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Abstract. A predator–prey system with nonmonotonic functional response and prey refuge is
considered. We mainly obtain that the system has the bifurcations of cusp-type codimension two
and three, these illustrate that the dynamic behaviors of the model with prey refuge will become
more complicated than the system with no refuge.
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1 Introduction

The predator–prey systems with group defense due to the increased ability of the prey
to better defend or disguise themselves when their numbers are large enough have been
researched by several papers, see [4, 7, 15] and the references therein.

Particularly, when the prey exhibits group defense, Freedman and Ruan [4] pro-
posed a nonmonotonic functional response p(x) = αxe−βx, where α and β are positive
constants. Xiao and Ruan [15] have studied a predator–prey system with the functional
response p(x) of the form

ẋ = rx

(
1− x

K

)
− αxye−βx,

ẏ = y
(
µαxe−βx −D

)
.

(1)

They have shown that system (1) undergoes a series of bifurcations including a super-
critical Hopf bifurcation, a saddle-node bifurcation and a homoclinic bifurcation. In gen-
eral, the system has codimension two bifurcation but no codimension three bifurcation.
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In the real environment, there always exists refuge for prey to protect them from the
capture of the predator, which also can avoid the extinction of the prey and maintain
the permanence of the species to some extent. The dynamics of some predator–prey
systems with constant prey refuge have attracted some authors’ attention, one can refer
to [2,5,8,10,12,13,14] and the references therein, the effect of prey refuge on the stability
and the existence of limit cycle of the corresponding systems has been discussed.

Hence, when considering the prey refuge in system (1), we can obtain the following
model:

ẋ = rx

(
1− x

K

)
− α(x−m)ye−β(x−m),

ẏ = y
(
−D + µα(x−m)e−β(x−m)

)
,

(2)

where x and y denote the prey and predator populations, respectively, r, K, α, β, m, D
and µ are positive constants. Here r denotes the intrinsic growth rate and K the carrying
capacity of the prey; m is a constant number of prey using refuges, which protects m
of prey from predation; D is the death rate of the predator; µ is the conversion factor of
newly born predators for each captured prey. The term αxe−βx represents the functional
response of the predator.

For simplicity, let τ = rt, X = x, Y = αy/r (still denote τ , X and Y as t, x and y),
then system (2) is transformed to

ẋ = x

(
1− x

K

)
− y(x−m)e−β(x−m) = P (x, y),

ẏ = y
(
− d+ c(x−m)e−β(x−m)

)
= Q(x, y),

(3)

where c = µα/r, d = D/r.
For ecological meaning, we only study (3) in the first quadrant.
The organization of this paper is as follows. In Section 2, we mainly discuss the

existence and the properties of the equilibria of system (3). In Section 3, we analyze all
possible bifurcations according to the parameters of system (3). Especially, by choosing
two parameters as bifurcation parameters, the versal unfolding of the Bogdanov–Takens
singularity is given.

2 The existence and properties of positive equilibria

System (3) has a boundary equilibrium E0 = (K, 0), and about the properties of E0 we
have the following lemma.

Lemma 1. Let 0 < m < K. Then system (3) has equilibrium E0 = (K, 0) and:
• E0 is a hyperbolic saddle if d < c(K−m)e−β(K−m);
• E0 is a hyperbolic stable node if d > c(K−m)e−β(K−m) and d 6= −1+ c(K−m)×
e−β(K−m);
• E0 is a degenerate node if d = −1 + c(K−m)e−β(K−m);
• E0 is a saddle-node if d = c(K−m)e−β(K−m).
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Proof. The Jacobian matrix of system (3) at E0 takes the form

JE0 =

(
−1 −(K −m)e−β(K−m)

0 −d+ c(K −m)e−β(K−m)

)
, (4)

then the characteristic equation is

λ2 +
(
1 + d− c(K −m)e−β(K−m)

)
λ+ d− c(K −m)e−β(K−m) = 0,

by above equation we can obtain the results of the lemma.

It is a more interesting topic to discuss the dynamical behaviors of system (3) at
the interior positive equilibria. About the existence conditions and properties of interior
positive equilibria, see the following lemma.

Lemma 2. Assume 0 < m < K − 1/β, then system (3) has at least one positive
equilibrium if c/d > eβ. More precisely:

(i) when c/d = eβ, system (3) has a unique positive equilibriumE∗ = (m+1/β, (m+
1/β)(β − (mβ + 1)/K)e), which is a degenerate singularity;

(ii) when eβ < c/d < eβ(K−m)/(K−m), system (3) has two distinct positive equilibria
E∗1 = (x1∗, y1∗) and E∗2 = (x2∗, y2∗), where E∗2 is a hyperbolic saddle; when
c/d > eβ(K−m)/(K −m), only has E∗1 ; E∗1 is always stable if K[m(1 + x1∗β)−
x21∗β] > x1∗[m− (x1∗ −m)(1 + x1∗β)] and eβ < c/d.

Proof. To obtain the interior equilibria of system (3) we need solve the equation

d− c(x−m)e−β(x−m) = 0, i.e., f1(x) = f2(x) (5)

in the interval (m,K), where f1(x) = eβ(x−m), f2(x) = c/d(x−m).
By f1(x) = f2(x) and f ′1(x) = f ′2(x), Eq. (5) has a unique solution x∗ = m + 1/β

if c/d = eβ. x∗ ∈ (m,K) if and only if

0 < m < K − 1

β
. (6)

Comparing the slopes and values of the curves f1 and f2 at x∗ andK, respectively, one
can obtain that Eq. (5) in the interval (m,K) has two positive solutions x1∗ ∈ (m,m +
1/β) and x2∗ ∈ (m+1/β,K) if eβ < c/d < eβ(K−m)/(K−m) and 0 < m < K−1/β;
one positive solution x1∗ if c/d > eβ(K−m)/(K − m) and 0 < m < K − 1/β. The
relation of the functions f1(x) and f2(x) also can be seen in Fig. 1.

Let E = (x, y) be any positive equilibrium, then the Jacobian matrix of system (3) at
E is

JE =

(
1− 2x/K − ye−β(x−m)(1− β(x−m)) −(x−m)e−β(x−m)

yce−β(x−m)(1− β(x−m)) 0

)
, (7)
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Fig. 1. The possible cases about the solutions of Eq. (5).

where y = x(1− x/K)eβ(x−m)/(x−m). Then we have

det(JE) =
dβx

x−m

(
x

K
− 1

)(
x−m− 1

β

)
,

tr(JE) = −
[m(1 + xβ)− x2β]K + x[(x−m)(1 + xβ)−m)]

K(x−m)
.

One can see that det(JE∗) = 0, thus, E∗ is a degenerate singularity. Together with
det(JE∗

1
) > 0 and det(JE∗

2
) < 0, we obtain the results of the lemma.

2.1 Properties of E∗

To discuss the properties of E∗ of system (3) in detail, we need the following proposition.

Proposition 1. (See [11].) By changes of coordinates and a rescaling of time, system

ẋ = y,

ẏ = x2 + c30x
3 + c40x

4 + y
(
c21x

2 + c31x
3
)
+ y2

(
c22x

2 + c12x
)
+O

(∣∣(x, y)∣∣5)
is equivalently transformed to the system

Ẋ = Y,

Ẏ = X2 + (c31 − c30c21)X3Y +O
(∣∣(X,Y )

∣∣5).
About the properties of the degenerate equilibrium E∗, we have the following theo-

rem.

Theorem 1. Let 0 < m < K − 1/β and c/d = eβ. Then E∗ is a unique degenerate
equilibrium. More precisely:

• when m 6= K/2− 1/β, E∗ is a saddle-node;
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• when m = K/2− 1/β and β 6= 2
√
2/K, E∗ is a cusp singularity of codimension 2;

• when m = K/2− 1/β and β = 2
√
2/K, E∗ is a cusp singularity of codimension 3.

Proof. By the transformationX = x−m−1/β and Y = y−(m+1/β)(β−(mβ+1/K)e,
we translate E∗ to the origin, then system (3) can be rewritten as (still denote X , Y as
x, y)

ẋ =

(
1− 2

K

(
m+

1

β

))
x− y

eβ
+
m(K −m)β2 + (K − 2m)β − 3

2K
x2

+O
(∣∣(x, y)∣∣3),

ẏ =
(mβ + 1)(mβ + 1− βK)eβd

2K
x2 +O

(∣∣(x, y)∣∣3).
(8)

Since E∗ is multiplicity 2, then E∗ is a saddle node when m 6= K/2− 1/β.
When m = K/2− 1/β, system (8) can be written as

ẋ = − y

eβ
+

(Kβ)2 − 8

8K
x2 − Kβ3

12
x3 +

β

2e
x2y +

Kβ4

32
x4 − β2

3e
x3y

+O
(∣∣(x, y)∣∣5),

ẏ = −eKβ3d

8
x2 +

β4eKd

12
x3 − dβ2

2
x2y − Kβ5ed

32
x4 +

dβ3

3
x3y

+O
(∣∣(x, y)∣∣5).

(9)

In a small neighborhood of (0, 0), we perform the first change of coordinates X = x,
Y = −y/(eβ) + ((Kβ)2 − 8)/(8K)x2, then (9) becomes (rewrite X , Y as x, y)

ẋ = y − Kβ3

12
x3 − β2

2
x2y +

β2(3K2β2 − 16)

32K
x4 +

β3

3
x3y +O

(∣∣(x, y)∣∣5),
ẏ =

Kβ2d

8
x2 +

K2β2 − 8

4K
xy − Kβ3d

12
x3 − dβ2

2
x2y + w40x

4 + w31x
3y

+O
(∣∣(x, y)∣∣5),

(10)

where

w40 =
β2

2

(
β

3
− K2β3

24
+

3Kβ2d

16
− d

K

)
, w31 =

β3d

3
+
β2

K
− Kβ4

8
.

Notice that the coefficients of the terms x2 and xy in system (10) are not zero if
β 6= 2

√
2/K, hence, the equilibrium (0, 0) of system (10) is a cusp of codimension 2, as

used in [1, 15].
On the other hand, if β = 2

√
2/K, then (10) becomes

ẋ = y − 4
√
2

3K2
x3 − 4

K2
x2y +

2

K3
x4 +

16
√
2

3K3
x3y +O

(∣∣(x, y)∣∣5),
ẏ =

d

K
x2 − 4

√
2d

3K2
x3 − 4d

K2
x2y +

2d

K3
x4 +

16
√
2d

3K3
x3y +O

(∣∣(x, y)∣∣5).
http://www.mii.lt/NA
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Performing the second change of coordinates X = x + 4/(3K2)x3, Y = y − 4
√
2/

(3K2)x3 (rewrite X , Y as x, y), we have

ẋ = y +
2

K3
x4 +

16
√
2

3K3
x3y +O

(∣∣(x, y)∣∣5),
ẏ =

d

K
x2 − 4

√
2d

3K2
x3 − 4(d+

√
2)

K2
x2y − 2d

3K3
x4 +

16
√
2d

3K3
x3y

+O
(∣∣(x, y)∣∣5).

(11)

Taking the third change of coordinates X = x − 4
√
2/(3K3)x4, Y = y + 2/K3x4 +

O(|(x, y)|5) (rewrite X , Y as x, y), we obtain that

ẋ = y,

ẏ =
d

K
x2 − 4

√
2d

3K2
x3 − 4(d+

√
2)

K2
x2y − 2d

3K3
x4 +

8(2
√
2d+ 3)

3K3
x3y

+O
(∣∣(x, y)∣∣5).

Let X = (d/K)x, Y = (d/K)y, then above system can be transformed to (still denote
X , Y as x, y)

ẋ = y,

ẏ = x2 − 4
√
2

3d
x3 − 4(d+

√
2)

d2
x2y − 2

3d2
x4 +

8(2
√
2d+ 3)

3d3
x3y

+O
(∣∣(x, y)∣∣5).

(12)

It follows from the Proposition 1 that system (12) is equivalent to the system

Ẋ = Y,

Ẏ = X2 − 8

3d3
X3Y +O

(∣∣(x, y)∣∣5). (13)

By [3], we know that the equilibrium (0, 0) of system (13) is a cusp singularity of codi-
mension 3 due to −8/3d3 < 0. This completes the proof.

Remark. When system (3) has a cusp singularity (
√
2/β,

√
2e/2) of codimension 3, if

there exists an unfolding, then the unfolding of system (3) is equivalent to

ẋ = y,

ẏ = µ1 + µ2y + µ3xy + x2 − x3y +O
(∣∣(x, y)∣∣5).

The bifurcation diagram of this form has been studied in [3].

3 Bifurcation analysis

In this section, we study all possible bifurcations of system (3) at its equilibria, which are
not hyperbolic.

Nonlinear Anal. Model. Control, 20(1):72–81
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3.1 Saddle-node bifurcation

From Lemma 2 and Theorem 1 we see that the unique positive equilibrium E∗ of sys-
tem (3) is a saddle-node when c/d = eβ, 0 < m < K − 1/β and m 6= K/2 − 1/β.
Notice that

lim
x̂→m+1/β

D(x̂)

= lim
x̂→m+1/β

(
tr(JÊ)

2 − 4 det(JÊ)
)
= tr(JE∗)

2 − 4 det(JE∗) > 0,

when m 6= K/2 − 1/β, together with the continuity and the differentiability of function
D(x̂), which lead to D(x1∗) > 0 when x1∗ is sufficiently near m+1/β. Also notice that
det(JE∗

1
) > 0 and det(JE∗

2
) < 0. Thus, when c/d passes eβ to the right-hand side, E∗

splits into a hyperbolic node E∗1 and a hyperbolic saddle E∗2 . Therefore, there is a saddle-
node bifurcation surface

SN =

{
(c, b, d,m):

c

d
= eβ, 0 < m < K − 1

β
, m 6= K

2
− 1

β

}
.

3.2 Bogdanov–Takens bifurcation

By Theorem 1, we know that system (3) has a cusp (K/2,Keβ/4) of codimension 2
when c/d = eβ, m = K/2 − 1/β and β 6= 2

√
2/K, in this section, we will choose

K and d as bifurcation parameters and show that system (3) exists the Bogdanov–Takens
bifurcation. Consider the system

ẋ = x

[
1− x

(
1

K
+ λ1

)]
− y(x−m)e−β(x−m),

ẏ = y
(
−d− λ2 + c(x−m)e−β(x−m)

)
,

(14)

where λ1 and λ2 are very small parameters.
Let X = x −K/2 and Y = y −Keβ/4. Then system (14) becomes (rewrite X , Y

as x, y)

ẋ = −K
2λ1
4
− λ1Kx−

y

eβ
− 8 + 8λ1 −K2β2

8K
x2 +O

(∣∣(x, y)∣∣3),
ẏ = −Keβλ2

4
− λ2y −

Kβ3de

8
x2 +O

(∣∣(x, y)∣∣3). (15)

Performing the transformations X = x and Y = −K2λ1/4 − λ1Kx − y/(eβ) −
(8 + 8λ1 − K2β2)/(8K)x2 + O(|(x, y)|3) and rewriting X , Y as x, y, system (15)
becomes

ẋ = y,

ẏ = n0 + n1x+ n2y + n3x
2 + n4xy +O

(∣∣(x, y, λ)∣∣3), (16)
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whereO(|(x, y, λ)|3) is a smooth function of x, y and λ = (λ1, λ2) at least of order three,
and

n0 = −λ2K
4

(λ1K − 1), n1 = −λ2λ1K, n2 = λ2 − λ1K,

n3 =
β2

8
(λ2 + d)K − λ2

(
λ1 +

1

K

)
, n4 = −2λ1 +

K2β2 − 8

4K
,

clearly, n3 > 0 and n4 > 0 (n4 < 0) for Kβ > 2
√
2 (Kβ < 2

√
2),

TakeX = x+n2/n4, Y = y and substituteX , Y into system (16) and writing (X,Y )
as (x, y), we get that

ẋ = y,

ẏ = m0 +m1x+ n3x
2 + n4xy +O

(∣∣(x, y, λ)∣∣3), (17)

where m0 = n0 − n1n2/n4 + n3n
2
2/n

2
4, m1 = n1 − 2n2n3/n4 and O(|(x, y, λ)|3) is

a smooth function of x, y and λ = (λ1, λ2) at least of order three.
Let X = (n24/n3)x, Y = (n34/n

2
3)y, t = (n3/n4)τ and write (X,Y, τ) as (x, y, t).

Then system (17) becomes

ẋ = y,

ẏ = τ1 + τ2x+ xy + x2 +O
(∣∣(x, y, λ)∣∣3), (18)

whereO(|(x, y, λ)|3) is a smooth function of x, y and λ = (λ1, λ2) at least of order three,
and

τ1 =
m0n

4
4

n33
, τ2 =

m1n
2
4

n23
.

Hence, for system (18), the following bifurcation curves exists in a small neighborhood
of the origin, see [6, 9].

Theorem 2. Assume c/d = eβ, m = K/2 − 1/β and βK 6= 2
√
2, then system (18)

admits the following bifurcations:
• the saddle-node bifurcation curve SN = {(λ1, λ2): τ1 = τ22 /4}, i.e., SN =
{(λ1, λ2): 4n3m0 = m2

1};
• the Hopf bifurcation curve H = {(λ1, λ2): τ1 = 0, τ2 < 0}, i.e., H = {(λ1, λ2):
m0 = 0, m1 < 0};

• the homoclinic bifurcation curve HL = {(λ1, λ2): τ1 = −6/25τ22 , τ2 < 0}, i.e.,
HL = {(λ1, λ2): 25m0n3 + 6m2

1 = 0, m1 < 0}.

Moreover, if βK > 2
√
2, then there exists a repelling B-T bifurcation; if 0 < βK <

2
√
2, then there exists an attracting B-T bifurcation.

Take β = 1, K = 3 and d = 2, then βK > 2
√
2. The repelling bifurcation diagram

is shown in Fig. 2.
Take β = 0.5,K = 3 and d = 2, then βK < 2

√
2. The attracting bifurcation diagram

is shown in Fig. 3.

Nonlinear Anal. Model. Control, 20(1):72–81
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Fig. 2. The repelling bifurcation curve of Theorem 2.
m1 < 0 lies in the left-hand side of m1 = 0.

Fig. 3. The attracting bifurcation curve of Theorem 2.
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