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Abstract. The habitat loss and fragmentation is almost the greatest threat to the survival of the wild
giant panda. In this paper, we construct a mathematical model to consider the effect of diffusion
on giant pandas that live in complex patchy environments. Our discussion includes the studying of
a diffusive n-dimensional single species model, sufficient conditions are derived for the permanence
and extinction of the giant panda species. Especially, we also discuss the situations of diffusion of
giant pandas between two patches, and numerical simulations are presented to illustrate the results.
Furthermore, we consider the existence, uniqueness, and global stability of the positive periodic
solution of the n-dimensional single species model. The implications of these results are significant
for giant panda conservation.
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1 Introduction

With growing levels of human activity and frequent natural disturbances throughout the
world, it is increasingly important that both research and management efforts take into
account the widespread landscape fragmentation and its consequences for biodiversity
conservation [6]. Giant Panda is a flag species for biodiversity conservation in China.
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Natural disasters (including earthquakes and hurricanes) and human activities (includ-
ing road construction, urbanization and farming) are the primary causes of habitat loss,
fragmentation and degradation [1]. Now they are occurring only in high mountains and
steep valleys of the east edge of Qingzang plateau, i.e. Minshan, Qionglaishan, Daxi-
angling, Xiaoxiangling, Liangshan and Qinling. The giant panda populations living in
these mountains have been separated completely. Even in one mountain system, where
the giant panda is distributed, fragmentation of habitats and populations is severe. Severe
and irreversible habitat fragmentation is a major threat to the survival of the giant panda.

The results of the mathematical model provide us with information on the probability
of survival or extinction given certain assumptions on the biology and status of the popu-
lation. Therefore, we can use mathematical models to develop conservation strategies to
reduce the risks of extinction.

As well as we known, each patch has different habitats. For some patch, the number
of giant pandas is large, and the reproduction rate of giant pandas is high because they are
easy to find spouse. In [9], the authors obtained the birth rate function of captive giant
panda by numerical fitting method, and use logistic equation to represent the natural
growth law of the giant panda. Therefore, classical logistic equation can be used to
describe the changes on the population of the giant panda in the above patch:

dx(t)

dt
= b(t)x(t)− c(t)x2(t), (1)

where b(t), i.e. the growth rate function makes reference to the function in [9]. The
population of giant pandas grows and develops better, giant pandas are able to continue
to survive in the patch, we say this patch food-rich patch.

For the common patch, the situation of giant pandas’ habitat is in general, the number
of giant pandas is small, and it is difficult for giant pandas to find spouses, which results
in low reproductive rate. We call the patch normal patch, and use the differential equation
with Allee effect to describe the growth mode of the giant panda:

dx(t)

dt
=

a(t)x2(t)

N(t) + x(t)
− b(t)x(t)− c(t)x2(t). (2)

Allee effects play an important role in extinction of already endangered rare or dramati-
cally declining species [3]. We find that in most of the current giant panda population, the
growth of giant pandas can comply with the model, where N(t) is the sparse coefficient.
When the giant panda population density is low, the population density growth rate and
population density are positively correlated, when the population density is less than
a certain value, the population density of negative growth causes the ultimate demise
of the local population.

There are also some patch, the giant panda’s habitat is bad, such as: the giant panda’s
food is scarce as a result of natural disasters or staple bamboo flowering or lack of water.
Thus, the number of giant pandas in the patch is extremely rare, the species will vanish
without the contribution from other patches. We still use the logic equation (1) to describe
the dynamic changes of the giant panda population in the patch. But the giant panda
population growth rate is negative, that is, b(t) < 0. We call it a food-poor patch.
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According to fieldwork, we know that giant pandas sometimes migrate from one patch
to another for finding food, mating, etc. In order to protect the rare species, we should
investigate the circumstance of each patch and consider the effect of diffusion on the
permanence and extinction of giant pandas that live in different patches. Different from
the former studies, we pay attention on the more complicate situations in conservation
giant pandas which live in three kinds of patchy environments: food-rich patch, normal
patch and food-poor patch. In this case, we consider the system as being composed of
patches connected by linear diffusions, each patch being assumed to be occupied by giant
pandas,

dxi(t)

dt
=

ai(t)x
2
i (t)

Ni(t) + xi(t)
− bi(t)xi(t)− ci(t)x2i (t) +

n∑
k=1

Dki(t)xk(t)

−
n∑
k=1

Dik(t)xi(t),

dxj(t)

dt
= bj(t)xj(t)− cj(t)x2j (t) +

n∑
k=1

Dkj(t)xk(t)−
n∑
k=1

Djk(t)xj(t).

(3)

Let N = {1, 2, . . . n}, I and J are two nonempty subsets of N , I ∪ J = N , i ∈ I , j ∈ J ,
1 6 i < j 6 n, 1 6 k 6 n, k ∈ N , and xk(t) (k = 1, 2, . . . , n) denotes the giant panda
population x in patch k. All coefficients in system (3) are ω-periodic and continuous for
t > 0, Ni(t), ai(t), bi(t), Dki(t), Dik(t), Dkj(t) and Djk(t) are all positive, while ci(t),
cj(t) are nonnegative. The function bj(t) is the growth rate for giant panda population
xj(t) in patch j, Ni(t) is sparse coefficient, and Dkj(t) is the diffusion coefficient of
population xj(t) from patch k to patch j.

The present paper considers the following interesting problem: To what extent does
diffusion lead to the permanence or extinction of the giant panda species which living in
three kinds of complicate patchy environments?

The paper is organized as following. In the next section, we present some nota-
tions, state two lemmas which will be essential to our proofs. In Section 3, a diffusive
n-dimensional single species model is given, and its permanence and extinction are both
considered. In order to study how diffusion affects the continual survival of giant panda
which lives in different habitats, we also discuss the permanence and extinction for three
kinds of 2-dimensional single species models. In Section 4, it is shown that the system
has a unique globally asymptotically stable positive periodic solution provided that the
n-dimensional system is permanent. The biological meaning of the results obtained in
Sections 3 and 4 and the control measures to protect the extinction of giant pandas are
discussed in Section 5.

2 Some basic results

In this section, we introduce some definitions and notations and state some results which
will be useful in subsequent sections.
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Let C denote the space of all bounded continuous function F : R → R. For any
continuous ω-periodic function f(t) defined on R, we denote

Aw
(
f(t)

)
= ω−1

ω∫
0

f(t) dt, fM = max
t∈[0,ω]

f(t), fL = min
t∈[0,ω]

f(t). (4)

In order to study the permanence of (3), we need the information on the following periodic
logistic model:

dx(t)

dt
= b(t)x(t)− a(t)x2(t), (5)

where b(t) and a(t) are ω-periodic functions, aM > 0. We have the following well-known
results.

Lemma 1. (See [13].) If Aω(b(t)) > 0, then (5) has a unique globally asymptotically
stable positive ω-periodic solution; if Aω(b(t)) 6 0, then the trivial solution x = 0 of (5)
is globally asymptotically stable.

Lemma 2. (See [8].) Let x(t) and y(t) be solutions of dx(t)/dt=F (t, x) and dy(t)/dt=
G(t, y), respectively, where both systems are assumed to have the uniqueness property for
initial value problems. Assume both x(t) and y(t) belong to a domainD ⊆ Rn for [t0, t1]
in which one of two systems is cooperative and

F (t, z) 6 G(t, z), (t, z) ∈ [t0, t1]×D.

If x(t0) 6 y(t0), then x(t) 6 y(t) for all t satisfying t0 6 t 6 t1. If F = G and
x(t0) < y(t0), then x(t) < y(t) for all t satisfying t0 6 t 6 t1.

3 Permanence and extinction

Definition 1. The system of differential equation

dx

dt
= F (t, x), x ∈ Rn,

is said to be permanent if there exists a compact set D in the interior of Rn+ = {(x1, x2,
. . . , xn) ∈ Rn | xk > 0, k = 1, 2, . . . , n}, such that all solutions starting in the interior
of Rn+ ultimately enter D.

Theorem 1. Given any ξk > 0 (k = 1, 2, . . . , n), the initial value problem

dxi(t)

dt
=

ai(t)x
2
i (t)

Ni(t) + xi(t)
− bi(t)xi(t)− ci(t)x2i (t) +

n∑
k=1

Dki(t)xk(t)

−
n∑
k=1

Dik(t)xi(t),

dxj(t)

dt
= bj(t)xj(t)− cj(t)x2j (t) +

n∑
k=1

Dkj(t)xk(t)−
n∑
k=1

Djk(t)xj(t),

xk(0) = ξk > 0,

(6)
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has a unique solution x(t) = (x1(t), x2(t), . . . , xn(t)) which exists for all t > 0. More-
over, there exist M > 0, T > 0 such that

0 < xk(t) 6M for t > T, (7)

the region D = {(x1, x2, . . . , xn) | 0 < xi 6M, i = 1, 2, . . . , n} is positively invariant
with respect to (3).

Proof. Obviously, Rn+ is a positively invariant set of (3). Define

V
(
x(t)

)
= max

16k6n

{
xk(t)

}
.

For every given t > 0, there exists an integer k (1 6 k 6 n) such that

V (t) = V
(
x(t)

)
= xk(t).

Calculating the upper-right derivative of V (x(t)) along the positive solution of (6), we
have

D+V (t) 6 V (t)
(
b(t)− c(t)V (t)

)
,

where
b(t) = max

i∈I,j∈J

{
ai(t)− bi(t), bj(t)

}
, c(t) = min

16k6n

{
ck(t)

}
.

Denote M = (|b|M + ε)/cL, where ε is any positive constant. For any t∗ > 0, if V >M
for all t > t∗, then D+V 6 −εV for all t > t∗, this will lead to a contradiction. Hence,
there must exist a T > t∗ such that V (T ) 6 M . If V (t) 6 M for all t > T , then
V (t) is bounded. If not, suppose that V (t1) > M , where t1 > T. Then, from the above
discussion, there exist t∗1 and t∗∗1 such that V (t∗1) = V (t∗∗1 ) = M and V (t) > M for
all t∗1 < t < t∗∗1 . This means V (t) at least has a maximum within t∗1 6 t 6 t∗∗1 . Now
suppose V (t) attains its maximum at t2. This implies that D+V > 0 for t2 − δ < t < t2
and that δ is a positive constant. This is in contradiction with

D+V (t) 6 V (t)
(
b(t)− c(t)V (t)

)
.

Therefore, we have that in any case V (t) 6 M for all t > T , i.e. xk(t) 6 M (k =
1, 2, . . . , n).

But the ultimately boundedness implies that x(t) exists for all t > 0. Furthermore,

dxk(t)

dt

∣∣∣∣
xk=M

< M
(
|b|M − cLM

)
< 0.

Hence, all solutions of (3) initiating in boundary of D enter the region D for t > 0,
so D is positively invariant with respect to (3). This completes the proof.

Theorem 2. If there exists j0(j0 ∈ J) such that

Aw

[
bj0 −

n∑
k=1

Dj0k(t)

]
> 0 (8)
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holds, then there exist δk (0 < δk < M ) and T > 0 such that the solution of (6) satisfies

xk(t) > δk, t > T, k = 1, 2, . . . , n.

Proof. Suppose that (8) holds, we have

dxj0(t)

dt
> bj0(t)xj0(t)− cj0(t)x2j0(t)−

n∑
k=1

Dj0kxj0(t)

=

[
bj0(t)−

n∑
k=1

Dj0k

]
xj0(t)− cj0(t)x2j0(t). (9)

By Lemma 1, if condition (8) holds, the logistic equation

du(t)

dt
=

[
bj0(t)−

n∑
k=1

Dj0k

]
u(t)− cj0(t)u2(t)

has a unique positive globally asymptotically stable ω-periodic solution u∗(t), and there
exist εj0 > 0 and Tj0 such that∣∣u(t)− u∗(t)∣∣ < εj0 , t > Tj0 .

Let u(t) be the solution of (9) with u(0) = xj0(0). By Lemma 2, xj0(t) > u(t) > 0.
Then xj0(t) > u(t) > u∗(t)− εj0 =: ηj0 .

Moreover, for every j 6= j0, we have

dxj
dt

> −cMj x2j +

(
bLj −

n∑
k=1

DM
jk

)
xj +DL

j0jηj0 = f(xj), t > Tj0 .

The algebraic equation

cMj x
2
j −

(
bLj −

n∑
k=1

DM
jk

)
xj −DL

j0jηj0 = 0

gives us one positive root

x′j =
bLj −

∑n
k=1D

M
jk +

√
(bLj −

∑n
k=1D

M
jk )

2 + 4cMj D
L
j0j
ηj0

2cMj
.

Clearly, f(xj) > 0 for every positive number xj (06xj<x′j). Choose δj (06δj<x′j),

dxj
dt

∣∣∣∣
xj=δj

> f(δj) > 0.
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If xj(Tj0) > δj , then it also holds for t > Tj0 ; if xj(Tj0) < δj , then

dxj
dt

> inf
{
f(xj)

∣∣ 0 6 xj < δj
}
> 0.

There must exists a Tj(> Tj0) such that xj(t) > δj for t > Tj .
For every i, we have

dxi(t)

dt
= −bi(t)xi(t)− ci(t)x2i (t)−

n∑
k=1

Dik(t)xi(t) +Dj0ixj0

> −cMi x2i (t)−

(
bLi +

n∑
k=1

DL
ik

)
xi(t) +Dj0ixj0 .

Similarly as the proof of the above, there exists a Ti such that xi(t) > δi for t > Ti.
This completes the proof.

Theorems 1 and 2 have established that under assumption (8), there exist positive
constants m and M such that the solution of (3) with positive initial values ultimately
enters the region Ω = {(x1, x2, . . . , xn) | m 6 xk 6 M, k = 1, 2, . . . , n}. Therefore,
the giant panda population is permanent.

Remark 1. According to the proof of Theorems 1 and 2, if the population of the giant
panda is permanent in a fixed patch j0, then it will also be permanent in other patches
under some condition.

Let us consider the biological meanings of Theorems 1 and 2. Remember that bj0(t) is
the intrinsic growth rate for the species in patch j0 and Dj0k(t) is the diffusion coefficient
for the species from patch j0 to k. Hence bj0(t) −

∑n
k=1Dj0k(t) represents the net

increasing rate for the species in patch j0, that is, the actual growth rate in patch j0
minus out-frow from patch k. The assumption Aw[bj0 −

∑n
k=1Dj0k(t)] > 0 implies

that the above rate is strictly positive on the average, we call such a patch j0 belongs
to J as food-rich patch. In general, all patches belong to J satisfy the condition Aw[bj −∑n
k=1Djk(t)] > 0 are called food-rich patch. On the contrary, the other patches belong

to J is called food-poor patches, and the patch i ∈ I is called normal patch.
According to (8) and Theorem 2, we can obtain that suitable diffusion between food-

rich and the other patches implies permanence. That is to say, to be permanent for (6), it
is sufficient that each food-poor or normal patch must have a connection with at least one
food-rich patch.

Now, we apply the result of Theorem 2 in Qinling’s giant panda population. The giant
panda in Qinling mountains can be divided into six sub-populations [11], they are Pinghe
liang local population, Jinji liang local population, Tianhua mountain local population,
Xinglongling-Taibai mountain local population, Niuwei river local population, and Zibai
mountain local population from east to west. There are only about 5 giant pandas in
Pinghe liang, and this local population is located in the eastern boundary of the wild giant
panda population, we call this patch food-poor patch. About 6 pandas are distributed in
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Jinji liang local population. In recent years, the implementation of natural forest protection
project has enabled the region’s vegetation to be well restored, we call this patch normal
patch. There are about 12 giant pandas in Tianhua mountain. The density of giant panda is
low in this region, and there is great potential for development, we call this patch normal
patch. There are about 219 giant pandas in Xinglong ling-Taibai mountain. The density
of giant panda is high, and the habitat conditions are good, we call this patch food-rich
patch. There are about 29 giant pandas in Niuwei river local population, we call this patch
food- rich patch. There are only 3 or 4 giant pandas in Zibai mountain, we call this patch
food-poor patch. From the basic features of the distribution pattern for Qinling giant
panda population, Qinling pandas exist diffusion between adjacent patches, according
to the conclusion of Theorems 1 and 2, Qinling panda population is able to sustain for
a long time if it’s environment could be kept as current or get better, which verifies the
conclusion in [12].

If n = 2, let i = 1, j = 2, then system (3) can be rewritten as

dx1(t)

dt
=

a1(t)x
2
1(t)

N1(t) + x1(t)
− b1(t)x1(t)− c1(t)x21(t)

+D21(t)x2(t)−D12(t)x1(t),

dx2(t)

dt
= b2(t)x2(t)− c2(t)x22(t) +D12(t)x1(t)−D21(t)x2(t).

(10)

According to the proof of Theorems 1 and 2, we have the following corollary.

Corollary 1. Suppose that

Aω
[
b2(t)−D21(t)

]
> 0, (11)

then there exist δ and M , 0 < δ < M and T > 0, such that the solution of (10) with
positive initial values satisfies

δ < x1(t) < M, δ < x2(t) < M.

Remark 2. System (10) considers the survival of giant pandas living in two kinds of
habitats, the patch 1 means normal patch, and patch 2 means food-rich patch. If the species
of giant panda has positive growth rate b2(t) in patch 2, i.e. the species of the giant panda
lives in a suitable environment, this patch may have adequate food and abundant number
of giant pandas, then the giant panda is permanent when the patch is isolate. Theorem 3
implies that if the average of the sum of diffusion rate from patch 2 to patch 1 is less than
the intrinsic growth rate of patch 2, then the giant panda is permanent even if the isolated
patch 1 is not persistent.

If n = 2, let j = 1, 2, then the system (3) can be rewritten as

dx1(t)

dt
= b1(t)x1(t)− c1(t)x21(t) +D21(t)x2(t)−D12(t)x1(t),

dx2(t)

dt
= b2(t)x2(t)− c2(t)x22(t) +D12(t)x1(t)−D21(t)x2(t).

(12)
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If ci(t), D12(t) and D21(t) are all positive periodic functions, bi(t) is the intrinsic
growth rate, which may be negative periodic functions in some time intervals. For the
diffusion logistic equations, we can obtained the following results from [4, Lemma 2.3].

Corollary 2. If there exists an integer j (j = 1 or 2) such that

Aω
(
bj(t)−Djk(t)

)
> 0, k 6= j, (13)

then system (12) is permanent and there exists a unique positive ω-periodic solution
(x∗1(t), x

∗
2(t)) which is globally and asymptotically stable.

Remark 3. System (12) considers the situation of the diffusion of giant pandas between
food-rich patch and food-poor patch. Corollary 2 shows that if the average of the sum of
diffusion rate from food-rich patch to food-poor patch is less than the actual growth rate
of food-rich patch, then the giant panda will be permanent at the two patches.

Remark 4. If bi(t) and ci(t) are all positive periodic functions described in system (12),
then it is the case of diffusion between the two food-rich patches. From [7], system (12)
possesses a globally stable positive periodic solution for any positive diffusive rateD12(t)
and D21(t). Which implies that if each patch of giant pandas can continue to survive
alone, then they can continue to survive in the two patches with any diffusion rate.

Theorem 3. Suppose
Aω
[
ϕ(t)

]
< 0 (14)

holds, then the solution of (3) satisfies

xk(t)→ 0, t→ +∞, k = 1, 2, . . . , n, (15)

where
ϕ(t) = max

i∈I,j∈J

{
ai(t)− bi(t), bj(t)

}
.

Proof. Choose function

ρ(t) = x1(t) + x2(t) + · · ·+ xn(t).

Calculating the derivative of ρ along solution (3), we have

dρ(t)

dt
=
∑
i

(
ai(t)x

2
i (t)

Ni(t) + xi(t)
− bi(t)xi(t)− ci(t)x2i (t)

)
+
∑
j

(
bj(t)xj(t)− cj(t)x2j (t)

)
6
∑
i

(
ai(t)− bi(t)

)
xi(t) +

∑
j

bj(t)xj(t) 6 ϕ(t)ρ(t).

Let u(t) be the solution of the equation

du(t)

dt
= ϕ(t)u(t)
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with u(0) = ρ(0). By comparison theorem of differential equation, we have

ρ(t) 6 ρ(0)e
∫ t
0
ϕ(ξ) dξ.

Since Aω[ϕ(t)] < 0,
∫ t
0
ϕ(ξ) dξ → −∞ as t → ∞, so xk(t) → 0 as t → ∞. This

completes the proof.

Corollary 3. For system (10), if condition

Aω
[
φ(t)

]
< 0 (16)

holds, then the solution of (10) satisfies

x1(t)→ 0, x2(t)→ 0 as t→∞,

where φ(t) = max{a1(t)− b1(t), b2(t)}.

4 Stability of positive periodic solution

In this section, we prove that system (3) has a unique periodic solution and derive suffi-
cient conditions for all positive solutions of (3) to converge to a periodic solution.

Let the following denote the unique solution of periodic system (3) for initial value
x(0, x0) = x0 = (x10, x20, . . . , xn0). Now define Poincaré transformation

Ax0 = x(ω, x0),

wherew is the period of periodic system (3). In this way, the existence of periodic solution
of system (3) will be equal to the existence of the fixed point of A.

Lemma 3 (Brouwer fixed-point theorem). (See [2].) Suppose that the continuous
operator A maps closed and bounded convex set Q ⊂ Rn onto itself, then the operator A
has at least one fixed point in set Q.

Theorem 4. Suppose that (8) holds, then system (3) has at least one positive ω-periodic
solution that lies in Ω = {(x1, x2, . . . , xn) | m 6 xk 6M, k = 1, 2, . . . , n}.

Proof. Suppose that (8) holds, by Theorems 1 and 2, any solution of (3) with positive
initial values ultimately enters the region Ω, and Ω also is a closed bounded convex set.
So we have x0 ∈ Ω ⇒ x(t, x0) ∈ Ω, also, x(ω, x0) ∈ Ω, thus AΩ ⊂ Ω. The operator A
is continuous because the solution is continuous about the initial value. Using the Brouwer
fixed-point theorem, we can obtain that A has at least one fixed point in Ω, then there
exists at least one strictly positive w-periodic solution of system (3). This completes the
proof of Theorem 4.

Let x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t)) be a positive ω-periodic solution of (3), now

we consider its uniqueness and stability. We introduce the following definitions.

Nonlinear Anal. Model. Control, 20(1):56–71
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Definition 2. (See [5].) An operator U : D ⊂ Rn → Rn is said to be monotonic if
X1 = (x11, x21, . . . , xn1) ∈ D, X2 = (x12, x22, . . . , xn2) ∈ D, and X1 < X2 in the
sense x11 < x12, x21 < x22, . . . , xn1 < xn2 implies UX1 < UX2.

Definition 3. (See [5].) An operator U : D ⊂ Rn → Rn is said to be positive with
respect to a cone K in Rn if U : K → K and is said to be strictly positive if UK ⊂
interior of K.

Definition 4. (See [5].) An operator U defined on a cone K in Rn is said to be stongly
concave, if, for an arbitrary interior element X ∈ K and any number τ ∈ (0, 1), there
exists a positive number η such that U(τX) > (1 + η)τUX.

Theorem 5. Suppose that cLi − aMi /N
L
i > 0 and (8) hold. Then the operator A cor-

responding to (3) is monotonic, strictly positive, and strictly concave with respect to the
cone Rn+. Moreover, operator A has unique fixed point in Rn+ and the corresponding
positive periodic solution is globally asymptotically stable.

Proof. We rewrite system (3) in the form

dxl
dt

= fl(t, x1, x2, . . . , xn), l = 1, 2, . . . , n,

then

fl(t, x1, x2, . . . , xl−1, 0, xl+1, . . . , xn) =

n∑
k=1

Dklxl.

In addition, the function Fl defined by

Fl(t, x1, x2, . . . , xn) = fl(t, x1, x2, . . . , xn)−
n∑
k=1

∂fl
∂xk

xk,

Fi(t, x1, x2, . . . , xn)

=
ai(t)x

2
i

Ni(t) + xi
− bi(t)xi − ci(t)x2i +

n∑
k=1

Dki(t)xk −
n∑
k=1

Dik(t)xi

−

(
2ai(t)Ni(t)x

2
i + ai(t)x

3
i

(Ni(t) + xi)2
− bi(t)xi − 2ci(t)x

2
i +

n∑
k=1

Dkixk −
n∑
k=1

Dikxi

)

=

(
ci(t)−

ai(t)Ni(t)x
2
i

(Ni(t) + xi)2

)
x2i >

(
cL − aMi

NL
i

)
x2i .

Moreover,

Fj(t, x1, x2, . . . , xn) = bj(t)xj − cj(t)x2j +
n∑
k=1

Dkj(t)xk −
n∑
k=1

Djk(t)xj

−

(
n∑
k=1

Dkj(t)xk + bj(t)xj − 2cj(t)x
2
j −

n∑
k=1

Djk(t)xj

)
= cj(t)x

2
j .
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If cLi − aMi /NL
i > 0 holds, then Fl(t, x1, x2, . . . , xn) is strictly positive for xl > 0

(l = 1, 2, . . . , n) and t > 0. Thus, the operator A is monotonic, strongly positive, and
strongly concave, follows from Theorem 10.2 and Lemma 3 in [5]. Moreover, it is known
by Theorem 10.1 in [5] and Theorem 4 of our present paper that operator A has exactly
one positive fixed point in Rn+, and hence, the periodic solution x∗(t) corresponding to
the fixed point of A is unique. The globally asymptotically stability of x∗(t) follows
from the Theorem 10.6 in [5] and limx→∞ x(t) = x∗(t) for every solution of (3) with
x(0) ∈ Rn+ \ (0, 0). This completes the proof.

5 Discussion

In this paper, we considered the effect of diffusion on giant pandas that live in differ-
ent habitat environments. Since more and more habitats of the giant panda have been
broken into patches, in some of these patches, giant pandas live a good life style, and
in some of these patches, giant pandas will become extinct without contributions from
other patches, and in more patches, giant pandas live only at low reproduction rate,
then we classified these habitat environments as three categories: food-rich patch, food-
poor patch and normal patch. And we use different mathematical models to describe the
growth and reproduction of the giant panda in the three types of habitats. In Section 3,
the situations of the growth and reproduction of giant pandas that live in n kinds of
complex habitat environments are described by model (3). Theorems 1 and 2 present the
sufficient conditions which guarantee the permanence of giant pandas. The results imply
that if the average of the sum of diffusion rate from patch j to patch k (k = 1, 2, . . . , n,
k 6= j) is less than the actual growth rate of patch j (j 6= i), then giant pandas are
permanent even if the isolated patch k are not persistent, i.e. in the n kinds of complex
patches, if one patch is food-rich patch, no matter how the situations of other patches,
the giant panda can persist in n patches. We apply the above results in Qinling’s giant
panda population. We find that Qinling’s giant panda population can be able to sustain
for a long time if it’s environment could be kept as current or get better. Therefore, we
can say the diffusive ability of Qinling’s giant panda is amazing, which also verified
the speculation on Qinling’s panda distribution laws mentioned in the reference [11].
Qinling pandas’ north-south distribution is mainly affected by farming and alpine, and
east-west distribution has a certain regularity. The east-west distribution of giant pandas,
with Xinglong ling-Taibai mountain as the center, gradually spread to the end of both the
east and west. The number and density are gradually decreasing. If every suitable habitat
patch were seen as an isolated island which is suitable for the survival of giant panda, then
this law fits island species biology diffusion law [10]. Hence, migration and dispersal can
increase the possibility of the permanence of giant panda in the patchy environment.

Theorem 3 points out sufficient condition which induces the extinction of the giant
panda. If condition (14) holds, then giant pandas that live in n kinds of patches will go to
extinct ultimately. In fact, this condition implies there is no food-rich patch in this case.

Particulary, we discuss the situations of diffusion on the giant panda in two kinds of
patches, and present some useful results for giant panda conservation.
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Corollary 1 implies that if the average of the sum of diffusion rate from food-rich
patch to normal patch is less than the actual growth rate of food-rich patch, then the giant
panda can be permanent in the two patches.

Here we discuss a simple example that illustrates the biological consequence of the
result on Corollary 1. In model (10), if we choose the parameter variables as follows:
a1(t) = (| cos 2πt| − cos 2πt), b1(t) = 0.4(1 − sin 2πt), c1(t) = 0.05(1 − sin 2πt),
D21(t) = 0.05(1 − cos 2πt), D12(t) = 0.04(1 − sin 2πt), b2(t) = 0.31(| cos 2πt| −
cos 2πt), c2(t) = 0.002(1 − sin 2πt), N1(t) = 100(1 − sin 2πt), we can easily get that
Aω[b2(t)−D21(t)] = 0.147 > 0. And system (10) is permanent (see Fig. 1a).

Corollary 2 shows that if the average of the sum of diffusion rate from food-rich patch
to food-poor patch is less than the actual growth rate of food-rich patch, then the giant
panda will be permanent in the two patches. If we choose the parameter variables of
system (12) as follows: b1(t) = 0.31(| cos 2πt| − cos 2πt), c1(t) = 0.05(1 − sin 2πt),
D21(t) = 0.02(1 − cos 2πt), D12(t) = 0.08(1 − sin 2πt), b2(t) = −0.1(| cos 2πt| −
cos 2πt), c2(t) = 0.002(1 − sin 2πt), we find that Aω[b1(t) − D12(t)] = 0.117 > 0.
System (12) is permanent (see Fig. 1b).

If the two patches are both food-rich patches, the giant panda species will be perma-
nent in the two patches for any positive diffusive rate. If we choose the parameter variables
in system (12) as follows: b1(t) = 0.4(| cos 2πt| − cos 2πt), c1(t) = 0.005(1− sin 2πt),
D21(t) = 0.06(1 − cos 2πt), D12(t) = 0.05(1 − sin 2πt), b2(t) = 0.31(| cos 2πt| −
cos 2πt), c2(t) = 0.005(1− sin 2πt), system (12) is always permanent (see Fig. 2a).

When the two patches are both food-poor patches, the giant panda in this two patches
will go to extinct without the contribution from other patches no matter how much is the
diffusive rate. If we choose the parameter variables of system (12) as follows: b1(t) =
−0.4(| cos 2πt| − cos 2πt), c1(t) = 0.015(1 − sin 2πt), D21(t) = 0.06(1 − cos 2πt),
D12(t) = 0.05(1 − sin 2πt), b2(t) = −0.3(| cos 2πt| − cos 2πt), c2(t) = 0.005(1 −
sin 2πt), system (12) is not permanent (see Fig. 2b).

As far as two normal patches, we still are not aware of the conditions that ensure
the giant panda to be permanent in the two patches. Numerical simulations show that the
situation will be complicated in this case. For example, consider the system

dx1(t)

dt
=

a1(t)x
2
1(t)

N1(t) + x1(t)
− b1(t)x1(t)− c1(t)x21(t)

+D21(t)x2(t)−D12(t)x1(t),

dx2(t)

dt
=

a2(t)x
2
2(t)

N2(t) + x2(t)
− b2(t)x2(t)− c2(t)x22(t)

+D12(t)x1(t)−D21(t)x2(t).

(17)

If we choose the parameter variables of system (17) as follows: a1(t) = 3(| cos 2πt|−
cos 2πt), b1(t) = 0.4(1 − sin 2πt), c1(t) = 0.015(1 − sin 2πt), D21(t) = 0.03(1 −
cos 2πt), D12(t) = 0.01(1− sin 2πt), a2(t) = 5(1− sin 2πt), b2(t) = 0.2(1− sin 2πt),
c2(t) = 0.015(| cos 2πt|−cos 2πt),N1(t) = 100(1−sin 2πt),N2(t) = 120(1−sin 2πt),
system (17) has a positive periodic solution (see Fig. 3a).
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(a) (b)

Fig. 1. Time series diagrams: (a) of system (10); (b) of system (12).

(a) (b)

Fig. 2. Time series diagrams of system (12).

(a) (b)

Fig. 3. Time series diagrams of system (17).
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If we choose the parameter variables of system (17) as follows: a1(t) = 3(| cos 2πt|−
cos 2πt), b1(t) = 0.4(1 − sin 2πt), c1(t) = 0.015(1 − sin 2πt), D21(t) = 0.03(1 −
cos 2πt), D12(t) = 0.01(1− sin 2πt), a2(t) = 2(1− sin 2πt), b2(t) = 0.2(1− sin 2πt),
c2(t) = 0.015(| cos 2πt|−cos 2πt),N1(t) = 100(1−sin 2πt),N2(t) = 120(1−sin 2πt),
system (17) is extinct (see Fig. 3b). In practice, this situation is very common, and we
will leave them for future investigation.

In order to protect the endanger species, it is very important to study the effect of
diffusion of giant pandas that live in local region patches. From the researching results,
to protect giant pandas, we must be aware of the distribution circumstance of the giant
panda in distribution regions, and understand the habitat situation of the giant panda
in every isolated region. Especially, we must understand the situations of the regions
that to be protected and implement some recovery protection measures in these regions.
For example, we can implement afforestation to increase the types of giant panda staple
bamboo. To restore suitable habitat for giant pandas surviving we also should consider the
connectivity of adjacent patches, establish ecological corridors between the two regions
that are not connected such as: the regions are separated by the railways, rivers and
villages, try to maintain the circulation between these regions, promote giant pandas to
exchange between various regions.

The article also discusses that under certain conditions model (3) has an unique glob-
ally asymptotically stable periodic solutions, i.e. the giant panda population can become
permanently stable to survive by diffusion. Which implies that diffusion increases the
degree of stability of the system. This also provides a theoretical basis for studying the
development of the recovery of the giant panda in the whole distribution areas in the fu-
ture. As long as the six mountain ranges that constitute the extant geographic distribution
of giant pandas can be connected together, and a series of habitat restoration work can be
implement to ensure the diffusion rate between the various mountain ranges of the giant
panda, the giant panda population will eventually survive in a wider range. Of course, this
is an ambitious target, we still have a lot of work to do in the future.
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