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Abstract. We consider the Poisson equation in a rectangular domain. Instead of the classical
specification of boundary data, we impose an integral constraints on the inner stripe adjacent to
boundary having the width £. The corresponding finite-difference scheme is constructed on a mesh,
which selection does not depend on the value £. It is proved the unique solvability of the scheme. An
a priori estimate of the discretization error is obtained with the help of energy inequality method. It
is proved that the scheme is convergent with the convergence rate of order s — 1, when the exact
solution belongs to the fractional Sobolev space of order s (1 < 5 < 3).
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1 Introduction

Nonlocal boundary-value problems naturally arise in the mathematical modeling of many
problems of ecology, physics, and engineering, when it is impossible to determine the
boundary values of the unknown function (see, e.g., [1-5] and the references therein).
At the same time, they are a very interesting generalization of classical boundary-value
problems (see, e.g., [6]). The investigation of boundary-value problems with integral
conditions goes back to Cannon [7]. The systematic investigation of a certain class of
spatial nonlocal problems was carried out by Bitsadze and Samarskii [8]. Later, for elliptic
equations, were posed and analyzed nonlocal boundary-value problems of various types
(see, e.g., [9-14]).

In [15], we considered the nonlocal problem for the Poisson equation, when the
Dirichlet-Neumann conditions are posed on a pair of adjacent sides of a rectangle, and
integral constraints fé’“ u(z)dxy = 0, k = 1,2, were given instead of classical boundary
conditions on the other pair. It is proved that corresponding difference scheme converges
in the energy norm at the rate O(|h|*~1), when the desired solution belongs to the Sobolev
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space W3 (1 < s < 3). The proof bases on procedure of obtaining convergence estimate
(compatible with smoothness of the exact solution) developed by Samarskii et al. [16]
(see, also [17, 18]).

In this paper, we study the case, when the classical boundary conditions are com-
pletely replaced by nonlocal ones:

0%y 0%u

B T 9] 1
o2 T o3 flz), zeL, (D
Ek k
/u(m) dz, =0, / u(z)der, =0, 0< @3k <lsg—g, k=1,2, )
0 le—&k

where 2 = {(z1,22): 0 < zx < I, k = 1,2} be the rectangle; I = max{ly, l2}. We
assume that the solution u of the nonlocal boundary-value problem (1), (2) belongs to the
fractional-order Sobolev space W3 (§2), s > 1. For the corresponding difference scheme,
estimate of convergence similar to [15], is obtained. Besides the fact that the operator of
the difference scheme is not positive definite, basic difficulties comparing with [15] are
as follows:

e It is not required that points with coordinates &, or [, — & belong to the mesh,
which complicates investigation;

e Full disregard of classical boundary conditions complicates obtaining a priori esti-
mates.

2 Finite-difference scheme and main results

Consider the following grid domains on 2: & = ® X @y, w = Wy X wa, Where @, =
{xk,ik = irhr: 1 =0,1,...,ng, hp = lk/nk}, W = wg N (O,Ik), w,j, = Wi N (O,Zk],
hy, = hy, for xy, € wy, hy, = hy/2 for xy, = 0, Iy, |h| = (h? + h3)/2.

For the values of net function in several points, we apply the notation y;; =y(ih1, jho).
When it does not lead to ambiguity, for simplicity, we use the notations y; = y(ihy, x2),
y; = y(@1, jha).

We define the finite-difference operators
(x4 hry) — () . v(z) —v(z — hgry)

Tk ) T — y k:1,2,
Lk hk: Lk hk

where 7y, is the unit vector on the xj, axis.
Let
&= (mi +0p)h, 0< 0, <1, hyy <& <Ui/2, k=1,2,

where my, is positive integer.
By H we denote the set of all discrete functions v = v(x), defined on the grid & and
satisfying conditions

P'v)=0, P'(v)=0, z2€m, P'(v)=0, P'(v)=0, z1€w, 3)
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where
- .- h 01h
P'(v) =Y havij 71(”ij + Vmyj) + 12 =((2 = 01)Vmyj + 010m, 115,
i=0
ma
. h O2h
P (vi) =Y hovij — ?2(%'0 + Vim,) + % ((2 = 2)vim, + 0205 ms41),
=0

. o h
P'(vj) := Z hivij — %(Um—ml,j + Un,yj)

i=ni—mi

alhl
+ 9 ((2 - el)vnlfmlqj + elvnlfmlfl-,j)’
P - h @ ) )
(vi) Z 2Vij B (”l,nz—mz + Viny)

We need the following averaging operators for functions defined on {2:

1 r1+hy

Tlu(x) = ﬁ / (hl — |.’L‘1 — tl\)u(tl,xg) dtl,
1.’E1—h1
] zo+ho

TQ’LL(.’E) = ﬁ / (h2 — |.’E2 — tQDU(.’El,tQ) dt2.

2
z3—ha

We approximate the problem (1), (2) by the difference scheme

Ay:_% xewlxw27 y€H7 (4)
where
A=A + Ao, Aoy =Yz, 2., p:=TT5f.

Theorem 1. A solution of difference scheme (4) exists and is unique.

Indeed, according to the Lemma 7, the homogeneous problem Ay = 0 has only trivial
solution y = 0. Therefore, the nonhomogeneous problem is uniquely solvable.

Theorem 2. Let a solution u(x) of the problem (1), (2) belong to the space W3 (12),

s > 1. Then the convergence rate of the difference scheme (4) in the discrete weighted
W -norm is determined by the estimate

ly = wllwi o < el ulwg o), 1<s<3 (5)
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3 Auxiliary statements

Lemma 1. For every discrete function v € H, the following identities hold:
P'(vi) =0, P'(v;)=0, i=0,n.

Proof. Indeed,

P"(vo) = P"(vo) + P" (v, )

mg—l

h
= Y ha(voj +vm, ;) + 32(@00 + Vomy + Umi0 + Umyms)
j=1
Ozhs
+ ((2 = 02)v0my + 0200,ma+1 + (2 = 02)Vmyms + 020y mat1)-

2

Hence using the relation

mo—1 mi—1 mi—1
Z (voj + Vmyj) = Z (Vio + Vim,) + Z 02 ((2 = 62)Vim, + 020 my11)
i=1 i=1 i=1

mao 1
= > 02— 00)vmj + 010, 415),
j=1

which follows from the equality

TVLQ—l m1—1

hg Z 'P/(Uj) :hl Z 75”(1]1‘)7
j=1 =1

we obtain

L (w0) = 2 (P (00) + P (uma) + Q= @ ©

1
w
Here

mi—1
Q:= 2 92 ( Z Vim, + U0m2 + Um1m2)>
myp—1
+ 9% ( Z Vi mo+1 + UO,szrl + Uml’m2+1)>
mo— 1
— 91 2 — 91 < Z Um,j + Umlo +vm1m2)>

mo— 1 1
2
— 07 Z Umy41,j T Um1+1 0+ Vmy+1,my) |-
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By applying nonlocal conditions we see that
Q= —0102(2—02)((2 — 01)Vmyms + 010m, +1,m,)
—0105((2 = 01) Vi mat1 + 010y +1,ma+1)
+ 601052 —04) ((2 — 02)Umym, + Hgvml_,mﬁl)
+ 0?02((2 — 02) Uy +1,mp + 02Um1+17m2+1) =0.

From here and (6) follows the first identity of Lemma 1. The proof of the last part leads
analogously. O

We define the weight functions

Zk_lhik7 ik:1727"'>mk7
27 &k
) 1, t=mg+2,...,n —mp — 1,
p*) = p®) (ixhy) L
(nk—zk—i— )? Zk:nk—mk+1,...,nk,
2
1—025}?7 i = my + 1, i = ng — my,
%7 ik:O7nk7
ihy P
_ _ . ) Zk:_1727"'7mk7
50 = 50 (kg = 4 _
1, ik=mr+1,...,n —mg —1,
7(7%_5?)}%7 ik =N —Mkgy...,NE — 1

In H, we introduce the inner product and norm as
v) =3 mha (PN + 0Py, |yl = ()"

Let, in addition,

(ya U)w - Z hlhgyl},
IVyl? = Z hhap™ pt + 3 hihap®p (ys,)?,

wl X W2 w1 Xw;

93y = Il + 19312,

é(ihwz‘j —hy ch—o Ykj + %(%’j + Y05)), 0<i<my,

Gy = ¥ij, m1+1<i<ng —m —1,

é((nl - i)hﬂ/ij — R Y kg + R Wi+ Ynyg)), ma—ma < i<y,
é(thyzg ho Zk o Yik + (yzj + yzo)) 0< ] < ma,
Ggyij =4 Yij, M2+ 1<1<ng—mo—1,

é((n2 - j)h2ylg ha Zk —; Yik + (ym + me)) ng —mg < Jj < na.
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Lemma 2. Let grid functions v(x),y(x) be defined on @, and y(x) satisfy the conditions
75’(y) = 0, 75’(y) = O7 To9 € We OF ’P"(y) = O, 75”(3/) = 0, T € W1.

Then
Z hivz, e, Gry = — Z hip™M vz, vz,

W w;:

for k=1 ork = 2, respectively.

Proof. Using the summation by parts, we obtain

Z hl(vi1z1)iG1yi = - Z hlp(l)(lhl)(vi1>z(yf1)l + (Uil)m1+1G1ym17 (7)
=1

=1
ny—mi—1 niy—mi
Z hl(vi1w1)iG1yi = - Z hl(vil)i(yfl)i + (vi’l)nlfml Yni—ma
t=mi+1 i=mi+1
- (vil)mﬁ‘l Ymys ®)
nyp—1 n1
Z hi (Va0 )iGrys = — Z hlp(l)(ihl)(%l)i(vil)i
i=ni—mi 1=ni1—mi+1
- (vil)nl—m1 Glynl—m1' (9)

Adding the equalities (7)—(9) and applying following from the nonlocal conditions
identities

02h2 02h?
Glym1 =Ym, + 21T11(yi1)m1+17 Glyrufml =Yni—-mi — 21511 (yil)nlfmlﬁ

we verify the validity of the Lemma 2 in the case k = 1. The case k¥ = 2 may be proved
analogously. O

Lemma 3. If a grid function y(z), defined on w, satisfies the conditions
P'y)=0, P'y)=0, a2€m or P'(y)=0, P'(y) =0, @ €am,

then
7
3 E M y? < E hiyGry < E g™y
W W

Wk

for k =1ork = 2, respectively.
Proof. 1t may be showed that the identity

ni—1

ny—1 h2 mi ny—mq—1 h2
Z h1yi;Gryi; = ?1 Zlyzzj + Z v+ ?1 Z (n1 —i)y;;
i—1 Lzt i=mi41 L S ——
hi 2 52 &2
+8—&(y0j+ymj—5 — 5%) (10)
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holds, where

mi ni
k=0 k=ni1—m1

Let us note that, according to nonlocal conditions,
S = (1 - 01)2ym1j - Q%ymﬂrl,j'
In addition, the inequality
S2 < (1= 00y, + 01y, 1y = A (11)
follows from
A= > ((1-01)*+67)A— 5 = (1—01)°07 (Ymj + Ym,+1,5)° = 0.
We can obtain analogously that
82<(1— 91)2%2“%1’], + efyfhfml,l,j. (12)

Adding inequalities (11), (12) and replacing in the right-hand side (1 — 6;)? < m;
and 07 < & /hy, we obtain

h? . N myh? h
87511(52 52> < 81511 (yznlj + yrzlrmhj) + gl(yfnlﬂ,j + yiﬁmrlg)

I~
< gZthl(- )yz‘Qj'
i=0

From this inequality and (10) follows the validity of Lemma 3 in the case £ = 1. We can
consider the case k = 2 analogously. O

Lemma 4. If a grid function y(z), defined on w, satisfies the conditions
P'y)=0, P'y)=0, a2€m or P'(y)=0, P'(y) =0, @ €am,

then
> hwy® By hip®yi,
W wt
k

for k =1 ork = 2, respectively.

Proof. For arbitrary y(x), defined on @, the identity

ny I
Ity =Y Myl =T + 5 (v, + Y-y (13)
=0
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is true, where

my . 1 ni—mi 1
=1 i=mi+1

ni

1
+ ), M <”1 —i+ 2> (v7 —vi1)-

i=ni1—mi+1

Let us estimate this sum.

If
ni—msi 2
Ji —Zhg( —> Yz, + Z hg(—H' )yihi
i=mq+1
ni 1 2
sy at(n-ivg) R
i1=ni1—mi+1

then

ni 1/2 n1
1
|J] < ( E ha (i +yi—1>2) (J)'V? < 3 E ha(yi + yi—1)® + 2.1
i=1 i=1

1
<5 lwlity + 2.
Applying this inequality to (13), we have
Iyl < 490 + 1 (v, + Yy —om,)- (14)

From the nonlocal condition follows

miy - 1 H%hl
§Ym, = Zhl [ 5 (Yi —yi-1) — T(ymlJrl — Ymy )
i=1

and, therefore,

2 2 0 h’% 2
yml = Zh 9617 ; + 9 Yz, ,mi+1 (15)

Based on the nonlocal condltlon, we have as well

2 1 S > 033 ,
ynl—ml < 5 Z h (nl —i+ 2) xl, ; + 2 yil,nl—ml . (16)

i=ni1—mi+1

From (14) with the help of (15), (16) we obtain

ni

) <9zl’”1h2. 1\ , 9, 12 R
||?JH(1)\7Z =5 )Yt 5 Z K |

i=ni—mi+1

ni—mq
+ l2 Z hlyxl 7 815 92h2 (y:%hm+1 + ygl,nlfml) .
i=mi+1
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If we increase the first and second sums by multiplication on the quantity 1;/(2&;) > 1

and apply the inequality
2 2
PRI 9(1 - 91}“)
86 4 26,
in the summands with the indices ¢ = m1 + 1, ny —my, we will be sure that the Lemma 4
is true. O]

Lemma 5. If a grid function y(x), defined on @, satisfies the conditions
P'ly)=0, Py)=0, a2€® or P'(y)=0, P'(y)=0, 1€,

then
thaky thkpky, k=12

fork=1ork =2, respectlvely.
Proof. Let

y h h
S = k—ohlyk — %(yi + %), Zhlyk — = (Wi +Yn,)-

According to the definition of the operator G,

ny— 1 nlfmlfl
hy
Z hl Glyz = Z ) (Zhlyz SZ)Q + Z hl(yi)2
=1 5 i=mi1+1
oy A2
+ Z %((nl l)yl Sl)
i=ni—mai 1

We have from here

nlfl 2 ma 2h ny—mi;— 1 7’7,171 2h1
> hi(Giy)® < Z )2 )+ >0 hw)+ > (- i)*hiy?
i=1 g t=mi+1 i=ni—mq 51
2hy . " 2hy
+Z 521 S+ Y 5—;<Si)2. a7
z—nl—ml 1

It is not difficult to verify that

Zhl (Si)? <m1 + ;>h1(Sml)2 - ihj(z - ;)(yl +%i-1)(Si + Si1).

‘We have from here

my 3 ) - ) ,
2;h1(5i)2<(4m1+1)h1(5m1)2+22h1(h1(i—2)(yi+yi1)) Cas
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Noting that
s 2 hioo 2
(Smy)” < §<ym1 + Ynmit1)

we obtain from (18)

mi mi
2> hiSP <8 hii&ay? + 3yl 1 + hivg. (19)

We can obtain analogously that

nlfl ny— 1
2 ) m(S)?<8 D by — )&y + 3yl 1 B2 (20)
1=ni—mi 1=nj1—mi1

From the inequalities (17), (19), (20) follows validity of the Lemma 5 in the case
k = 1. We can consider the case k = 2 analogously. O

Lemma 6. For everyy € H, the following inequalities hold:

7
gl Vol < (=4y, GrGay)o < [[Vy)?, @)

8
Hy||%,v21(p7w) < oAy, G1G2y),,, c= - + 12

Proof. Based on the Lemma 2,

(~Ay, GrGay)o = Y hihapMys, Goyay + D hihop®ys,Grys,.
erMQ wlxw;

Taking into account in addition following from the Lemma 3 inequalities

Z hhap™ p® (ya,)?

w1><w2
Z hihopPyz, Grys, < Z hihap™p® (yz,)?,
w1 Xwy 1 Xwy

Z hihaptp® (yz,)?

wl X W2
Z h1h20(1)yi1G2%1 < Z hlhgp(l)ﬁ@)(yil)Q,
wi xws wi X @2

we ensure the validity for the first inequality of lemma.
According to Lemma 4,

lyl* < el Vyll?, e = max(13;13).

From here and (21) it follows Lemma 6. O
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To determine the convergence rate of the finite-difference scheme (4), we apply the
following lemma.
Lemma 7. Assume that the linear functional n(u) is bounded in W3 (E), where s = 5+¢,
5 is an integer, 0 < € < 1, and n(P) = 0 for every polynomial P of degree < 5
in two variables. Then there exists a constant ¢, independent of u, such that |n(u)| <
C||U||W;(E)-

This lemma is a particular case of Dupont—Scott approximation theorem [19] and it
represents a generalization of the Bramble—Hilbert lemma [20] (see also [16, p. 29]).

4 The problem for the error

Let us define on the particular subintervals the components of approximation errors for
the integral conditions (2):

Jho
. h .
Gij = / u(ihy, ta) dty — ;(Ui,jfl +uij), JF ma+1, ng—mao,
(I=1)h2
(ma+62)ha oo
Cz{,mg-&-l = / u(ihh t2) dt2 - 22 ((2 - 92)ui,’rn2 + 92“1',7712-{-1)7
m2h2

(n2—ma)ha

¢! - / u(ihy, ts) dty — Oahs

((2 = 02)Ui ny—my + O2Uing—ma—1),

(n2—ma—02)hs

ihq
. h .
Gii = / u(ty, jho)dt; — El(ui—m +ui), iFmi+1, ng—my,
(i—1)h
(m1+461)hy o0.h
Comat1,j = / u(ty, jho) dty — —— (2= 01)tm,,j + O1tm,41,5),
m1h1
(n1—ma)hy o.h
C7/zl1—m1,j = / u(tlvth) dt; — 12 : ((2 - Hl)unl_mhj + elunl_ml_lvj)'

(n1—m1—61)h1
Lemma 8. Ler u be the solution of the problem (1), (2) and y be the solution of the
finite-difference scheme (4). Then discretization error z = y — u satisfies the following
problem:

Az =i 402 zew, (22)

P'(z) = xP(22), P'(2) = P (22), 2 € o, @3)
P'(z) =X (21), P'(z) =xP(z1), 1€ wn,

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 367-381
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where
M = Tou — u,

) mo—+1
W= Z Gig»
j=1

mi+1

5(5'2) = Z Gij»
i=1

n(2) =Tiu — u,

> G

j=naz—ma

ny
)2§2) = Z Gij-

i:nlfml

Y=

Indeed, (22) can be obtained from substituting y = z + wu into (4) and taking into

account T}, (9%u/02?%) = Uz, 4, -

Further, in view of the conditions (2), (3), we have

&1
Pe) = Pl) - P'w) = [
0

u(ty, z2) dty — P'(u) = YP (22).

We can verify other equalities of (23) analogously.
As we see, the nonlocal conditions for the error problem, unlike the difference scheme,
are not homogeneous. Therefore, in order to use the results obtained in the Section 3, we

pass to the new unknown function.
First of all, let us define the functions

(k) (o y _ 2he — &k — 2mp
F ) = 26 (I — &)

For them, the following hold:
P(30)
P(BD) =

@

Lo PP =1
. PP =0,

B(k) (z1)

_2a &
26kl — &)’

(24)

We can verify straightforward that P’ (w) = 0 and P'(w) = 0.
For the verification of the conditions P”(w) = 0 and P”(w) = 0, we apply the

consequences of (23), respectively,

p/,(X(Q)) _ P,(X(l))»
and
p/I(X(Q)) _ pl()z(l)),

www.mii.Jt/NA
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It may be proved that the function w(x) represents a solution of the following prob-
lem:
Aw =1, x€w, weH, 25)

where

2
po= Y (An® = ORI A xR — BER) 4, 4R,
k=1

5 Proof of Theorem 2

It follows from (24)
[Vz]| < [[Vwl| 4+ e(J1 + J2 + J3), (26)
where
=, ¢+ 0 ¢ 1
b= [ N+ I N+ 160 s+ 1R85
ZW@“HHV&“) &“) > (0]

According to (25), we have (Aw,G1Gow), = (¢, G1Gaw),. If we apply the first
inequality of Lemma 6 in the left-hand side of this identity, and in the right-hand side
the Lemmas 2 and 5, we obtain

||VU)|| g C(an le Xwa + ’|nfﬁ2)||w1><w+ + J2) (27)

The second inequality of the Lemma 6 together with (2), (27) gives an a priori estimate
for the problem (22)

12llws ) < NS st s+ 1185 |y s + T2+ T2+ Jo). (28)

For the estimation of .J;, notice that the summands (', ¢”, as linear functionals with
respect to w(x), vanish on the polynomials of first order and are bounded on W3, s > 1.
Consequently, using Lemma 7, we have J; < c|h|SHu||W25(Q), 1 < s < 2, from which
Jl < C|h|571Hu”W§(Q)’ 1<s § 3.

For the estimation of Js, notice that the summands Cgl, %’2, as linear functionals
with respect to u(x), vanish on the polynomials of second order and are bounded on W3,
s > 1. Consequently, using Lemma 7, we receive Jo < c|h|* ™ |[ulws (), 1 < s < 3.

For the estimation of J3, we represent its summands in the expanded form, for
example,

h m1 ma+1 01h1 ma+1 a ) "
?Z Z (G +Cimry) T Z (2= 01)xm, +91Xm1+1j)

Jj=1

This may be estimated analogously to .J;.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 367-381
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The norms of the functionals n;i), k = 1,2, are less than c|h|*~!|ullw; (o),
1 < s < 3. The obtaining of these estimates are considered in detail, for example,
in [16, pp.148-149].

As a result from (28) it follows the validity of Theorem 2.

6 Conclusion

A nonlocal problem posed for Poisson equation is considered—classical boundary condi-
tions are fully replaced with integral conditions on the inner stripe adjacent to boundary
having the width £&. The corresponding difference scheme is constructed for which con-
vergence with rate s — 1 is proved when the exact solution belongs to Sobolev space W5,
1 < 5 < 3, with fractional exponent.

The obtained results may be expanded: for a case when the width of the stripe defined
by integral conditions is different at all sides of the rectangle; for a system of statical
theory of elasticity with constant coefficients, also for three dimensional case.

Acknowledgment. The authors wish to thank the anonymous referee for many signifi-
cant comments.
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