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are established.

Keywords: delay parabolic equation, Banach spaces, positive operators, stability estimates,
nonlocal conditions.

1 Introduction

Delay parabolic equations (DPEs) have important applications in a wide range of ap-
plications such as physics, chemistry, biology and ecology and other fields. For exam-
ple, diffusion problems where the current state depends upon an earlier one give rise to
parabolic equations with delay. In mathematical modeling, DPEs are used together with
boundary conditions specifying the solution on the boundary of the domain. Dirichlet
and Neumann conditions are examples of classical boundary conditions (see [1] and the
references given therein). In some cases, classical boundary conditions cannot describe
process or phenomenon precisely. Therefore, mathematical models of various physical,
chemical, biological or environmental processes often involve nonclassical conditions.
Such conditions usually are identified as nonlocal boundary conditions and reflect sit-
vations when the data on the domain boundary cannot be measured directly, or when
the data on the boundary depend on the data inside the domain. The well-posedness of
various nonlocal boundary value problems for partial differential and difference equations
has been studied extensively by many researchers (see [1-12] and the references given
therein).
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Identification problems take an important place in applied sciences and engineering
applications and have been studied by many authors (see [13-20] and the references
given therein). Solving the direct problem permits the computation of various system
outputs of physical interest. On the other hand, when some of the required inputs are
not available we may instead be able to determine the missing inputs from outputs that
are measured rather than computed by formulating and solving an appropriate inverse
problem. In particular, when the missing input is unknown source term in the partial
differential equation, the problem is called a source identification problem. The theory
and applications of source identification problems for partial differential equations were
given in various papers (see [21-23] and the references given therein). The well-posedness
of the unknown source identification problem for a parabolic equation has been well-
investigated when the unknown function p is dependent on space variable (see [24—29]
and the references given therein). Nevertheless when the unknown function p is dependent
on t the well-posedness of the source identification problem for a parabolic equation was
investigated in [30-34].

The initial-boundary value problems for delay partial differential equations when
the delay term is an operator of lower order with respect to other operator term were
widely investigated (see [35-38] and the references given therein). In the case where
the delay term is an operator of the same order with respect to other operator term is
studied mainly if H is a Hilbert space (see, for example, [39] and the references given
therein). In fact, there are very few papers which allow E to be a general Banach space
(see [40—44]) and in these works, authors look only for partial differential equations under
regular data. Moreover, approximate solutions of the delay parabolic equations in the case
where the delay term is a simple operator of the same order with respect to other operator
term were studied recently in papers [45—49]. However, the well-posedness of the source
identification problem for a delay parabolic equation is not well-investigated (see [50]). In
this paper, we investigate the source identification problem for a delay parabolic equation
with nonlocal conditions

8u(8tt, x) — () 8215;152, z) 82u(ta;2w,x)
+pt)g(x) + f(t,z), 0<zx<l, 0<t<oo,
uw(t,0) = u(t,l), u.(t,0)=u.(t,l), 0<t< o0,
u(t,x) =p(t,x), 0<x<l, —w<t<O,
u(t,z*) =p(t), 0<z" <, 0<t< oo,

ou(t,z) —bla(z)

—ou(t —w,x)

e))

where u(t, ) and p(t) are unknown functions, p(t), ¢(t, ), a(x), and f(t, x) are suffi-
ciently smooth functions, a(z) > § > 0, b € R! and o > 0 is a sufficiently large number
with assuming that:

(a) g(z) is a sufficiently smooth function,
(b) ¢(x) and ¢’ (z) are periodic with length [,
(© q(z7) #0.
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In the present study, the source identification problem (1) for a delay parabolic equa-
tion with nonlocal conditions is investigated. The stability estimates in Holder norms for
the solution of this problem are established.

2 Preliminaries. Main results

To formulate our results, we introduce the Banach space ce [0,1], @« € (0,1), of all
continuous functions ¢(z) defined on [0, I] with ¢(0) = ¢(1) satisfying a Holder condition
for which the following norm is finite:

[9(z 4+ h) — ¢()|
o = max x)| + su .
I9llce 0. 0<z<l|¢( ) o<acarhsl he

With the help of the positive operator A we introduce the fractional spaces E, =
E,(E,A),0 < a < 1, consisting of all v € E for which the following norm is finite [51]:

vl 2, = llvlle + sup \' =[] Ae o[ .. 2
A>0

In the present paper, C'([—w, 0], E') stands for the Banach space of all abstract continuous
functions ¢(t) defined on [—w, 0] with values in E equipped with the norm

lelle(-wo,B) = _max el 5

and L;([0,00), E) stands for the Banach space of all strongly measurable E-valued
functions v(¢) defined on [0, co) for which the following norm is finite:

(o)
ol oy = [ IO .
0

Finally, we introduce a differential operator A” defined by the formula
da?
with the domain D(A”) = {u € C?[0,1]: u(0) = u(l), v/ (0) = u'()}.

It is well known that A = A is the strongly positive operator in C0,!] of all
continuous functions ¢(z) defined on [0, ] with norm

[¢llco,y = max |¢(z)|

0<z<!

A%y = —a(x) + ou 3)

and, for this operator, the following estimates hold:
<Me™% >0, “

||eitA||C[0,l]aC[O,l] A
<Mt™%, t>0, 5)

|A%etA Hc[o,l]—>c[0,l]

where §, M > 0 [43].
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Positive constants have different values in time and they will be indicated with M. On
the other hand, M («, 3, . . .) is used to focus on the fact that the constant depends only on

a,B,....

Moreover, we have the following theorem on the structure of the fractional space
E, = E,(C[0,1], A®).

Theorem 1. For a € (0,1/2), the norms of the space E,(C|0,1], A”) and the Holder
space C*[0,1] are equivalent [43,51].

The main result of present paper is the following theorem on stability of (1) in spaces
C([0,00), C?[0,1]), a € (0,1/2).
Theorem 2. Assume that

l-a

M22—a”
Let o(t,z), pua(t,x) € C([~w,0],C%¢[0,1]), @(t,z) € C([-w,0],C?**+2[0,1)),
fi(t,z) € L1([0,00),C?%[0,1]), f(0,2) € C?*[0,1] and p'(t) € L1[0,00). Then, for
the solution of problem (1), the following stability estimates hold for all t > 0:

b < 6)

Hut(t)HéM[o,l] + H“(t)Hémﬂ[o,l] + [p(t)]
< M(a,6,0,a,2%,¢, D)™ @S0 o]l L o1 éoarepo + £l gajo

+ ||QDIHC([7QJ,O],C'2“[OJ]) + Hf/||L1([o,oo),é2a[o,z]) + ||p/||L1[0,oo)]v

_ [Adllg,

1
M(a,z*,q,1) = 0l<a< =

lg(z*)| 2

Here L1]0,00) stands for the Banach space of all strongly measurable functions v(t)
defined on [0, 00) for which the following norm is finite:

oo

11, 0,00) Z/}U(t)|dt.

0

Proof. Let us seek the substitution for the solution of the inverse problem in the following
form:

u(t’ I) = 77(75)(](35) + w(tv x)v (7N

where .
n(t) = [ p(s)ds.
/

Taking derivatives from (7), we get

ou(t,x)
ot
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and

0?u(t, z) d?q(z)  Q*w(t,x)
= (t .
Ox? n(t) da? + Ox2
Moreover, if we put x = x* in equation (1), we obtain
u(t,a*) = n(t)aa”) + wlt,a*) = p(t
and

8
q(z*) ®)

Taking derivative of both sides of (8) with respect to ¢, we achieve
p(t) —we(t, z”)
q(x*)
Using the triangle inequality and the identity (9), we obtain
1

lq(z*)]
1

lq(z*)|

for any ¢, t € [0,00). Using equations (1), (7), (8) and under the same assumptions on

g(z), one can show that w(t, x) is the solution of the following problem:

ow(t,x) O%w(t, )
o~ AT

p(t) = )

p(t)] < [|6' (@) + |we(t, 27)|] < (!p’(t)! + max \wt(t,x)!)

1
la(a")]
(o O+ [[we®]] g2a0,0) (10)

<

—ow(t,x) —b _a(x)w —op(t —w, x)}

2q(x
+ n(t) [a(x) 88(;(2 ) _ Uq(x)] +flt,z), 0<z<l,0<t<uw,
ow(t,z) O?w(t,x) [ O?w(t — w,x)
— = a(x)w —ow(t,z) —b _a(z)T —ow(t — w,x)] an

2q(x
+00) =ttt = )] [al0) 5~ oule)| + 5,3,
O<a<l, w<t<oo,
w(t,0) = w(t, 1), w.(t,0)=w.(t1), 0<t<oo,
w(0,z) = (0,2), 0<z<L.

So, the end of proof of Theorem is based on estimate (10) and the following theorem. [

Theorem 3. For the solution of problem (11), the following stability estimate holds for
anyt,t > 0:

Jwel| < M(a,d,0,0,2%, q, )M " 7q7l)t“|SD”C([fw,O],(:‘Q“*?[O,l]) +[|£(0)ll 20 o,

1
1l o ewonczeon T 1 1Ly 0,000,200 F 10 110,000 ], 0 << 3
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Proof. We can rewrite the problem (11) in the following abstract form:
wi(t) + Aw(t) = Bo(t —w) + (ag”" — oq)n(t) + f(t), 0<t<w,
wy(t) + Aw(t) = Bw(t — w) + (aq” — oq)[n(t) — bn(t —w)] + f(t), w <t < oo,
w(0) = ¢(0)

in a Banach space E = ([0, {] with the positive operator A = A* defined by formula (3)
and the unbounded operator B = bA*. Here f(t) = f(t,z) and w(t) = w(t,z) are,
respectively, known and unknown abstract functions defined on (0, 0o) with values in E =
C0,1], w(t, z*) is unknown scalar function defined on (0, c0), ¢ = ¢(z), ¢" = ¢"(x),
© = ¢(x) and a = a(x) are elements of E = C[0,{] and ¢(z*) is a real number. Finally,
we can rewrite condition (6) in the following form:

11—«

HBAil ||C[O,l]ﬁC[0,l] S M922—«

12)

forany ¢, t € [0,00). Letus 0 < ¢ < w. Then, using the Cauchy formula, we establish

¢
w(t) = e “p(0) + /e_(t_s)ABgo(s —w)ds
t 0 t

+ /e*(t*S)A(aq”— oq)n(s)ds + /e*(t*S)Af(s) ds.

0 0

Taking the derivative of both sides, we obtain that

¢
wy(t) = —Ae " p(0) — /Ae*(t*S)ABgo(s —w)ds

0
¢ ¢
- /Aef(tfs)A(aq"— oq)n(s)ds — /Aef(tfs)Af(s) ds
0 0

+ Bo(t — w) + (aq” — oq)n(t) + f(t).

Applying formulas

¢
- /Ae_(t_s)A(aq”— oq)n(s)ds
0
¢

= —(aq"— oq)n(t) + e " (aq” — oq)n(0) + / e =) ag” — oq)n/(s) ds
0

t ¢
= —(aq"— oq)n(t) + /ef(tfs)A(aq”— oq)p(s)ds — /Aef(tfs)ABgo(s —w)ds
0 0
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t

= —Bop(t —w) + e " Bp(—w) + /e_(t_S)ABap'(s —w)ds

, 0
R
0 t
— O+ + [
0
we get
¢
wy (t) :e*tAwt(OH—/e (t=5)ABy/ (s — w)ds
t 0 ¢
+ [ e 794 ag )p(s)ds + [ e 94 f/(s)
/ /
Here

w;(0) = —Ap(0) + Bo(—w) + £(0).

Applying this formula and the semigroup property, the condition (12) and the esti-
mates (4), (5), we obtain

Pt HAe_AAwt (t) HE

t
A o0 )+ A [ e ORI

X ||Aef(()‘+t75)/2)‘4<p’(3 —w) ||E ds

¢ t
= [ A O ag] o 4 2 [ a7
0

t
Al 1-a / MA 22
(

< orpral v Olle, + 35 s max [|¢/(t
0

A+t—5)272  o<t<w HEa

t

)\17(1
+ / e i (7O 1l ) a5 als,

t

[ G I, s

0
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t t
A
<o, + max O, + [ 175, a5+ A [ 1] as
0 0

—w<t<0

‘q x* | CQQ[OI

< (L4 bl) _max [[Ao(@)]|g, + [/ O], + _max 'O,

" | Ad| 5. 1A q||E
+/www&®+mw)!| ofds + 1 /H gz

forevery ¢t,0 < ¢t < w, and A\, A > 0. This shows that

g, < @410 _max [l Ae®]z, + [/ Ol5, +_max [le' O],

t t
! A o /
+/Hf(s)HEa ds + |||q(qx|*§| /|p(s)}d3
0 0
|Aglls, |
q||E,
+ |q(x*)| b/HwS(s)HéM[O,l] ds (13)

for every ¢, 0 < t < w. Applying the integral inequality, we obtain

we (2)

(1+[ol) wm<at>iOHA<P e, +11£O)5, + wmg’go\!@ N,

7 A
+/Hf/(s)||Ea || QHE
0

for every t, 0 < ¢ < w. Now we consider the case w < ¢t < oo. Applying the mathe-
matical induction, one can easily show that it is true for every ¢. Namely, assume that the
inequality

Jwo)] ., <

/| |d5 e(”AQHEa/\q(I*)Dt (14)

(L4 [of) _max [Ae@)] g, + [/ O)5, + max |'®]p,
nw ||A || nw

+ ’ ds + q Ea/ ’ d
s e G

istrue fort, (n—1)w <t < nw,n =1,2,3,..., for some n. Using the Cauchy formula,

lee®]lg, <

ellAdllea /la"Dt (15
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we establish

t
w(t) = e~y (nw) + /ef(tfs)ABw(s —w)ds

t

i
+/e‘(t‘s)A(aq” —aq)n(s)ds+/e_(t_s)Af(8) ds. (16)

nw

Taking the derivative of both sides with respect to ¢, we obtain

¢
wy(t) = —Ae” ) Ay (nw) — /Aef(tfs)ABw(s —w)ds

nw

¢ ¢
- /Aef(tfs)A(a,q”— oq)n(s)ds — A / e~ =94 1(5)ds

+ Bw(t — w) + (aq” — oq)n(t) + f(t).

Applying formulas

¢
—/Ae_(t_s)A(aq”— aq)n(s)ds

t

= —(aq" = aq)n(t) + e~ )4 (ag” — oq)n(nw) + / e~ =4 (ag" — oq)y/ (s) ds
t

= —(aq" - aq)n(t) + e (ag" — 5q)n(nw) +/ e~ =4 ag” — oq)p(s) ds,

nw

¢
- / Ae” ) ABy(s — w) ds
nw ‘

= —Buw(t — nw) + e~ ") A By (nw — w) + /e*(t*S)ABw’(s —w)ds

nw

t
- /Ae_(t_s)f(s) ds

t
= (0 + e () 1 [ () ds,
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we obtain
t

wy(t) = e~ Ay, (nw) + /ef(tfs)Bw'(s —w)ds

nw
t t

+ / =9 (ag” — oq)p(s) ds + / (=94 11 (5) ds
nw nw

Using this formula and the semigroup property, the condition (12) and the estimates (4),
(5), we obtain

Pt HAe_)‘Awt (t) HE

t
e [[lae O A

nw

< )\1—(1 HAe—(A+t—nw)Awt(nw)

I Hless

X HAe_((’\H_S)/?)Aw'(s - w) HE ds

: t
+>\1_a/||Ae—()\+t—s)AAqHE|p(S)|ds+>\1—a/HAe—()\-‘rt—s)Af(s)HEdS

Ao 1—a [ MA-eg2-o
< gl e, + 3o | Gy ds e o' =),

S A+t M22—a
t
)\1704 1 ,
+ | arim g e PO e lenen) dshale,
+/()\+t—1aHf g, ds

nw

t / A t I
< ma ol + [ 17O, as+ 202 [lre)as

nw—wt<nw

nw nw

IAqIIE
|| ()l g2 g0, 45

for every ¢, nw < t < nw + w, and A\, A > 0. This shows that

i@, <, max o), + [ 15, ds

nw—wt<nw

t
44|z, || (J”E
e G / s o @5 17
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for every ¢, nw < t < nw + w. Applying the integral inequality, we obtain

nwtw

mae '@, + [ 1)), as

nw—wt<nw

el s, <

nw
nw—+w

1 IAdlz, / 19/ (5)] ds | e(I14ala /e De—ne) (18)
lq(z*)]

nw

for every ¢, nw < t < nw + w. Applying estimates (15) and (18), we get

[we O]l s,

< / (1 Aqll 2o /1g(z™)]) (t—nw)
= nwfglgi(gnw Hw (t)HEae

nw—+w nw—+w

Aq Eq ™ —nw
||f'(5)|Ead5+|q(x|*) / |p/(5),dslc<nAq|Ea/lq< D (t=new)

nw nw

| Ap(t)|

_|_

< (140l

g T Oll5, _max [l'®)p,

max |
—w<t<0 —w<t<0

nw

, | Aql £, T / (I Aqll £, /1a(z*) )t
—|—O/Hf (S)HEQ ds + el 0/|p (s)|ds]e

nw—+w nw—+w

/ ||f/(S)HEadS+% / |p1(3),ds]eumqma/lq(m*n)(tnw)

* la(2")]

nw nw

<

(14 [bf) _max [Ae@)] g, + /O], + max |¢'®]p,

(n+1)w (n+1)w

, | Aql £, / (I Aqll 5, /1a(z*) )t
+ 0/ ||f(s)||Eads+ MED] 0/ |p(s)|ds]e B

for every ¢, nw < t < nw + w. This result and Theorem 1 completes the proof of
Theorem 2. O

3 Conclusion

In the present study, the source identification problem (1) for a delay parabolic equation
with nonlocal conditions is investigated. The stability estimates in Holder norms for the
solution of this problem are established. Moreover, applying the result of the mono-
graph [43], the high order of accuracy single-step difference schemes for the numerical

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 335-349
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solution of the source identification problem (1) for a delay parabolic equation with nonlo-
cal conditions can be presented. Of course, the stability estimates for the solution of these
difference schemes have been established without any assumptions about the grid steps.

Acknowledgment. The authors would like to thank Prof. Pavel Sobolevskii (Jerusalem,
Israel) and referees for their helpful suggestions to the improvement of our paper.
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