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Abstract. The boundary value problem of determining the parameter of an elliptic equation
')+ Au(t) = f(t)+p (0<t<T), uw0)=¢, uw(T)=17, uld)=¢ 0<A<T,
with a positive operator A in an arbitrary Banach space F is studied. The exact estimates are
obtained for the solution of this problem in Holder norms. Coercive stability estimates for the
solution of boundary value problems for multi-dimensional elliptic equations are established.
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1 Introduction

Theory and methods of solutions of inverse problems of determining the parameter of
a partial differential equations have been extensively studied by several researchers (see
[1-18] and references therein). It is important that several inverse problems of determining
the parameter of partial differential equations can be reduced to nonlocal boundary value
problems for partial differential equations (see [1-11] and the literature cited therein).
Well-posedness of nonlocal boundary value problems for elliptic type differential and
difference equations was studied in a number of papers (see [19-28] and the bibliography
therein). In the present study, we consider the following local boundary value problem for
an elliptic equation in an arbitrary Banach space E:

—ug(t) + Au(t) = f(t) +p, 0<t<T,

W0) =, wl)=v, u\)=& 0<A<T, M

with a positive operator A and the unknown parameter p. Here ¢, 1, & € D(A).
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Let us F(E) is the some space of smooth E-valued functions on [0, 7]. We say that
(u(t), p) is the solution of problem (1) in F(E) x E; if the following conditions are
fulfilled:

() u”’(t),Au(t) € F(E),p€ E1 C E}
(ii) (u(t),p) is satisfies the equation and boundary conditions (1).

Problem (1) was considered in [13]. The solvability and uniqueness under some con-
dition for operator A were proved. The well-posedness of this problem in a Hilbert space
with the self-adjoint operator A was studied in the paper [3].

By substituting

u(t) =v(t) + A7'p 2)
into (1), we can reduce inverse problem to solving auxiliary nonlocal boundary value
problem for v(t)

—’Utt(t) + Av(t) = f(t), 0<t<T,

3)
v(0) —v(A) = p —§&, o(T) —v(0) =¥ — .
Here p is the unknown element defined by formula
p = Ap — Av(0). “)

After substituting representation formula (see [4]) for solution of boundary value problem
for elliptic equation with Dirichlet condition to boundary conditions of auxiliary nonlocal
boundary value problem (3), we can get representation of its solution:

v(t) _ (I _ e—QTB)l{ [e—tB _ e—(2T—t)B},U(O) + [e—(T—t)B _ e—(T+t)B]U(T)

T
— [e7(T=0B _ ~(T+0B] (2) 1/ e~ (=) _ (T“)B]f(S)dS}
- 0
)7 L e R () as, )
0

where B = AY/2,
o(T) = v(0) + 4 = o, (6)
v(0) = —(I —e?B) (I — e T VB)TH([ 4 e BT) (e (T-NB 1 o~ TF)

T
1/ —(T'—s)B __ (T+S)B)f(8) ds _'_w _ §0‘|
0

+(I—e ) (I —e T NBY ([ 4 TB)
T

X ¢ —&4(2B) 1/ _l)‘ sIB _ _(M'S)B)f(s)ds]. ™
0
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We denote by C(F), the space of continuous E-valued functions p(t) defined on the
segment [0, T'] and equipped with the norm

lellcs —OgltszTHP ||E

We introduce notations for the following operators:

L, = —(I _ e’AB)_l(I _ ef(TfA)B)—l(I _ efTB)—l(ef(Tf)\)B _|_e7TB)
Loy = (I _ e—,\B)—l(I _ e—(T—,\)B)— (I+ —TB)

)

Ky(t) = —(T+e TB) (I — o (T=0B) (] — ¢B),
Kg(t) _ (I _ e—zTB)—l(e—(T—t)B _ e—(T-&-t)B).
Here 0 <t <T,0< A <T.

Applying (2), (4), (5), (6) and (7), we can obtain the following presentation of the
solution (u(t), p) of inverse problem (1):

T

u(T) —u(0) — (2B) ™! / (em(T=9)B _ o= (TH9)B) f(s) ds]

0

u(t) = K1 (t)Ll

T
— K1 (t)La |u(0) —u(X) + (2B) ! / (emA=sIB — o= (AF9)B) 1 () ds]
TO
+ Ko(t)u [ (T) — u(0 -1 / _(T_S)B — e_(T+s)B)f(s) ds]
0

+ (2B)—1 (e—‘t—s\B _ e—(t-‘rs)B)f(S) ds —|—’LL(0)7 Q)

St~

p = Au(0) — Ly | Au(T') —

M\tu

T
/ —s)B __ 67(T+S)B)f(s) d8‘|
0

— L2 AU(O) +

o | g

T
/ e —|A=s|B _ ,—(A+s)B )f( )d ] )
0

Let us Cyp"(E) = Cy'([0,T), E) (0 < o < 1) is the Banach space obtained by
completion of the set of smooth E-valued functions p(t) on [0, T in the norm

ot +7) — p(O)||le(T — ) (t + 1)
N +  su
||p||CoT (B) ”pHC(E) 0<t<t£r<T ™
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From positivity of operator A in Banach space F it follows that B = A'/? is strongly
positive operator in E. Hence, the operator — B is a generator of an analytic semigroup
exp{—tB} (t > 0) with exponentially decreasing norm (see [29]) as ¢ — oo, i.e., for
some M (B) € [1,400), a(B) € (0,+00) and t > 0, the following estimates are valid:

| exp(—tB)HEﬁE < M(B)exp(—a(B)t), (10)
|tBexp(—tB)| ,_, , < M(B)exp(—a(B)t), (11)
(I —exp(—2TB)) ||, < M(B)(1 — exp(—2Ta(B)t)) . (12)

Let us give lemmas which we need in future.

Lemmal. Forany0 <t <t+7 < T and0 < a < 1, one has inequality [29]

a
|| exp(~tB) — exp(—(t +7)B) || y_, x < M(tliT)a’ (13)
where M does not depend on o, t and T.
Lemma 2. The following inequalities hold:
|Lillp—E < M, [ La|le < M, (14)
K1)l <M, |[K()lp-p <M, 0<t<T, (15)
1K1 (tullogemy) < Mllulle, K2 (t)ullcge ) MIIUHE, 0<t<T. (16)

Proof. Inequalities (14) and (15) directly follows from (10), (11), (12) and (13). Let us
prove (16). For 0 <t <t + 7, we have

(K1(t+7) — K1(t))u
= (1) [ TP 08) (o)
(Fa(t + 1) — Ka(t))u
_ (I _ eszB)fl [(ef(Tftf'r)B _ ef(Tft)B) _ (ef(tjtr)B _ e—tB)qu.
Applying (10), (11), (12) and (13), we can get, for 0 < t < ¢t + T,

13 (¢ +7) = Ka(0)ull p < [T +e7™) 7 g pllle™” =m0

4 Hef(Tft)B _ e*(T*t*T)BHE_)E] HUHE

< M| s + e | Ml a7

| (Rt + 1) = Koa(®))ul| < [|(T = e72) | [l — =P
+[lem 08 — e EIBY L lluls

,]_a

< M|+ g Ml

From last inequalities, (15) and definition of space C’g‘jqo‘ (E) we obtain (16). O

(18)
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In the present paper, the exact estimates for the solution of problem (1) in the Holder
norms are obtained. In applications, the exact estimates are established for the solu-
tion of the boundary value problems for multi-dimensional elliptic equations with the
parameter.

2 Cy7(E)-estimates for the solution of (1)

Theorem 1. Assume that A is a positive operator in Banach space E. Let u(0),u()),
uw(T) € D(A) and f(t) € Cy3"(E), 0 < o < 1. Then the following estimates are
satisfied for the solution (u(t), p) of inverse problem (1) in C(E) x E:

lulleqey < M{Ju()| 5 + [[u)]| 5 + [[u(D)] 5 + 1 fllow)], (19)
147" Pl < M[|la(O)][ 5 + [uW)] g + D) | g + 1 leom); (20)

Iplle < M| [[Au©)]  + [[4u(V] g + [[Au(D)]

1

+ m”f”q‘fﬁ(p;) ; (2D

where M is independent on o, u(0), u(X), w(T') and f(t).
Proof. First, we estimate u. We can rewrite (8) in the following form:

u(t) = (—K1(t) Ly — K1(t) Ly — Ko (t) + T)u(0) 4+ Ky (t) Lau(A)

+ (K1(t) L1 + Ko (1)) u(T) + [(—K1(t) L1 — Ko(t))e~T=D8 1]

t
x (2B)~! /e’(t’s)B (I—e ?P)f(s)ds
0

+ (—Kl(t)Ll _ Kg(t))(2B)_1 / (e—(T—s)B _ e—(T+s)B)f(S) ds

T
+ (23)7167%3 /ef(sft)B(I _ ef2tB)f(8) ds
t

A
— K (t)L(2B)~* / (e_()‘_S)B - e_()‘+S)B)f(s) ds
OT
— Ky (t)L(2B)~! / (e_(S_A)B - e_()‘+s)B)f(s) ds
. A
= Qk(®). (22)
k=1
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By using Caushy—Schwarz and triangle inequalities, we have

Rz < KOl g p (11l om + L2l ) + [K2(8)]| 5, + 1]{[(0)]
Qe < KD o gl L2l 5 [V [

Qs ()l < KL O] ooy gl Eall 2+ ([ B2 ()] o, o] (T -

Applying (14), (15), we get

Q)| < M[uOl g Q] < Ml[uNlp,  [[Qs@)]]; < MJu(T)]] -
Now we estimate (Q4(t). From Caushy—Schwarz and triangle inequalities it follows that

HQ4 HE [HKl ||E—>E||L1HE—>E+HKQ(t)||E—>E||67(T7t)BHE—>E+1]

E7

B g [Pl T e
0

By using (10), (13)-(15), we obtain that
[Qu®)|| 5 < I flleem)

In a exactly similar manner, we can get inequalities for Qs (t), Qg (t):
1@z < I flloey,  |Qs®|; < I flewm
Now let us estimate (Q7(t). It is easy to see that

1@ < 1K Ol o, pllL2ll o8 ]|2B) | o 12B) 7 5

A

<[ e+ e ) ds e
0

By using (10), (14), (15), we get

HQ? HE I flleE
In a similar manner, we can obtain estimate for Qg (¢ )
Q| < I fllee).-
Combining estimates for Qx(t), k = 1,...,8, we obtain estimate (19).

Second, we estimate A1 p. We can rewrite (9) in the following form:

p=(I+ Ly — Ly)Au(0) — Ly Au(\) — L1 Au(T)

T
B
FLiy [P e THI) ) ds
0
B T
_ LQE (ef(/\fs)B — e AF8)B | o= (s=N)B _ ef(/\+s)B)f(5) ds. (23)
A
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A7 'p = (I+ Ly — La)u(0) — Lou(N) — Lyu(T)

+L,(2B)! (e*(T*S)B — e*(T“)B)f(s) ds

_ L2(2B)_1 (e—()\—s)B _ e—()\-i-s)B + e—(s—k)B _ e—(/\-l-s)B)f(s) ds. (24)

Y — g T

From (24), (10), (11), (14), (15), Caushy—Schwarz and triangle inequalities it follows that

1A=l < [L+ 11l + [ Lall o8] [u(0)]| , + | Lall o ]| u(N)|
+ | Lille=pl[w(D)] g + L lle—E||2B) | 5 5
T

X / (||ei(T?S)BHE—)E + Hei(Tﬂ)BHE_)E) ds || fllc(e)
0

+ L2l £l 2B) 7| g sl flew)
A

[ 097yt e8], ) s
0

X

A
[P O ) s
0

< M ([ 5 + [Nl g + oD 5 + 1 Fles)-
Third, we estimate p. Applying (13)—(15), (23), we show estimate (21):

Iple < (1+ | Lille—e + 1L2] p—5) [ Au(0)]|
+ | L2l g e || Au(N)]| 5 + 1 L1l 2 e || Au(T) ||, + M| fllcE)

T
1
kel [ B8 - )50 - SO s
0
1 A
Fliallsory [ IBE OB 70 - S0 pds
0

T
1
Fliallsory [ IBE2 OB 700 - S0 pds
A

< 801 ([ Au(O)| g + 400+ A0l + o e )

Therefore, Theorem 1 is proved. O
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Now we will study the well-posedness of problem (1) in the space Cy7+" (E).

Theorem 2. Assume that A is a positive operator in Banach space E. Let u(0),u()),
w(T) € D(A) and f(t) € Cy37'(E), 0 < o < 1. For the solution (u(t),p) of inverse
problem (1) in Cy2™ (E) x E, the coercive inequality

H“H’|chﬂ(E) + [[Aull oy ) + lIplle

< M| 4u(0) |+ [ | + 40D+

m”f”cg;*(p:) (25)

holds, where M is independent of o, u(0), w(\), w(T') and f(t).
Proof. By using (22), we can get
Au(t) = (7K1(t)L1 - Kl (t)Lg - Kg(t) + I)AU(O) + K1 (t)LQAU()\)

+ (K1(t) Ly + Ka(t)) Au(T) + [(—K1(t) L1 — Ky (t))e (705 4 1]

X

SR

/e—(t—s)B(I — e 2B) ds f(1)(— K1 (t) L1 — Ks(1))

B
X 5 / (e_(T_S)B — e_(T+3)B) ds f(¢)
t

T
+ ge—%B /e—(s—t)B(I _ e—2tB) de(t)
¢
B A
— K (t)L2§ / (ef(/\fs)B ef()‘jLs)B) dsf(t)
0
B T
- Kl(t)LQE / (em(=NB _ o= (AF9)B) g f(1)
b\
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T
B
~Ki(t)Lag / (e7 (VB — o= (9B ((s) — (1)) ds
13 A
= Si(t). (26)
i=1
Let us estimate S;(t), ¢ = 1,..., 13, separately. We start with S (¢). From esimates

(14), (15) it follows that, for 0 <t < T,

1810l < (K1) o gl Eal o + [[ K@) o, gll L2l 22
+H[E®) oy + 1) [ Au(0)]]
< MHAu(O)HE.

Further, by using (17), (18) and triangle inequality, we show that, for 0 < ¢t <t+7 < T,
HS1(t + 7') - Sl(t)HE

S (Kt +7)|| g = 1K1 D) g ) (Kl 2o 2 + | L2l o B)
+ (HKQ(t_FT)HEHE - HK2(t)HEHE))HAu(O)HE

TOC TOC

< (g + o 4wl

So, we have proved

181l gy (my < M| Au(0)]| -

In a similar manner, we can establish estimates for So(¢) and S3(¢):

1S2llcoe () < M| Au(N)]| 3]l cese () < M| Au(T)|| -

T

Now let us estimate S4. It easy to show that

S4(t) = [(—Kl(t)Ll — Kg(t))e_(T_t)B + I] (I - e_tB)Qf(t).

N =

From last one, applying (15) and (10), we can get that, for 0 < ¢t < T,

1
[8:@)] 5 < 5O g gl Lall oo + [ Ko (@) |5 +1)

+ (1 + 2HeitB||E—>E + ||672tB||E—>E)||f”E
<M flle < M| fllege(m)-

From this inequality we have

ax [|Sa(0)]| g < M fllog o).
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Now we estimate Sy(t + 7) — Sy (¢). Since
Sy(t+17)— S4(t)
= L=t ) = K (0) Ly — (Kot +7) - Ka(0)

—(T—t—r)B(I e—(t+T)B)2f(t+T)

5( K1 (t)Ly — Ka(t)) (e~ @—t-DB 4 o=(T+0BY (] _ o=7B) f(¢ 4 1)
%(e _e (t+T)B) (21 — o (t+T)B _ P f(t+ 1)
%K ) TP (Y 4 (1 etP]
x (f(t f(t + r)),
it follows that
I$u(t+7) - a0,

< S(UE G+ 1) = KOl g, ol Eall o + [l +7) — Ko
Xl Ty =GB g+
(B o Il + a0 )
x (e T8 e T T = el +
L e aced B e TR T T o]
4 51O 5 gl Eallsos + [[Ka)
1= eI I ) = SO

for0 <t <t+ 7 < T. From last estimate and (10), (13)—(15), (17), (18) we obtain that

HE—>E)

||I—e

o) 1T =P lpp

TOL ,7_01

Iate+ ) = Su0l < M (G + 7pege ) M lesie o

Therefore, we have proved

[1Sallceye () < M fllcepe
For Ss, Sg, S7, S, we have

Ss(t) = = [(—=K1(t) Ly — Ka(8))] (I — e TB)? £ (1),

( —(T+)B _

j95)
=
—
~
=
|
[\DM—‘[\DM—‘

—2tB + e—(T+3t)B _ e_4tB)f(t),
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1
Se(t) = —5 KL (0L (1 - e P) 1 (),
Sg(t) = _%Kl(t)b (emTVE [ 4 em(THVE 4 e=228) (1),
In a similar manner we can show estimates for S5 (t), Sg(t), S7(t), Ss(¢):

M| fllege )
M| fllege ey-

195llceemy < M fllees= ez 1S6llege (e

NN

<
<

)
157llcee ) < M fllege gy, 1Sl (m)

Now we estimate Sg. We can rewrite Sg in the form

So(t) = [(~ K1 () Ly — Ka(t))e™ TP 4 [)(I — e~ CT=20B) (] _ ¢=2TB)

e e—2TB)_1§(I _ e—(2T—2t)B)
[t e 500 - o) as

— [(=K1(t)Ly — Ka(t))e TP 4 I] (1 — e~ CT20B) 71 (1 — e 2TB) (1),

where
Wi(t) = (1- eszB)flg(I B 67(2T72t)B) /ef(tfs)B (I — e 2B)(f(s) — f(1)) ds.
0

For operator W (t), the following estimates are valid (see [29, pp. 213-218, (5.17), (5.19)]):

ax WO g < Mlfllogs ), @7
Wlleee e < M| flloge ) (28)

Applying (10), (12), (14), (15), (27), we can get that, for 0 < ¢t < T,

||S9(t)HE < ((HKl(t)HEaE”LlHEﬁE + HK2(t)||E—>E)He_(T_t)BHE—m + 1)
X ||(I - e_(2T_2t)B)71HE—>EH(I - e_2TB)HE—>EHW(t)HE—>E

< M| flleese m)-

T

By using (10), (12), (14), (15), (28), we obtain
1Sl ez sy < (1K1 gl Ealp—p + K@) g o)l T8 5 +1)
) [[(1 = e @T=20B) N (T =2 TP) |l W g )

< M| fllesse(m)-

T
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So, we have showed that

[Sollceez) < M| flloge &)

T

Estimates S1g, S11, S12 and S13 will be established in the same manner. Hence, we have

[Suillegemy < M| fllesemy, — ISullegem < M flloge )
[S12llceemy < Ml flloge iy, ISislleae ey < M fllese k)
Finally, combining estimates S, K = 1,...,13, and inequality (21), we get estimate

||AUHch*“(E)

< 01w, + 4] + 40T+

al_a)chgTv“(E)}

By the triangle inequality, this last inequality, (21) and differential equation of problem (1)
yields

[u"(®)]] e (E)
1

< 8|40+ [ Au)] . + 4D g + s e o]

Therefore, Theorem 2 is proved. O

We denote by C3%(E) = C55*([0,T), E), 0 < a < 1, the Banach space obtained
by completion of the set of smooth E-valued functions p(t) on [0, T in the norm

p(t+7)—p@®)lE . N N
1olges = oo+ swp  WEFD =p@le e (44 7)ay.
or 0<t<t+7<T T

In exactly similar manner as Theorem 1, we can establish the following result.

Theorem 3. Suppose that A is a positive operator in Banach space E; u(0), u(\), u(T) €
D(A) and f(t) € Cgi*(E), 0 < o < 1. For the solution (u(t),p) of inverse problem (1)
in Cg3 (E) x E, the coercive inequality

iy + 140l G iy +

1
< M Au(O) | + 4] + AT g + s | €9

holds, where M is independent of o, u(0), w(\), w(T) and f(t).

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 350-366
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3 Applications

In this section, we consider applications of abstract Theorems 1 and 2. First, we consider
the boundary value problem on the range {0 < t < T, = € R"} for 2m-order multidi-
mensional elliptic equation

ol
“un(ta) + Y (@) g+ dult, @) = f(t,2) + pla),

|7|=2m

reER™ 0<t<T,
u(0,2) = p(z), uw(T,z)=1v(), ulz)=E,=), zcR"

(30)

where a,(x) and ¢(z), ¥(z), () are given sufficiently smooth functions and a..(x) > 0,
0 > 0 is the sufficiently large number.
Suppose that the symbol

B*(¢)= > ap(@)(iG)" -+ (i¢a)™, ¢ =((1se-05Gn) € R,

|r|=2m

of the differential operator of the form

Y ol
B* = Z ar(x)m (€2

|r|=2m
acting on functions defined on the space R", satisfies the inequalities
0 < Mi[¢P™ < (=1)™B*(¢) < Ma¢]*™ < o0

for ¢ # 0. So, we have boundary value problem in a Banach space E = C*(R"™) of
all continuous bounded functions defined on R™ satisfying a Holder condition with the
indicator p € (0, 1) and with a strongly positive operator A* = B® + §I defined by (31).

Theorem 4. For the solution of boundary value problem (30), the following coercive
estimate is valid:

Iy,

ar(fﬂ)m + Ipllon (rm

Coz™ (CH(R™))

"l
ozt ... 0z

lulloggee ongrey + D

|r|=2m

M (1)
S o — o) Wlezgeecnim) +M(u>{ 3

h |r|=2m
>

|r|=2m

ar(x)

CH(R™)

olrle

ar() oxit ... 0z

ally

+ - mr. ~ =
oxi' ... 0z

Cr(R™)

ar(x)

)

CH(Rn):|

[r|=2m

where 0 < o < 1,0 < p < 1, M(p) is independent of o, p(x), £(z), ¥(x) and f(t,x).
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The proof of Theorem 4 is based on the abstract Theorems 1, 2 and the positivity of the
operator A* in C*(R™), the structure of the fractional spaces F,((A%)Y/2, C(R™)) [29]
and the coercivity inequality for an elliptic operator A* in C*(R™) [30].

Second, let {2 = (0,1) x - - - x (0, 1) be the open cube in the n-dimensional Euclidean
space with boundary S, 2 = 2US. In [0, T x £2, we consider the mixed boundary value
problem for multidimensional elliptic equation

—ug(t, x) Zar — —|— ou(t,x) = f(t,z) + p(x),

x_whn7ﬁeﬂm<t<ﬂ (32)

’U,(O,CL') = (p(.’t), u(Tv .’E) = 1/’(»’”% u()‘ax) = 5(1')7 x € {2,
u(t,x) =0, =x€S8,

where a,.(z) (a,(x) > 0,2 € 2) and p(x), ¥(x), £(z) (x € ) are sufficiently smooth
functions, & > 0 is the sufficiently large number.

We denote by Cgl( ) (8 = (B1,---,5n)), the Banach spaces of all continuous
functions satisfying a Holder condition with the indicator 8 and with weight xf 1=
x; — h;)P, 0 < x; < x; + hy < 1,1 < i < n, which equipped with the norm

||f||c’gl(ﬁ) = Hf||C(§)+ sup |f(m17amn)_f(w1+h17axn+hn)|
0Lz <xz;+h;<1
1<ig<n

n Bi
z; .
Xll(}“) (1—3?1‘—]1@‘)6’
=1

It is known that the differential expression
Tu = Z ar(x —|— du(t,x) (33)

defines a positive operator A* acting on 001( ) with domain D(A*) C Cgff (2 and
satisfying the condition v = 0 on S. Therefore, using results of abstract Theorems 1
and 2, we can obtain the following statement.

Theorem S. For the solution of boundary value problem (32), the following coercive
estimate is satisfied:

ar(z

||U||C2+a a C“ (Q)) + Z + ||pHC’6‘1(ﬁ)

Co™ (CE1(2))

ar(x)

n

M ()
< m”f lezgee o @y + M) [Z

r=1
+ Z

0%
Ox?

CHH (@)
+

8%
ar(2) 55 o132

. (34)

ar

Céi“(rz)}
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where 0 < a < 1, o= (po1,y -+, ), 0 < iy < 1, 1 < i < n. M(p) is independent of a,
o(x), §(x), Y(x) and f(t, ).

Third, in [0, T] x {2, we consider the mixed boundary value problem for the multidi-
mensional elliptic equation

n 2
—ug(t, z) — Zar(x)% +ou(t,z) = f(t,z) +px), z€2,0<t<T,

w(0,7) = p(x), w(T,z)=1v(), ul\z)=~E), z€0, (35

The differential expression (33) defines a positive operator A* acting on Cgl (2) with

domain D(A*) c C3f P (£2) and satisfying the condition du/87 = 0 on S. Therefore,
we can use results of abstract Theorems 1 and 2 to get the following theorem.

Theorem 6. For the solution of boundary value problem (35), the coercive estimate (34)
holds.

4 Conclusion

In the present paper, the well-posedness of the boundary value abstract elliptic problem
with the unknown parameter in Holder spaces with a weight is established. In practice,
new Schauder type exact estimates in Holder norms for the solution of three boundary
value problems for elliptic equations with the unknown parameter are obtained. More-
over, applying the result of the monograph [29] the high order of accuracy two-step
difference schemes for the numerical solution of the boundary value elliptic problem with
the unknown parameter can be presented. Of course, the coercive stability estimates for
the solution of these difference schemes have been established without any assumptions
about the grid steps.
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