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Abstract. In this paper, decomposition of periodic orbits in bifurcation diagrams are derived in
unidimensional dynamics system xn+1 = f(xn; r), being f an unimodal function. We prove
a theorem, which states the necessary and sufficient conditions for the break-up of compound orbits
in their simpler constituents. A corollary to this theorem provides an algorithm for the compu-
tation of those orbits. This process closes the theoretical framework initiated in [J. San Martín,
M.J. Moscoso, A. González Gómez, Composition law of cardinal ordering permutations, Physica D,
239:1135–1146, 2010]. Theorem 1 of present work closes the theoretical frame of composition and
decomposition.
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1 Introduction

Dynamical systems underlie in any science we can imagine, from mathematical to social
sciences. Countless mathematical models have been developed to describe temporal evo-
lution of the world around us: planets orbiting the Sun, flow of water in a river, people
waving in a stadium, cells forming tissues in our body, cars moving along a road, etc.
As a consequence of the extraordinary variety of phenomena studied, there exists a huge
number of possible behaviors. An efficient way to address these issues is using symbolic
dynamics [3]. In that case, the dynamical systems are modeled in a discrete space, result-
ing of a partition of phase space into disjoint regions. Every region is labeled by a symbol.
System evolution is given by a sequence of symbols, each of them representing a region
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Compound orbits break-up 113

of the system. Although one might think that no crucial information about the system may
be obtained by this process there are some groundbreaking results in this subject. Special
attention should be given to pioneering works by Metropolis et al. [11] about symbolic
sequences and by Milnor and Thurston [12] who developed the kneading theory. In this
context, Byers seminal work [4] becomes useful for our work as we will show later. Byers
states the conditions an application has to fulfill to serve as a “model” for the behavior of
a more general set of functions. This result will endow our theorems with further reach
and generality than could be thought of at a first sight. In particular, kneading theory is
more easily understood when the dynamical system

x(n+ 1) = f
(
x(n)

)
(1)

is ruled by an unimodal function, the function we will work with in this paper. The
relationship between periodic orbits of unimodal functions (those we will focus on) and
kneading theory was given by Jonker [10]. Jonker found the precise relationship between
the periodicity of the orbit of a point and the periodicity of the invariant coordinate of that
point. Some tools we will need to harness the power of symbolic dynamics are periodic
orbits. They have a periodic symbolic sequence and play an important role in dynamical
systems, in particular the unstable ones as we will see later.

The composition law of Derrida et al. [7] allows the generation of a symbolic sequence
of complex structure from its constituents (periodic orbits). In particular, starting from
the symbolic sequence of the supercycle of period one it is possible to build up symbolic
sequences of Feigenbaum cascade orbits [8, 9]. So, one of the most important ways of
transition to chaos is characterized. But not only that, by using saddle-node bifurcation
cascades [15] and symbolic sequences of Feigenbaum cascade orbits, the structure of
chaotic bands of the bifurcation diagram is also characterized (see Fig. 1). Working with
an unimodal function, the symbolic sequence is obtained as follows: the critical point
of unimodal function is denoted by C, points located to the right of C are denoted R
(right) and the ones located to its left as L (left). However, if we label the points in
the orbit with natural numbers ordering their positions relative to each other, then every
periodic orbit can be associated with a permutation. There are permutations that give rise
to the visiting order in Feigenbaum cascade orbits [16] and there exists a composition law
of permutations [17] replacing the composition law of Derrida et al. Consequently, the
characterization of bifurcation diagram structure is given by permutations. We have just
outlined how to build up the bifurcation diagram from its constituents. From a mathemat-
ical point of view, however, it would be interesting to solve the inverse problem: what are
the constituents of a complex structure? More specifically, given a structure we would
like to answer two questions:

(i) Can we break down the structure? That is, is the structure made up of smaller
constituents?

(ii) If the answer to the first question is in the affirmative, how can we break down the
structure and what are its constituents?

In other words, we are looking for the necessary and sufficient conditions that allow
a structure to be decomposed into its constituents. That is the goal of this paper.

Nonlinear Anal. Model. Control, 20(1):112–131



114 J. San Martín et al.

Fig. 1. Canonical bifurcation diagram. 3, 3 · 2, 3 · 22 and 4-periodic windows are marked. Some Misiurewicz
points (A, B, C) where chaotic bands merge are shown above. A fractal structure can be observed in the
bifurcation diagram. Compound orbits generating this fractal structure can be splited by using the algorithm in
Section 4.

Solving the inverse problem of composition is already interesting because we com-
plete the composition-decomposition problem. But the most important consequence is
that the decomposition process is not limited to stable orbits; unstable orbits may also
be obtained from such a process. The understanding of unstable orbits (limit cycles) is
fundamental because they are the underlying skeleton of chaotic attractors [2, 6]. The
shorter the cycles, the better the approximation to the strange attractor [5], that is why it
is interesting to split large cycles into smaller constituents. On the other side, the unstable
orbits in the skeleton are the corner-stones of many chaos control techniques [13, 14]. To
implement theses techniques the unstable orbits need to be determined beforehand.

Orbital decomposition can also be applied to continuous dynamical systems. They
can be cast as discrete dynamical systems by using Poincaré section. Points of Poincaré
section corresponding to a continuous orbit lay out a periodic orbit in a discrete space. If
that orbit can be decomposed then the continuous orbit is a composed orbit. Decompo-
sition of these orbits is crucial to calculate Gutzwiller trace formula [21], which relates
spectrum of quantum system with periodic orbits of the equivalent semiclassical system.
Roughly speaking, decomposition law of periodic trajectories will be useful every time
cycle expansion techniques [1] are being used.

Decomposition law is also important from a practical or experimental point of view.
For example, if we have a 12-periodic orbit we may be interested in knowing if the orbit
is located in a primary period 12 window or in a period 3 window inside of a period 4
window (see Fig. 2).

The first appearance orbits in the chaotic bands of the logistic map bifurcation diagram
follow Sharkovsky’s ordering [20]. The decomposition of a q · 2p-periodic orbit within
the 2p-chaotic band (see Fig. 1) will lead to a period q orbit located within the 20-chaotic
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Compound orbits break-up 115

Fig. 2. Highlight of the 3-periodic window of Fig. 1. This window mimics the canonical bifurcation diagram
but repeated three times. The 3 · 4-periodic window is marked.

band and the 2p-periodic orbit of Feigenbaumn’s cascade [15]. It was Jonker [10] who
proved Sharkovsky’s theorem in the context of kneading theory, showing that kneading
theory underlies orbit composition processes.

A very intuitive way of looking at the decomposition process exists. If we have a pe-
riod hs orbit, that is with hs points, we can imagine that every point is a chair in a room.
The chairs are visited according to a permutation βs. We split the hs chairs into h rooms
with s chairs each. We visit the rooms in accordance to one permutation βh and every
time we visit the same room we sit down in a different chair of the room due to another
permutation βs. We must find βh and βs from βhs. We are going to solve this task by using
of couple of tricks. If we leave only one chair in every room the result would be like an
h-periodic orbit such that a point is located at the critical pointC of the unimodal function
f of (1) and the rest of points are located where f is either increasing or decreasing. The
chairs of a room located where f is increasing (decreasing) are mapped into the next
room preserving their relative location (flipped from right to left). So, we split the βhs
permutation into h rooms of s elements each, in such a way that images of these sets
(except one of them) are either preserved or flipped from right to left. The set whose
elements are neither preserved nor flipped will be βs, because they are the chairs of the
room associated with the critical point C.

This paper is organized as follows. Definitions and notations are introduced in Sec-
tion 2. Next, we prove decomposition theorem to solve the mentioned problems. Then we
develop an algorithm to implement the theorem. We then finish with our conclusions. We
will also show some examples to highlight how the theorems and algorithms work.

Nonlinear Anal. Model. Control, 20(1):112–131
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2 Definitions and notation

Let f : I → I be an unimodal map with critical point at C, that is, f is continuous
and strictly increasing (decreasing) on [a,C) = JL and strictly decreasing (increasing)
on (C, b] = JR. Without loss of generality it can be assumed the critical point C is
a maximum (see Fig. 3). So, f is decreasing in JR and increasing in JL. Let Oq =
{x1, . . . , xq} = {C, f(C), . . . , fq(C)} be a q-periodic supercycle of f and let {C∗

(1,q),
C∗

(2,q), . . . , C
∗
(q,q)} be the set that denotes the descending cardinality ordering of the

orbit Oq [16]. Let f(C∗
(i,q)) be the next to C∗

(i,q) (see [17]).

Definition 1. The natural number β(i, q), i = 1, . . . , q, will denote the ordinal position
of the cardinal point f(C(i,q)), i = 1, . . . , q. That is, f(C(i,q)) = C(β(i,q),q), i = 1, . . . , q
(see Fig. 4).

Remark 1. If c denotes the ordinal position of the critical point C of f as f(C) is in the
first position (see [16, Remark 1]), it results that β(c, q) = 1.

Definition 2. We denote as βq the permutation βq = (β(1, q) β(2, q) . . . β(q, q)).
βq will be called the next visiting permutation of Oq (see Fig. 4).

Remark 2. If the visiting order permutation is such that f(C(i,q)) = C(j,q), that is,
C(i,q) → C(j,q), we write (

· · · i · · ·
· · · j · · ·

)
,

Fig. 3. 12-periodic orbit O12 whose next visiting permutation is β12 = (12 11 10 9 3 2 1 4 5 6 7 8).
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Compound orbits break-up 117

Fig. 4. Given C(i,q), the second label “q” indicates the period of the orbit (in this case, q = 4). The first label
“i” denotes ordinal position (1 2 3 4) of the points on the orbit. According to the 4-periodic orbit shown in
the figure, the visiting order is C(1,4) → C(4,4) → C(3,4) → C(2,4) or, equivalently, f(C(1,4)) = C(4,4),
f(C(2,4)) = C(1,4), f(C(3,4)) = C(2,4) and f(C(4,4)) = C(3,4). According to Definition 1, f(C(i,q)) =
C(β(i,q),q), consequently, β(1, 4) = 4, β(2, 4) = 1, β(3, 4) = 2, β(4, 4) = 3. Hence, according to
Definition 2, β4 = (4 1 2 3).

then we reorder the pairs
(
i
j

)
in such a way that the index i has the natural order. For

example, let O4 be a 4-periodic orbit (see Fig. 4) with visiting order permutation

1→ 4→ 3→ 2,

so, we write 1 4 3 2
↓ ↓ ↓ ↓
4 3 2 1

 =⇒

1 2 3 4
↓ ↓ ↓ ↓
4 1 2 3

 .

After reordering we obtain the next visiting permutations

β4 =
(
4 1 2 3

)
.

Definition 3. Let βq be the next visiting permutation of Oq and let q = hs. We define
the j-box of Oq by Hj = {(j − 1)s + k; k = 1, . . . , s} for j = 1, . . . , h. We denote by
βq(Hj) the set given by βq(Hj) = {β((j − 1)s+ k, q); k = 1, . . . , s} (see Fig. 3).

In Fig. 3, by taking h = 3 and s = 4, the cardinalsC(1,12),C(2,12),C(3,12) andC(4,12)

are located in H1; cardinals C(5,12), C(6,12), C(7,12) and C(8,12) are located in H2, and
C(9,12), C(10,12), C(11,12) and C(12,12) are located in H3. From the visiting permutation

Nonlinear Anal. Model. Control, 20(1):112–131



118 J. San Martín et al.

it results 
H1 H2 H3

1 2 3 4
12 11 10 9

5 6 7 8
3 2 1 4

9 10 11 12
5 6 7 8

β1
12 β2

12 β3
12

 .

Definition 4. Let βq be the next visiting permutation of Oq and let q = hs. We denote
by (βjq) with j = 1, . . . , h

βjq =

(
(j − 1)s+ 1 . . . (j − 1)s+ s

β((j − 1)s+ 1, q) . . . β((j − 1)s+ s, q)

)
and βj(r, q) = β((j − 1)s+ r, q) with r = 1, . . . , s (see Fig. 3).

Definition 5. Let γn be a permutation of n elements. We define the inversion permutation
of γn, denoted by γ∗n, as the permutation given by γ∗n = (γ∗(1, n) . . . γ∗(n, n)) with

γ∗(i, n) = n+ 1− γ(i, n), i = 1, . . . , n.

Notice that if In = (I(1, n) . . . I(n, n)) is the identity permutation, then I∗n ◦ I∗n = In.

Definition 6. Let γn be a permutation of n elements. We define the conjugated permu-
tation of γn, denoted by γn, as the permutation given by γn = (γ(1, n) . . . γ(n, n))
with

γ(i, n) = n+ 1− γ(n+ 1− i, n), i = 1, . . . , n.

3 Theorem of periodic orbit decomposition

In order to obtain the decomposition theorem below, we need to revisit the composition
process and state it in terms of next visiting permutations.

LetOh,Os be supercycles of aC2-unimodal map f with next visiting permutations βh
and βs, respectively. The geometric meaning of composingOh andOs involves replacing
the h points of Oh by h boxes, with s points each, such that all points of a same box are
mapped into the same box. It is important to point out that boxes are visited consecutively
according to βh and that every time the same box is visited then the box points are visited
according to βs if fh has a maximum and according to βs if fh has a minimum (see [17]
for more details). As boxes (see Definition 3) Hi, i = 1, . . . , h, are visited according to
βh, we split the visit in two parts:

Hc → H1, (2)
H1 → · · · → Hi → · · · → Hc. (3)

In sequence (3), excluding Hc, boxes are located in JR or JL. Every time the orbit
leaves a box located in JL the points in that box are mapped according to the identity
permutation, Is, because f is increasing in JL. On the contrary, every time the orbit
leaves a box located in JR, the points in that box are mapped reverted from left to right
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Compound orbits break-up 119

because f is decreasing in JR, that is, they are linked by I∗s . As I∗s ◦ I∗s = Is it results
that H1 is linked with Hc by Is or I∗s . It only remains to know the link between Hc and
H1 of sequence (2) to close the orbit (see Fig. 3)

This is the geometrical mechanism underlying the proof of the following lemma. This
lemma is essential to prove the Theorem 1, which is the goal of this paper.

Lemma 1. Let Oh, Os be two supercycles of a C2-unimodal map f with next visiting
permutations βh and βs, respectively. Let c be such that β(c, h) = 1. If Ohs is the
supercycle resulting of composing Oh with Os, then its next visiting permutation

βhs =
(
β1(1, hs) . . . β1(s, hs) β2(1, hs) . . . β2(s, hs) . . .

βh(1, hs) βh(s, hs)
)

is given for all k = 1, . . . , s by:

(a) βi(k, hs) = β(i, h)s− (k − 1) if i = 1, . . . , c− 1;

(b) βc(k, hs) =

{
β(k, s) if i = c is odd,
β(s+ 1− k, s) if i = c is even;

(c) βi(k, hs) = (β(i, h)− 1)s+ k if i = c+ 1, . . . , h.

Proof. As ith box is preceded by (i− 1) boxes with s elements each, the elements of ith
box are given by (i− 1)s+ k, k = 1, . . . , s.

As ith box is mapped into β(i, h)th box, it results that the s elements of the ith box
are mapped into the s elements of the β(i, h)th box. In order to know the images of the
s elements in the ith box, we have to consider where the ith box is located:

(a) ith box located in JR, that is, i = 1, . . . , c− 1.

As f is strictly decreasing in JR, the order of the elements in ith box are reverted
from left to right after mapping into β(i, h)th box, that is,

(i− 1)s+ k → β(i, h)s− (k − 1) with k = 1, . . . , s,

so, βi(k, hs) = β(i, h)s− (k − 1) with k = 1, . . . , s if i = 1, . . . , c− 1.

(b) ith box located in JL, that is, i = c+ 1, . . . , h.

As f is strictly increasing in JL, the elements of ith box are mapped into the elements
of β(i, h)th box conserving their relative order, that is,

(i− 1)s+ k → (β(i, h)− 1)s+ k with k = 1, . . . , s,

so, βi(k, hs) = (β(i, h)− 1)s+ k with k = 1, . . . , s if i = c+ 1, . . . , h.

(c) The ith box is Hc, the so-called central box. The proof splits into two steps:

Nonlinear Anal. Model. Control, 20(1):112–131
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(c1) c is odd. As C is odd, the number of points of Oh located in JR is even
(in [17] this is said as the R-parity of I1, . . . , Ih−1 is even [17, Def. 2], so,
fh has a maximum [17, Lemma 3] and then the link of a point of the central
box with the next visiting point in this same box is given by βs as we have
just explained above. But the linking of these two points requires visiting all
boxes before they connect between themselves. Therefore, as the number of
Oh located in JR is even, if we set off H1 to reach Hc, we will have visited
an even number of boxes located in JR. Given that images of points located
in JR, where f is decreasing, are reverted from left to right and two reversion
are equivalent to an identity, it results that the s elements of H1 are linked with
the s elements of Hc by the identity permutation Is. So, we have to connect
the central box with the first one by an unknown permutation, γs, such that
Is ◦ γs = βs. Then γs = βs. So, the elements of the central box, given by
(c − 1)s + k, k = 1, . . . , s, are mapped into the elements of first box by βs,
that is,

(c− 1)s+ k → β(k, s) with k = 1, . . . , s,

so, βc(k, hs) = β(k, s) with k = 1, . . . , s if c is odd.

(c2) c is even. By a similar argument to the one given above, the elements of H1

and Hc are linked by I∗s given that there is an odd number of reversions.
Furthermore, the link of a point of the central box with the next visiting point
in this same box is given by βs because fh has a minimum [17] as we have just
explained above. So, we have to connect the central box with the first one by an
unknown permutation, γs, such that I∗s ◦γs = βs. Then I∗s ◦ I∗s ◦γs = I∗s ◦βs.
Since βs = I∗s ◦βs ◦I∗s , we have γs = βs ◦I∗s . So, βc(k, hs) = β(s+1−k, s)
with k = 1, . . . , s if c is even.

Remark 3. Notice that, under conditions of Lemma 1, ifOhs is the composed supercycle
of Oh with Os, when β(c, h) = 1 with c even, its next visiting permutation βhs =
(β(j, hs)) is given by

(i− 1)s+ k

β(i, h)s− (k − 1)︸ ︷︷ ︸
k=1,...,s
i=1,...,c−1

(c− 1)s+ k

β(s+ 1− k, s)︸ ︷︷ ︸
k=1,...,s
i=c

(i− 1)s+ k

(β(i, h)− 1)s+ k︸ ︷︷ ︸
k=1,...,s
i=c+1,...,h

 .

Notice also that if i < c, then βi(r + 1, hs) = βi(r, hs) − 1 for all r = 1, . . . , s − 1,
whereas if i > c, then βi(r + 1, hs) = βi(r, hs) + 1 for all r = 1, . . . , s − 1, and that
{βc(r, hs)}r=1,...,s ≡ {1, . . . , s}.

Our next step is to determine necessary and sufficient conditions in order to know
whether a periodic orbit is compound or not. Below, an algorithm will be given to break-
up periodic orbits into their constituent elements.

Remark 4. [ · ] means integer part of a real number.
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Theorem 1. Let Oq be a supercycle of a C2-unimodal map f with the next visiting
permutation βq = (β(1, q) . . . β(q, q)), and β(z, q) = 1. Let h, s ∈ N, be such that
q = hs. Oq is the composition of two supercycles Oh and Os if only if βq is given for all
k = 1, . . . , s by:

(a) βi(k, q) = βi(1, q)− (k − 1) if i = 1, . . . , [z/s];

(b) βi(k, q) = βi(1, q) + (k − 1) if i = [z/s] + 2, . . . , h;

(c) βi(k, q) =

{
β(k, s) if i = [z/s] + 1 is odd,
β(s+ 1− k, s) if i = [z/s] + 1 is even,

where β(k, s) is the kth element of a next visiting permutation, βs, of an orbit with
period s.

Proof. (⇒) Let Oq be the composition of two supercycles Oh and Os. Let βh and
βs be the next visiting permutations of Oh and Os, respectively. As β(z, q) = 1 then
β([z/s] + 1, h) = 1. If i 6= [z/s] + 1, by Lemma 1 we have

βi(k, q) =

{
β(i, h)s− (k − 1) if i = 1, . . . , [z/s],

(β(i, h)− 1)s+ k if i = [z/s] + 2, . . . , h.
(4)

It follows from (4)

βi(1, q) =

{
β(i, h)s if i = 1, . . . , [z/s],

(β(i, h)− 1)s+ 1 if i = [z/s] + 2, . . . , h.
(5)

After substituting (5) in Eq. (4), we get for i 6= [z/s] + 1

βi(k, q) =

{
βi(1, q)− (k − 1) if i = 1, . . . , [z/s],

βi(1, q) + (k − 1) if i = [z/s] + 2, . . . , h.
(6)

The case i = [z/s] + 1 follows directly from (b) in Lemma 1.

(⇐) We assume that βq satisfies conditions (a)–(c) of Theorem 1 and want to proof that
Oq is the composition of two supercycles Oh and Os. For this, we will build up two next
visiting permutations βs and βh whose composition is βq .

We define βs = (β(1, s) . . . β(s, s)), where

β(k, s) =

{
β[z/s]+1(k, q) if [z/s] + 1 is odd,
β[z/s]+1(s+ 1− k, q) if [z/s] + 1 is even.

(7)

As βq verifies condition (c) in Theorem 1, it results that (7) is a next visiting permutations
of a s-periodic orbit Os.

Nonlinear Anal. Model. Control, 20(1):112–131
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Now we define βh = (β(1, h) . . . β(h, h)) with

β(i, h) =


β((i− 1)s+ 1, q)/s, i = 1, . . . , [z/s],

1, i = [z/s] + 1,

β((i− 1)s+ 1, q) + (s− 1)/s, i = [z/s] + 2, . . . , h.

(8)

In order to prove that βh is a next visiting permutation, one of the things we have to prove
is that the set {β(i, h); i = 1, . . . , h} coincides with the set {1, . . . , h}. Let us study the
different values of i in (8).

• Let i = 1, . . . , [z/s]. According to (8), it results

β(i, h) =
β((i− 1)s+ 1, q)

s
. (9)

Given that, for every i = 1, . . . , h, there exists only one j ∈ {1, . . . , h} such that
βq(Hi) = Hj (see Appendix), it results that

β
(
(i− 1)s+ 1, q

)
= (j − 1)s+ r, r = 1, . . . , s. (10)

Taking into account (9) and (10), in order to prove that β(i, h) is a natural number,
let us see that β((i− 1)s+ 1, q) = (j − 1)s+ s. Let us assume it were false, that
is,

β
(
(i− 1)s+ 1, q

)
= (j − 1)s+ r for some r = 1, . . . , s− 1. (11)

Applying condition (a) for k = s and taking into account Definition 4, it yields

β
(
(i− 1)s+ s, q

)
= β

(
(i− 1)s+ 1, q

)
− (s− 1). (12)

Then from Eqs. (11) and (12) it results

β
(
(i− 1)s+ s, q

)
= (j − 1)s+ (r + 1− s) for some r = 1, . . . , s− 1. (13)

From (13), given that r+1−s 6 0, β((i−1)s+s, q) /∈ Hj , which is in contradiction
with βq(Hi) = Hj (see Appendix). So, β((i − 1)s + 1, q) = (j − 1)s + s and
replacing it in (9), we obtain

β(i, h) =
β((i− 1)s+ 1, q)

s
= j ∈ {1, . . . , h}. (14)

According to (c) of this theorem, it holds βq(H[z/s]+1) = H1. Given that i 6 [z/s],
it results that j 6= 1 in (14). Hence, j ∈ {2, . . . , h}.

• Let i = [z/s] + 2, . . . , h. Taking into account Definition 4 and condition (b) of this
theorem, it results from (8) that

β(i, h) =
β((i− 1)s+ s, q)

s
. (15)
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As β((i − 1)s + s, q) = (j − 1)s + s (proof is similar to the case i 6 [z/s]), it
results from (15) that, for every i > [z/s] + 2, there exists only one j ∈ {2, . . . , h}
such that β(i, h) = j. Furthermore, these j ∈ {2, . . . , h} are different from those
obtained for the case i 6 [z/s] (because, for every i = 1, . . . , h, there exists only
one j ∈ {1, . . . , h} such that βq(Hi) = Hj , see Appendix).

• Let i = [z/s] + 1. According to (c) of this theorem, βq(H[z/s]+1) = H1, that is,
j = 1.

Consequently, the set {β(i, h); i = 1, . . . , h} coincides with the set {1, . . . , h}.
Our final goal is to prove that Oq is the composition of Oh and Os, that is, Oq ≡ Ohs.
We denote by Oh the h-periodic orbit whose next visiting permutation is given by βh

(see Eq. 8). We denote by Os the orbit of period s, whose next visiting permutation is
given by βs (see Eq. 7).

According to Lemma 1, for i 6= [z/s] + 1, it holds

βi(k, hs) =

{
β(i, h)s− (k − 1), i = 1, . . . , [z/s],

(β(i, h)− 1)s+ k, i = [z/s] + 2, . . . , h.
(16)

By taking account (8), (16) is rewritten as

βi(k, hs) =

{
β((i− 1)s+ 1, q)− (k − 1), i = 1, . . . , [z/s],

β((i− 1)s+ 1, q) + (k − 1), i = [z/s] + 2, . . . , h.
(17)

According to Lemma 1, for i = [z/s] + 1, it holds

β[z/s]+1(k, hs) =

{
β(k, s), i = [z/s] + 1 is odd,
β(s+ 1− k, s), i = [z/s] + 1 is even.

(18)

By using (7), (18) is rewritten as

β[z/s]+1(k, hs) =

{
β[z/s]+1(k, q), i = [z/s] + 1 is odd,
β[z/s](s+ 1− (s+ 1− k), q), i = [z/s] + 1 is even,

(19)

so, β[z/s]+1(k, hs) = β[z/s]+1(k, q).
By hypothesis of the theorem both Ohs and Os are admissible orbits, it remains to

be seen that Oh is also an admissible one. By construction the h first elements of the
symbolic sequence of Ohs coincide with the symbolic sequence of Oh, therefore, by
using shift operator and the kneading theory if Oh were not an admissible orbit neither
Ohs would be [1, 2], that is a contradiction, consequently, Oh is an admissible orbit.

Therefore, βhs = βq . As βs and βh are the next visiting permutations of Os and Oh,
respectively, it yields that Oq is the composition of Oh and Os.

This decomposition of the logistic map orbits can be obtained from our theorem,
taking into account that the visiting order permutation of a periodic orbit of the logistic
map remains the same from the appearance of the orbit (in a period doubling bifurcation
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or in a saddle-node bifurcation) up to its disappearance (and, in particular, it remains the
same for the supercycle where our theorem applies).

Notice that Theorem 1 not only provides the decomposition of a compound periodic
orbit, but also it allows one to deduce what orbits are not decomposable because they
do not originate from the composition of two orbits (see Example 1, below). Given
that a compound orbit is associated with a window within a window (in the bifurcation
diagram), a non decomposable orbit is associated with a primary window. This is a direct
application of the theorem that distinguishes primary windows from windows within
windows.

Translation of Theorem 1 to plain language is as follows:

1. Split the next visiting permutation βq in h sets βiq , i = 1, . . . , h, with s elements
each. The set βiq containing β(z, q) = 1 is denoted as βcq .

2. The sets βiq located to the left of βcq must satisfy condition (a) of Theorem 1. In
plain language, condition (a) means that the elements in these sets are successively
decreasing natural numbers.

3. The sets βiq located to the right of βcq must satisfy condition (b) of Theorem 1. In
plain language, condition (b) means that the elements in these sets are successively
increasing natural numbers.

4. The set βcq must satisfy condition (c) of Theorem 1. In plain language, condition (c)
says that βcq determines the next visiting permutation of an admissible orbit of
period s.

Let us see this in detail along the following examples.

Example 1. Let the visiting sequence of the 15-periodic orbit be given by

1→ 15→ 8→ 7→ 9→ 6→ 10→ 5→ 11→ 4→ 12→ 3→ 13→ 2→ 14,

so, its next visiting permutations is

β15 =
(
15 14 13 12 11 10 9 7 6 5 4 3 2 1 8

)
. (20)

β15 can be decomposed as β3 ◦ β5 or β5 ◦ β3.

(a) If h = 3 and s = 5, we split β15 as

15 14 13 12 11 10 9 7 6 5 4 3 2 1 8

β1
15 β2

15 β3
15

.

β3
15 ≡ βc15 because it contains the number 1. From β3

15 it results β3(5, 15) = 8 >
s = 5. This is not the next visiting permutation of an admissible orbit of period 5,
so, this decomposition is not possible.

(b) If h = 5 and s = 3, we split β15 as

15 14 13 12 11 10 9 7 6 5 4 3 2 1 8

β1
15 β2

15 β3
15 β4

15 β5
15

.
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β5
15 ≡ βc15 because it contains the number 1. The elements of β3

15 are not succes-
sively decreasing natural numbers, so, this decomposition is not possible either.

Consequently, the O15 orbit given is not a composed orbit.

Example 2. Let the visiting sequence of the 12-periodic orbit (see Fig. 3) be given by

1→ 12→ 8→ 4→ 9→ 5→ 3→ 10→ 6→ 2→ 11→ 7,

so, its next visiting permutation of O12 is

β12 =
(
12 11 10 9 3 2 1 4 5 6 7 8

)
. (21)

β12 could be decomposed as β2 ◦ β6, β6 ◦ β2, β4 ◦ β3 or β3 ◦ β4.

1. If h = 2 and s = 6, we split β12 as

12 11 10 9 3 2 1 4 5 6 7 8

β1
12 β2

12

.

β2
12 ≡ βc12 because it contains the number 1. The elements of β1

12 are not successive,
hence, this decomposition is not possible.

2. If h = 6 and s = 2, we split β12 as

12 11 10 9 3 2 1 4 5 6 7 8

β1
12 β2

12 β3
12 β4

12 β5
12 β6

12

.

β4
12 ≡ βc12 because it contains the number 1. From β4

12 it results β4(2, 12) = 4 >
s = 2, so, this is not the visiting permutation of an admissible orbit of period 2.
This decomposition is not possible.

3. If h = 4 and s = 3, we split β12 as

12 11 10 9 3 2 1 4 5 6 7 8

β1
12 β2

12 β3
12 β4

12

.

β1
12 ≡ βc12 because it contains the number 1. The elements of β2

12 are not succes-
sive, so, the decomposition is still not possible.

4. If h = 3 and s = 4, we split β12 as

12 11 10 9 3 2 1 4 5 6 7 8

β1
12 β2

12 β3
12

.

β2
12 ≡ βc12 because it contains the number 1. The elements of β1

12 are succes-
sively decreasing natural numbers. The elements of β3

12 are successively increasing
natural numbers. β2

12 ≡ βc12 determine an order 4 permutation. It is still left to
determine β3 and β4 such that β12 = β3 ◦ β4. This will be done below after the
introduction of the corresponding algorithm (see Section 4).
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Notice that the factorization of a natural number is not unique. For instance, the
above compound 12-periodic orbit could be associated with: a 3-periodic window inside
a 4-periodic one, a 4-periodic inside a 3-periodic, a 2-periodic inside a 6-periodic, or
a 6-periodic inside the 2-chaotic band. Although we have not yet given a meaning to β3
and β4, the theorem gives the only admissible decomposition, that is, this 12-periodic
orbit is located inside a 4-periodic window within a 3-periodic window.

4 Algorithm

The following corollary to Theorem 1 provides a decomposition algorithm for compound
orbits.

Corollary 1. Let Oq be a supercycle of a C2-unimodal map f with the next visiting
permutation βq . Let z be such that β(z, q) = 1. If Oq is the result of composing two
supercycles Oh and Os, then the next visiting permutations βh and βs are given by

β(k, s) =

{
β[z/s]+1(k, q) if [z/s] + 1 is odd,
β[z/s]+1(s+ 1− k, q) if [z/s] + 1 is even

and

β(i, h) =


β((i− 1)s+ 1, q)/s, i = 1, . . . , [z/s],

1 i = [z/s] + 1,

β((i− 1)s+ s, q)/s, i = [z/s] + 2, . . . , h.

This corollary is direct consequence from (7), (8) and (15).
Theorem 1 determines how βq is decomposed as βq = βh ◦ βs. This corollary gives

the explicit expression of βh and βs.
Algorithm says, in plain language:

1. Split βq into h subsets βiq , i = 1, . . . , h, with s elements each. βiq containing
β(z, q) = 1 will be denoted βcq .

2. The next visiting permutation βs is given by the images of βcq (β̄cq) if c is odd (even).
Being β̄cq the mirror of βcq .

3. The next visiting permutation βh is obtained as follows:

(a) If βiq is placed to the left of βcq , divide the first element in βiq by s. Then assign
to i (from βiq) the number thus obtained.

(b) If βiq is placed to the right of βcq , divide the last element in βiq by s. Then assign
to i (from βiq) the number thus obtained.

(c) The number i such that βiq ≡ βcq gets assigned to number 1.

The permutation thus obtained will be the next visiting permutation βh.
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Example 3. According to Example 2, we know that the orbit O12, whose next visiting
permutation is

β12 =
(
12 11 10 9 3 2 1 4 5 6 7 8

)
,

can be splitted as β12 = β3 ◦ β4. We want to determinate β3 and β4 by using Corollary 1
(by using the algorithm in plain language).

According to Example 2, βc12 ≡ β2
12 = (3 2 1 4), the next visiting permutation is

either (
1 2 3 4
3 2 1 4

)
or

(
1 2 3 4
4 1 2 3

)
.

As c = 2 is even, we must take the second permutation, that is,

βs=4 =

(
1 2 3 4
4 1 2 3

)
.

We also have to calculate βh. According to the plain language algorithm, as s = 4, it
results

12 11 10 9 3 2 1 4 5 6 7 8

β1
12 β2

12 β3
12

⇓ ⇓ ⇓
i = 1 i = 2 i = 3

⇓ ⇓ ⇓
First element

s
=

12

4
= 3 1

Last element
s

=
8

4
= 2

Box to the left of βc12 Central box Box to the right of βc12

So,

βh=3 =

(
1 2 3
3 1 2

)
←− i

.

Example 4. Let the next visiting permutation of the 12-periodic orbit O12 be given by

β12 =
(
12 11 10 9 8 7 3 1 2 4 5 6

)
.

In a similar way as we did in Examples 1 and 2, we obtain the decomposition β12 =
β4 ◦ β3.

We write

12 11 10 9 8 7 3 1 2 4 5 6

β1
12 β2

12 β3
12 β4

12

.

β3
12 ≡ βc12 because it contains the number 1. As c ≡ 3 is odd, it results

βs=3 =

(
1 2 3
3 1 2

)
.
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According to the plain language algorithm, as s = 3, it results

12 11 10 9 8 7 3 1 2 4 5 6

β1
12 β2

12 βc12 ≡ β3
12 β4

12

⇓ ⇓ ⇓ ⇓
i = 1 i = 2 i = 3 i = 4

⇓ ⇓ ⇓ ⇓
First element

s
=

12

3
= 4

First element
s

=
9

3
= 3 1

Last element
s

=
6

3
= 2

Box to the left of βc12 Box to the left of βc12 Central box Box to the right of βc12

So,

βh=4 =

(
1 2 3 4
4 3 1 2

)
←− i

.

βh is an orbit of a period doubling cascade, therefore, β4 ◦ β3 represents an orbit
of a saddle-node bifurcation cascade [15] located in the 22-chaotic band (see the 3 · 22
window in Fig. 1). In general, when βh is an orbit of a period doubling cascade [16, 18],
the βh ◦ βs represents an orbit of a saddle-node bifurcation cascade. However, with the
same β3 and β4, the 12-periodic orbit given by β12 = β3 ◦ β4 would correspond to
a period-doubling cascade orbit within the 3-periodic window. This type of nuances are
very important to understand the onset of chaos [19].

5 Conclusion

If we had a compound hs-periodic orbit, we could decompose it in two orbits of peri-
ods h and s, respectively, according to Theorem 1. This process is the opposite to that
described in [17], where two orbits with periods h and s were composed to generate an
hs-periodic orbit. Therefore, Theorem 1 closes the theoretical frame of composition and
decomposition.

Theorem 1 states the necessary and sufficient conditions for the decomposition in
simpler orbits. Meanwhile, Corollary 1 provides an algorithm for the computation of those
orbits. As it was remarked in Section 3, Theorem 1 can be generalized using Byers’ results
in [4].

The decomposition theorems treated in this paper have an immediate application
(through Poincaré section) to those continuous physical systems showing bifurcation
diagrams similar that of Fig. 1.

Two periodic orbits (with h and s points in their respective Poincaré sections) can be
composed into another periodic orbit having hs points in their Poincaré map in accordance
with the composition theorem in [17] (or Lemma 1). Now the opposite result can also be
achieved using Theorem 1.

An s-periodic orbit inside the h-periodic window must follow a visiting order in its
Poincaré map that can be decomposed using decomposition Theorem 1: from a known
periodic orbit another two unique orbits can be described. This link between periodic
orbits (not only from simpler to more complex as studied in [17], but also from complex
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to simpler orbits as studied in this paper) imposes strong restrictions on a physical system
dependent on one control parameter, whose underlying origin must be studied.

Acknowledgments. The authors would like to thank the reviewers for their useful com-
ments and recommendations.

Appendix

Theorem A. Let Oq be an supercycle of a C2-unimodal map f with the next visiting
permutation βq = (β(1, q) β(2, q) . . . β(q, q)). If βq is given by:

(a) βi(k, q) = βi(1, q)− (k − 1) if i = 1, . . . , [z/s];

(b) βi(k, q) = βi(1, q) + (k − 1) if i = [z/s] + 2, . . . , h;

(c) βi(k, q) =

{
β(k, s) if i = [z/s] + 1 is odd,
β(s+ 1− k, s) if i = [z/s] + 1 is even

for all k = 1, . . . , s.
Then, for each i = 1, . . . , h, there exists only one j ∈ {1, . . . , h} such that

βq(Hi) =
{
β
(
(i− 1)s+ k, q

)
; k = 1, . . . , s

}
=
{

(j − 1)s+ r; r = 1 . . . , s
}

= Hj .

Furthermore,
h⋃
i=1

βq(Hi) =

h⋃
j=1

Hj = {1, . . . , hs}.

Proof. (i) Let i = [z/s] + 1. From (c) it results that βq(Hi) = βq(H[z/s]+1) = H1.

(ii) Let i 6= [z/s] + 1. The proof is by contradiction. We suppose that βq(Hi) 6= Hj ,
j = 1, . . . , h.

Let i < [z/s] + 1 (for i > [z/s] + 1, the proof is similar). As βq(Hi) 6= Hj and
βq maps s successive elements to s successive elements (see item (a) in Theorem 1), it
results (

β(i− 1)s+ 1, q
)
6= ṡ and

(
β(i− 1)s+ s, q

)
6= ṡ

(where ṡ denotes a multiple of s), consequently,(
β(i− 1)s+ 1, q

)
= ns+ r, r < s, n, r ∈ N. (A.1)

Taking into account (A.1), item (a) in Theorem 1 and Definition 4, it results(
β(i− 1)s+ s, q

)
= ns+ r − (s− 1), r < s, n, r ∈ N. (A.2)

As βq takes every value in {1, 2, . . . , hs}, it results from (A.1) and (A.2) that

{1, . . . , hs} = A ∪ βq(Hi) ∪B,
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where

A =
{

1, . . . , ns+ r − (s− 1)− 1
}
, B = {ns+ r + 1, . . . , hs},

βq(Hi) =
{
ns+ r − (s− 1), . . . ns+ r

}
.

Notice that the cardinality of the sets A and B are, respectively, (n − 1)s + r and
(h − n)s − (r − 1). Except for Hi, the images of the other boxes will be mapped into
s successive elements either in A or in B (see (a) and (b) in Theorem A). Consequently,
the elements of A and B will be exhausted but, for r elements in A and s− (r− 1) in B,
therefore, the image of some boxes will not be formed by successive elements, which is
in contradiction with the definition of βq .

From items (i) and (ii) above it results

h⋃
i=1

βq(Hi) =

h⋃
j=1

Hj = {1, . . . , hs},

where it has been taken into account that, as βq is a permutation for every i = 1, . . . , h,
there exists only one j = 1, . . . , h such that βq(Hi) = Hj .
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