim
k→∞

∥∥Du
x(ψk − ϕ)

∥∥
L2(Rn)

= 0 (21)

for every nonnegative multi-index u ∈ Rn. To do this, first we will estimate the function
1− σ̂k(x) and its derivatives.

Let ε > 0. The definition of σk, conjugate with (19), implies that

1− σ̂k(x) = σ̂(0)− σ̂
(
x

k

)
.

Since σ̂ is a characteristic function, it follows that∣∣1− σ̂k(x)
∣∣ 6 2 for all x ∈ Rn. (22)

Moreover, for any 0 < M <∞, there exists 0 < K = K(M, ε) <∞ such that∣∣1− σ̂k(x)
∣∣ 6 ε for all k > K, x ∈ Rn, ‖x‖2 6M. (23)

Let s be a non-negative multi-index such that |s| > 1. Then by (19), we have

∣∣Ds
x

(
1− σ̂k(x)

)∣∣ =

∣∣∣∣∣Ds
x

∫
Rn

σ(t)ei(x,t)/k dt

∣∣∣∣∣ 6 1

k|s|
6

1

k
for all x ∈ Rn. (24)

If u ∈ Rn is an arbitrary non-negative multi-index, then it is easily seen that there
exists a finite collection V = {v} of not necessarily different nonnegative multi-indexes v
such that

Du
x

(
ϕ(x)−ψk(x)

)
= Du

x

(
ϕ(x)

[
1−σ̂k(x)

])
=
(
1−σ̂k(x)

)
Du
xϕ(x) +

∑
v∈V
|u−v|>0

(
Dv
xϕ(x)Du−v

x

[
1−σ̂k(x)

])
. (25)
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Since ϕ ∈ DL2(Rn), we have that for ε > 0, there exists 0 < M = M(ε) <∞ such that( ∫
‖x‖2>M

∣∣Ds
xϕ(x)

∣∣2 dx

)1/2
< ε for all s ∈ {u, V }. (26)

Now fix any multi-index u ∈ Rn and any ε > 0. Then take 0 < M = M(ε) < ∞
so that (26) holds. Finally, choose 0 < K = K(M, ε) <∞ such that K > 1/ε and (23)
holds. If k > K, then combining (25) with (22), (23), (24), and (26), we have∥∥Du

x(ϕ− ψk)
∥∥
L2(Rn)

6
∥∥(1− σ̂k)Du

xϕ
∥∥
L2(Rn)

+
∑
v∈V
|u−v|>0

∥∥Dv
xϕD

u−v
x [1− σ̂k]

∥∥
L2(Rn)

6

( ∫
‖x‖26M

∣∣(1− σ̂k)
∣∣2∣∣Du

xϕ(x)
∣∣2 dx

)1/2
+

( ∫
‖x‖2>M

∣∣(1− σ̂k)
∣∣2∣∣Du

xϕ(x)
∣∣2 dx

)1/2

+
1

k

∑
v∈V
|u−v|>0

∥∥Dv
xϕ
∥∥
L2(Rn)

6 ε

(∥∥Du
xϕ
∥∥
L2(Rn)

+ 2 +
∑
v∈V
|u−v|>0

∥∥Dv
xϕ
∥∥
L2(Rn)

)
. (27)

Since V is finite and depends only on v, (27) implies that ‖Du
x(ϕ − ψk)‖L2(Rn) 6

Const(u)ε for all k > K. This proves (21) and Lemma 2.

We recall the definition of the Laplace transform. Suppose that Λ is a closed convex
salient cone in Rn. Let S′(Λ) denote the set of all f ∈ S′(Rn) supported on Λ. Then
S′(Λ) is simultaneously a closed subspace of S′(Rn) and a commutative convolution
algebra [21, p. 64]. For y ∈ Rn, the Laplace transform of F ∈ S′(Λ) is defined by

Ly(F )(x) = F
[
F (·)e−(y,·)

]
(x) = Fξ

[
F (ξ)e−(y,ξ)

]
(x), x ∈ Rn. (28)

If y ∈ intΛ∗, then F (·)e−(y,·) belongs to S′(Rn) (see, e.g., [21, p. 127]). Hence,
Ly(F )(x) is well defined for all y ∈ intΛ∗. Further, Ly(F )(x) is analytic on the tube
domain TintΛ∗ as a function of z = x+ iy, and

∂|u|

∂zu1
1 . . . ∂zun

n
Ly(F )(x) = i|u|Fξ

[(
ξu1
1 · · · ξun

n

)
F (ξ)e−(y,ξ)

]
(x) (29)

for any non-negative integer multi-index u = (u1, . . . , un) [21, p. 128].
Now we briefly touch upon the problem whether the Cauchy transform is well defined

on D′L2(Rn). The following simple lemma contains a precise statement. For complete-
ness, we also give its proof.

Nonlinear Anal. Model. Control, 20(2):210–225



218 S. Norvidas

Lemma 3. Let Γ be a regular cone in Rn. If f ∈ D′L2(Rn), then the Cauchy trans-
form (28) is well defined on TΓ . Moreover, it is analytic on TΓ and

∂|u|

∂zu1
1 . . . ∂zun

n
KΓ (f)(z) =

1

(2π)n

(
f(·), ∂|u|

∂zu1
1 . . . ∂zun

n
KΓ (z − ·)

)
, z ∈ TΓ , (30)

for each non-negative multi-index u = (u1, . . . , un).

Proof. Fix any y ∈ Γ and set

Ey,u(ξ) = ξu1 · · · ξune−(y,ξ), (31)

ξ ∈ Γ ∗. Since Γ is open, then it is easy to see that there exists δ = δ(y) > 0 such that
(y, ξ) > δ‖ξ‖2 for all ξ ∈ Γ ∗ (see also [18, p. 104]). Then

∣∣Ey,u(ξ)
∣∣ 6 |ξ1|u1 · · · |ξ|une−δ‖ξ‖2 6

n∏
k=1

(
|ξk|uke−δ|ξk|

)
for ξ ∈ Γ ∗. Let χΓ∗ denote the indicator function of Γ ∗. Then we see that

Ey,u(ξ)χΓ∗(ξ) ∈ Ls(Rn) for all 1 6 s 6∞. (32)

Clearly, χΓ∗ ∈ S′(Rn). Hence, if we take in (28) F = χΓ∗ , then have for any t ∈ Rn
that

Ly(χΓ∗)(x− t) = Fξ
[
χΓ∗(ξ)e−(y,ξ)

]
(x− t) = Fξ

[
χΓ∗(ξ)Ey,0(ξ)

]
(x− t)

=

∫
Rn

χΓ∗(ξ)Ey,0(ξ)ei(x−t) dξ =

∫
Γ∗

ei(z−t) dξ = KΓ (z − t), (33)

where z = x + iy ∈ TΓ . Now (32), together with the Plancherel theorem in L2(Rn),
implies that for any z ∈ TΓ , the function t→ KΓ (z − t) belongs to L2(Rn). Using (31)
and (32) with a general non-negative multi-index u = (u1, . . . , un), we find in a similar
way that

Du
tKΓ (z − t) = (−i)|u|

∫
Rn

χΓ∗(ξ)Ey,u(ξ)ei(x−t) dξ,

z = x + iy ∈ TΓ . Hence, again by (32), we obtain that t → Du
tKΓ (z − t)) belongs to

L2(Rn) for all non-negative multi-indexes u, e.g., t → KΓ (z − t) belongs to DL2(Rn).
Thus, (13) is well defined on D′L2(Rn) for all z ∈ TΓ . Finally, using (29) and properties
(given above) of the Laplace transform (28), we have that KΓ (f)(z) is analytic on TΓ
and (30) is fulfilled. This finishes the proof of Lemma 3.

We are now in a position to prove the main theorem. For the sake of clarity, we divide
the proof into two parts.
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Distributional boundary values of analytic functions 219

Proof of Theorem 2 (Necessity). Let f ∈ D′L2(Rn) and suppose that Γ is an arbitrary
regular cone in Rn. By Lemma 3, the Cauchy transform (13) is well defined and (30)
holds for z ∈ TΓ . In particular, if z = iy with y ∈ Γ , then

∂|u|

∂yu1
1 . . . ∂yun

n
KΓ (f)(iy) =

1

(2π)n

(
f(·), ∂|u|

∂yu1
1 . . . ∂yun

n
KΓ (iy − ·)

)
(34)

for each multi-index u. Combining (29) and (33), we get

∂|u|

∂yu1
1 . . . ∂yun

n
KΓ (iy) = i2|u|

∫
Γ∗

(
ξu1
1 · · · ξun

n

)
e−(y, ξ) dξ. (35)

In particular, for the directional derivative DγKΓ (iy − t) with γ ∈ Γ , we have

DγKΓ (iy − t) =

n∑
s=1

γs
∂

∂ys
KΓ (iy − t) = (γ,Dy)KΓ (iy − t)

= −
∫
Γ∗

(γ, ξ)e−(y,ξ)e−i(t,ξ) dξ. (36)

Iterating (36), we obtain

Dγ1Dγ2 . . . DγkKΓ (iy − t) = (−1)k
∫
Γ∗

k∏
j=1

(γj , ξ)e
−(y,ξ)e−i(t,ξ) dξ (37)

for any choice γ1, . . . , γk ∈ Γ .
For fixed y and γ in Γ , set

H(ξ) := (γ, ξ)e−(y,ξ)χΓ∗(ξ),

ξ ∈ Γ ∗. Obviously, H coincides on Γ ∗ with a finite linear combination of functions (31)
with appropriate quotients. This, conjugate with (42), implies that H is integrable on Rn.
Moreover, (γ, ξ) is nonnegative for ξ ∈ Γ ∗. Thus, applying the Bochner theorem (see [5,
p. 293] and [12, p. 125]) to the right-hand side of (37), we see that for any fixed y ∈ Γ
and all γ1, . . . , γk ∈ Γ ,

(−1)kDγ1Dγ2 . . . DγkKΓ (iy − t) (38)

is positive definite as a function of t ∈ Rn.
Suppose, in addition, that f ∈ D′L2(Rn) is positive definite. Then by Lemmas 1 and 2,

we have
(−1)k

(
Dγ1Dγ2 . . . DγkKΓ (iy − ·), f(·)

)
> 0

for y ∈ Γ . Combining this with (34), we see that

(−1)kDγ1Dγ2 . . . DγkKΓ (f)(iy) > 0

for all y ∈ Γ and each γ1, . . . , γk ∈ Γ . Finally, this shows that y → KΓ (f)(iy) is
a completely monotonic function on Γ . Necessity of Theorem 2 is proved.
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Lemma 4. Suppose that {Γk}m1 is a family of regular cones such that {Γ ∗k }m1 covers
exactly Rn. Let yk ∈ Γk, k = 1, . . . ,m. If ω ∈ D(Rn), then

lim
max ‖yk‖2→0

m∑
k=1

KΓk
(ω)(x+ iyk) = ω(x) (39)

in the topology of D′L2(Rn).

Proof. Obviously, each ω ∈ D(Rn) defines by

(ω, ϕ) =

∫
Rn

ω(x)ϕ(x) dx,

ϕ ∈ DL2(Rn), a distribution in D′L2(Rn). Therefore, if Γ is a regular cone in Rn, then

KΓ (ω)(z) =
1

(2π)n
(
KΓ (z − ·), ω(·)

)
=

1

(2π)n

∫
Rn

KΓ (z − α)ω(α) dα, (40)

where the integral converges absolutely for z ∈ TΓ . Since

KΓ (z − α) =

∫
Γ∗

ei(x,t)e−(y,t)e−i(α,t) dt

and this integral converges also absolutely for α ∈ Rn and z ∈ TΓ , it follows by the
Fubini theorem that

KΓ (ω)(z) =
1

(2π)n

∫
Γ∗

[ ∫
Rn

e−i(α,t)ω(α) dα

]
ei(x,t)e−(y,t) dt

=

∫
Γ∗

ω̌(t)ei(x,t)e−(y,t) dt =

∫
Γ∗

ω̌(t)ei(x,t)e−|(y,t)| dt

=

∫
Rn

ω̌(t)ei(x,t)e−|(y,t)|χΓ∗(t) dt. (41)

For yk ∈ Γk, k = 1, . . . ,m, Y = {y1, . . . , ym}, set

ΩY (t) =

m∑
k=1

χΓ∗
k

(t)e−|(yk, t)|, (42)

t ∈ Rn. If u is a non-negative integer multi-index, then using (41), we get

Du
x

(
m∑
k=1

KΓk
(ω)(x+ iyk)− ω(x)

)
= Du

x

( ∫
Rn

[
ΩY (t)− 1

]
ω̌(t)ei(x,t) dt

)

= i|u|
∫
Rn

[
ΩY (t)− 1

]
tu1
1 · · · tun

n ω̌(t)ei(x,t) dt
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for x ∈ Rn. Here using the Parseval equality for Fourier transform, we have∥∥∥∥∥Du
x

(
m∑
k=1

KΓk
(ω)(x+ iyk)− ω(x)

)∥∥∥∥∥
2

L2(Rn)

= (2π)n
∥∥(ΩY (t)− 1

)
tu1
1 · · · tun

n ω̌(t)
∥∥2
L2(Rn)

. (43)

Since {Γ ∗k }m1 covers exactly Rn, it follows easily from (42) that

ΩY (t) = 1 + θ(t) +

m∑
k=1

(
e−(yk,t) − 1

)
χΓ∗

k
(t),

where θ(t) = 0 almost everywhere on Rn and

1−
m∑
k=1

e−|(yk,t)| → 0, as max
k
‖yk‖2 → 0,

uniformly on compact subsets of Rn. On the other hand, ω̌(t) as well as tu1
1 · · · tun

n ω̌(t)
belong to S(Rn). Thus, the norm in the right-hand side of (43) tends to zero as
maxk ‖yk‖2 → 0. This proves (39) and the lemma.

Proof of Theorem 2 (Sufficiency). Suppose that Γ is any regular cone such that y →
KΓ (f)(iy) is completely monotonic on Γ . Fix γ ∈ Γ . Since Γ is convex, it follows
that Γ is also an additive semigroup. Because γ + Γ ⊂ Γ , the function

Fγ(y) = KΓ (f)
(
i(γ + y)

)
(44)

is well defined for all y ∈ Γ . Moreover, Fγ is continuous and completely monotonic
on Γ . Then (see [6, p. 172] and [2, p. 89]) there exists a non-negative measure µγ on (Γ )∗

such that
Fγ(y) =

∫
(Γ )∗

e−(y,ζ) dµγ(ζ)

for all y ∈ Γ . Clearly, (Γ )∗ = Γ ∗. Since Fγ is continuous on Γ , we see that µγ is a finite
measure on Γ ∗. Therefore, Fγ can be continued analytically on the tube domain TΓ as
the Laplace transform of µγ , i.e., for z = x+ iy ∈ TΓ ,

Fγ(z) =

∫
Γ∗

ei(z,ζ) dµγ(ζ). (45)

By (44), Fγ(z) coincides with KΓ (f)(iγ + z) for z = iy, y ∈ Γ . We claim that this
is true on the whole tube domain TΓ . To this end, we use the following identity theorem
(see e.g., [16, p. 21]): if h is an analytic function on an open domain D on Cn such that
h vanishes on a real neighborhood of a point z0 = x0 + iy0 ∈ D, i.e., h vanishes on{

z = x+ iy ∈ D: |x− x0| < r, y = y0
}
,
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then h ≡ 0 on D. Of course, this statement is valid also in the case if we replace this
real neighborhood by an imaginary neighborhood of z0, i.e., on the set {z = x + iy ∈
D: x = x0, |y − y0| < r}. Take any z0 = iy0 ∈ TΓ . By (45), analytic functions
Fγ(z) and KΓ (f)(iγ + z) coincide on any image neighborhood Iz0 = {z = x + iy ∈
Cn: |y − y0| < r, x = x0} of z0 such that Iz0 ⊂ TΓ . This yields the claim that

KΓ (f)(iγ + z) = Fγ(z) =

∫
Γ∗

ei(z,ζ) dµγ(ζ) =

∫
Γ∗

ei(x,ζ)e−(y,ζ) dµγ(ζ) (46)

for z = x+ iy ∈ TΓ .
Using the representation (46) and having the Bochner theorem, we see that for any

y ∈ Γ , the function x → Fγ(x + iy) is continuous and positive definite on Rn. This
is also true for all γ ∈ Γ . Thus, since Γ is an open cone and Fγ(z) = KΓ (f)(iγ + z)
on TΓ , we obtain that for any fixed y ∈ Γ , the function

x→ KΓ (f)(x+ iy) (47)

is continuous and positive definite for x ∈ Rn.
Suppose now that {Γk}m1 is a family of regular cones such that {Γ ∗k }m1 covers Rn

exactly. Next, take any collection yk ∈ Γk for k = 1, . . . ,m. Let ω ∈ D(Rn). Since f is
a linear functional on DL2(Rn), we get∫

Rn

(
m∑
k=1

KΓk
(f)(x+ iyk)

)
ω(x) dx

=
1

(2π)n

m∑
k=1

∫
Rn

(
f(·), ω(x)KΓk

(x+ iyk − ·)
)

dx

=
1

(2π)n

m∑
k=1

∫
Rn

(
ft, ω(x)KΓk

(x+ iyk − t)
)

dx

=
1

(2π)n

m∑
k=1

∫
Rn

ft
(
ω(x)KΓk

(x+ iyk − t)
)

dx. (48)

We claim that
m∑
k=1

∫
Rn

ft
(
ω(x)KΓk

(x+ iyk − t)
)

dx =

m∑
k=1

ft

( ∫
Rn

ω(x)KΓk
(x+ iyk − t) dx

)
. (49)

To verify the claim, let us recall from the proof of Lemma 3 that for fixed x ∈ Rn and
yk ∈ Γk, the map

t→ KΓk
(x+ iyk − t) (50)

is an element of DL2(Rn). Therefore, the map defined by

Ψk,t(x) := ω(x)KΓk
(x+ iyk − t), (51)
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x ∈ supp(ω), is a vector-valued function

Ψk,t: supp(ω)→ DL2(Rn).

Therefore, (49) is equivalent to the condition that these functions Ψk,t are Pettis inte-
grable over supp(ω) (see, e.g., [11, p. 164]). Since DL2(Rn) is a Frechet space, supp(ω)
is a compact subset of Rn, and the dual space D′L2(Rn) separates DL2(Rn) elements
(indeed, it is easy to see that already regular distributions from L2(Rn) separate points of
DL2(Rn)), it follows (see, e.g., [14, pp. 77–78]) that if Ψk,t is continuous, then∫

Rn

f
(
ω(x)KΓk

(x+ iyk − t)
)

dx =

∫
Rn

f
(
Ψk,t(x)

)
dx = f

( ∫
Rn

Ψk,t(x) dx

)

= f

( ∫
Rn

ω(x)KΓk
(x+ iyk − t) dx

)
(52)

for all f ∈ D′L2(Rn). Now, by comparing (49) and (52), we see that it remains to show
that Ψk,t, k = 1, . . . ,m, are continuous. This means that for each x ∈ supp(ω) and any
non-negative multi-index u, it should be true that

lim
ε→0

∥∥Du
t

(
Ψk,t(x+ ε)− Ψk,t(x)

)∥∥
L2(Rn)

= lim
ε→0

( ∫
Rn

∣∣Du
t

[
ω(x+ ε)KΓk

(x+ ε+ iyk − t)− ω(x)KΓk
(x+ iyk − t)

]∣∣2 dt

)1/2

= 0. (53)

Obviously,∥∥Du
t

(
Ψk,t(x+ ε)− Ψk,t(x)

)∥∥
L2(Rn)

6 max
x∈Rn

∣∣ω(x+ ε)− ω(x)
∣∣( ∫

Rn

∣∣Du
tKΓk

(x+ iyk − t)
∣∣2 dt

)1/2
+ max
x∈Rn

∣∣ω(x+ ε)
∣∣

×

( ∫
Rn

∣∣Du
tKΓk

(x+ iε+ iyk − t)−Du
tKΓk

(x+ iyk − t)
∣∣2 dt

)1/2
. (54)

Since all functions (50) and their derivatives in t are in L2(Rn), it follows that they are
L2-continuous. This means that if a function g belongs to L2(Rn), then

lim
ε→0

∫
Rn

∣∣g(v + ε)− g(v)
∣∣2 dv = 0.

Then (53) is an immediate consequence of (54). Thus, our claim (49) is proved.
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By (50), we have

1

(2π)n

m∑
k=1

∫
Rn

KΓk
(x+ iyk − t)ω(x) dx =

m∑
k=1

KΓk
(ω)(−t+ iyk), (55)

t ∈ Rn. This, together with (48) and (49), gives that∫
Rn

(
m∑
k=1

KΓk
(f)(−x+ iyk)

)
ω(x) dx

=
1

(2π)n
ft

(
m∑
k=1

∫
Rn

ω(x)KΓk
(−x+ iyk − t) dx

)

= ft

(
m∑
k=1

KΓk
(ω)(−t+ iyk)

)
(56)

Clearly, a function ζ : Rn → C is positive definite if and only if ζ(−)(x) := ζ(−x),
x ∈ Rn, is positive definite. Since (47) is continuous and positive definite, it follows that

x→
m∑
k=1

KΓk
(f)(−x+ iyk)

is also continuous and positive definite for x ∈ Rn. Suppose now, in addition, that ω ∈
D(Rn) is positive definite. Then by Remark 1, we have

∫
Rn

(
m∑
k=1

KΓk
(f)(−x+ iyk)

)
ω(x) dx > 0.

This, conjugate with (56), implies that

ft

(
m∑
k=1

KΓk
(ω)(−t+ iyk)

)
> 0.

Thus, by Lemma 4, we have
(f, ω(−)) > 0.

Since ω was an arbitrary positive definite function in D(Rn), it follows from Remark 1
that f is a positive definite distribution. This completes the proof.
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