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Abstract. We study the existence of nonnegative solutions for a system of impulsive differential
equations subject to nonlinear, nonlocal boundary conditions. The system presents a coupling in
the differential equation and in the boundary conditions. The main tool that we use is the theory of
fixed point index for compact maps.
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1 Introduction

The aim of this paper is to study the existence and multiplicity of positive solutions
for a class of systems of ordinary impulsive differential equations subject to nonlinear,
nonlocal boundary conditions (BCs). The system presents a coupling in the nonlinearities
and in the BCs. Problems with a coupling in the BCs often occur in applications, see,
for example, [1–11]. On the other hand, impulsive problems have been studied not only
because of a theoretical interest, but also because they model several phenomena in engi-
neering, physics and life sciences. For example, Nieto and co-authors [12,13] contributed
to the field of population dynamics. An introduction to the theory of impulsive differential
equations and its applications can be found in the books [14–17].

Systems of second order impulsive boundary value problems (BVPs) have been stud-
ied in [18–21]. Here we consider the (fairly general) system of second order differential
equations of the form

u′′(t) + g1(t)f1

(
t, u(t), v(t)

)
= 0, t ∈ (0, 1), t 6= τ1,

v′′(t) + g2(t)f2

(
t, u(t), v(t)

)
= 0, t ∈ (0, 1), t 6= τ2,

(1)

with impulsive terms of the type

∆u|t=τ1 = I1
(
u(τ1)

)
, ∆u′|t=τ1 = N1

(
u(τ1)

)
, τ1 ∈ (0, 1),

∆v|t=τ2 = I2
(
v(τ2)

)
, ∆v′|t=τ2 = N2

(
v(τ2)

)
, τ2 ∈ (0, 1),

(2)

c© Vilnius University, 2014

mailto:gennaro.infante@unical.it
mailto:pietramala@unical.it


414 G. Infante, P. Pietramala

and nonlocal nonlinear BCs of “Sturm–Liouville” kind

a11u(0)− b11u
′(0) = H1

(
α1[u]

)
, a12u(1) + b12u

′(1) = L1

(
β1[v]

)
,

a21v(0)− b21v
′(0) = H2

(
α2[v]

)
, a22v(1) + b22v

′(1) = L2

(
β2[u]

)
,

(3)

where for i = 1, 2, ai1, bi1, ai2, bi2 ∈ [0,∞), ai1 + bi1 6= 0, ai2 + bi2 6= 0 and λ = 0 is
not an eigenvalue of the problem

w′′(t) = 0, ai1w(0)− bi1w′(0) = 0, ai2w(1) + bi2w
′(1) = 0.

Here ∆w|t=τ denotes the “jump” of the function w in t = τ , that is

∆w|t=τ = w(τ+)− w(τ−),

where w(τ−) and w(τ+) are the left and right limits of w in t = τ and αi[·], βi[·] are
bounded linear functionals given by positive Riemann–Stieltjes integrals, namely

αi[w] =

1∫
0

w(s) dAi(s), βi[w] =

1∫
0

w(s) dBi(s).

This type of formulation includes, as special cases, multi-point or integral conditions,
namely

αi[w] =

m∑
j=1

αijw(ηij) and αi[w] =

1∫
0

αi(s)w(s) ds,

studied, for example, [22–33]. In the case of impulsive equations, nonlocal BCs have
been studied by many authors, see, for example, [25, 26, 34–41] and references therein.
The functions Hi, Li are continuous functions; for earlier contributions on problems with
nonlinear BCs we refer the reader to [4, 5, 42–48] and references therein.

Our idea is to start from the results of [6, 7], valid for non-impulsive systems, and
to rewrite the system (1)–(3) as a system of perturbed Hammerstein integral equations,
namely

u(t) = γ1(t)H1

(
α1[u]

)
+ δ1(t)L1

(
β1[v]

)
+

1∫
0

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds

+G1(u)(t),

v(t) = γ2(t)H2

(
α2[v]

)
+ δ2(t)L2

(
β2[u]

)
+

1∫
0

k2(t, s)g2(s)f2

(
s, u(s), v(s)

)
ds

+G2(v)(t),

where the functions γi, δi are the unique solutions of

γi
′′(t) = 0, ai1γi(0)− bi1γi′(0) = 1, ai2γi(1) + bi2γi

′(1) = 0,

δi
′′(t) = 0, ai1δi(0)− bi1δi′(0) = 0, ai2δi(1) + bi2δi

′(1) = 1,

and the functions Gi, that are construct in natural manner, take care of the impulses.
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Nonnegative solutions for a system of impulsive BVPs 415

Systems of perturbed Hammerstein integral equations were studied in [4,5,7,49–53].
Our existence theory for multiple positive solutions of the perturbed Hammerstein integral
equations covers system (1)–(3) as a special case and we show in an example that all the
constants that occur in our theory can be computed. Here we focus on positive measures,
because we want our functionals to preserve some inequalities. Our methodology involves
the construction of new Stieltjes measures that take into account the boundary conditions
and the impulsive effect.

We make use of the classical fixed point index theory (see, for example, [54, 55]) and
also benefit of ideas from the papers [6, 7, 44, 51, 56–58].

2 The system of integral equations

We begin with the assumptions on the terms that occur in the system of perturbed Ham-
merstein integral equations

u(t) = γ1(t)H1

(
α1[u]

)
+ δ1(t)L1

(
β1[v]

)
+G1(u)(t) + F1

(
u, v)(t

)
,

v(t) = γ2(t)H2

(
α2[v]

)
+ δ2(t)L2

(
β2[u]

)
+G2(v)(t) + F2

(
u, v)(t

)
,

(4)

where

Fi(u, v)(t) :=

1∫
0

ki(t, s)gi(s)fi
(
s, u(s), v(s)

)
ds. (5)

The functions Gi are given, as in [57], by

Gi(w)(t) := γi(t)χ(τi,1](di1Ii+ei1Ni)
(
w(τi)

)
+ δi(t)χ[0,τi](di2Ii+ei2Ni)

(
w(τi)

)
with coefficients

di1 =
δ′i(τi)

Wi(τi)
, ei1 =

−δi(τi)
Wi(τi)

, di2 =
γ′i(τi)

Wi(τi)
and ei2 =

−γi(τi)
Wi(τi)

,

where Wi is the Wronskian, Wi(t) = γi(t)δ
′
i(t)− δi(t)γ′i(t).

We assume that for every i = 1, 2,

• fi : [0, 1] × [0,∞) × [0,∞) → [0,∞) satisfies Carathéodory conditions, that is,
fi(·, u, v) is measurable for each fixed (u, v) and fi(t, ·, ·) is continuous for almost
every (a.e.) t ∈ [0, 1], and for each r > 0 there exists φi,r ∈ L∞[0, 1] such that

fi(t, u, v) 6 φi,r(t) for u, v ∈ [0, r] and a.e. t ∈ [0, 1].

• ki : [0, 1]× [0, 1]→ [0,∞) is measurable, and for every τ ∈ [0, 1] we have

lim
t→τ

∣∣ki(t, s)− ki(τ, s)∣∣ = 0 for a.e. s ∈ [0, 1].
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• There exist a subinterval [ai, bi] ⊆ (τi, 1], a function Φi ∈ L∞[0, 1], and a constant
cΦi ∈ (0, 1] such that

ki(t, s) 6 Φi(s) for t ∈ [0, 1] and a.e. s ∈ [0, 1],

ki(t, s) > cΦi
Φi(s) for t ∈ [ai, bi] and a.e. s ∈ [0, 1].

• gi Φi ∈ L1[0, 1], gi > 0 a.e., and
∫ bi
ai
Φi(s)gi(s) ds > 0.

• αi[·] and βi[·] are linear functionals given by

αi[w] =

1∫
0

w(s) dAi(s), βi[w] =

1∫
0

w(s) dBi(s),

involving Riemann–Stieltjes integrals; the functions Ai and Bi are non-decreasing
and continuous in τi.

• Hi, Li : [0,∞)→ [0,∞) are continuous functions such that there exist hi1, hi2, li2 ∈
[0,∞) with

hi1w 6 Hi(w) 6 hi2w, Li(w) 6 li2w,

for every w > 0.

• γi, δi ∈ C[0, 1], γi, δi > 0, and there exist cγi , cδi ∈ (0, 1] such that

γi(t) > cγi‖γi‖∞, δi(t) > cδi‖δi‖∞ for every t ∈ [ai, bi],

where ‖w‖∞ := sup{|w(t)|, t ∈ [0, 1]}.
• Ii, Ni : [0,∞) → R are continuous functions and there exist pi11, pi12 > 0 and
pi22 > 0 such that for w ∈ [0,∞)

pi11w 6 (di1Ii + ei1Ni)(w) 6 pi12w

and
0 6 (di2Ii + ei2Ni)(w) 6 pi22w.

We consider the Banach space

PCτ [0, 1] :=
{
w: [0, 1]→ R, w is continuous in t ∈ [0, 1]\{τ},

there exist w(τ−) = w(τ) and
∣∣w(τ+)

∣∣ <∞},
endowed with the supremum norm ‖·‖∞.

We work in the space PCτ1 [0, 1]× PCτ2 [0, 1] endowed with the norm∥∥(u, v)
∥∥ := max

{
‖u‖∞, ‖v‖∞

}
.

Let

K̃i :=
{
w ∈ PCτi [0, 1]: w(t) > 0 for t ∈ [0, 1] and min

t∈[ai,bi]
w(t) > ci‖w‖∞

}
,
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where

ci = min

{
cΦi

, cγi , cδi ,
cγi‖γi‖∞pi11

max{‖γi‖∞pi12, ‖δi‖∞pi22}

}
,

and consider the cone K in PCτ1 [0, 1]× PCτ2 [0, 1] defined by

K :=
{

(u, v) ∈ K̃1 × K̃2

}
.

For a positive solution of system (4) we mean a solution (u, v) ∈ K of (4) such that
‖(u, v)‖ > 0.

We now show that the integral operator

T (u, v)(t) :=

(
γ1(t)H1(α1[u]) + δ1(t)L1(β1[v]) +G1(u)(t) + F1(u, v)(t)
γ2(t)H2(α2[v]) + δ2(t)L2(β2[u]) +G2(v)(t) + F2(u, v)(t)

)
:=

(
T1(u, v)(t)
T2(u, v)(t)

)
(6)

leaves the cone K invariant and is compact. In order to do this, we use the following
compactness criterion, which can be found, for example, in [16] and is an extension of
the classical Ascoli–Arzelà theorem.

Lemma 1. A set S ⊆ PCτ [0, 1] is relatively compact in PCτ [0, 1] if and only if S is
bounded and quasi-equicontinuous (i.e. for all u ∈ S and all ε > 0, exists β > 0 such
that t1, t2 ∈ [0, τ ] (or t1, t2 ∈ (τ, 1]) and |t1 − t2| < β implies |u(t1)− u(t2)| < ε).

Lemma 2. Operator (6) maps K into K and is compact.

Proof. Take (u, v) ∈ K such that ‖(u, v)‖ 6 r. Then we have, for t ∈ [0, 1],

Λ1(u, v)(t)

:= γ1(t)H1

(
α1[u]

)
+ δ1(t)L1

(
β1[v]

)
+

1∫
0

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds

and therefore∥∥Λ1(u, v)
∥∥
∞

6 ‖γ1‖∞H1

(
α1[u]

)
+ ‖δ1‖∞L1

(
β1[v]

)
+

1∫
0

Φ1(s)g1(s)f1

(
s, u(s), v(s)

)
ds.

We obtain, as in Lemma 1 of [7],

min
t∈[a1,b1]

Λ1(u, v)(t) > cγ1‖γ1‖∞H1

(
α1[u]

)
+ cδ1‖δ1‖∞L1

(
β1[v]

)
+ cΦ1

1∫
0

Φ1(s)g1(s)f1

(
s, u(s), v(s)

)
ds

> min{cΦi
, cγi , cδi}

∥∥Λ1(u, v)
∥∥
∞.
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On the other hand, for t ∈ [0, τ1] we have

G1(u)(t) 6 ‖δ1‖∞p122u(τ1)

and for t ∈ (τ1, 1]

G1(u)(t) 6 ‖γ1‖∞p112u(τ1).

Therefore for t ∈ [0, 1] we obtain

G1(u)(t) 6 u(τ1) max
{
‖γ1‖∞p112, ‖δ1‖∞p122

}
and thus ∥∥G1(u)

∥∥ 6 u(τ1) max
{
‖γ1‖∞p112, ‖δ1‖∞p122

}
.

For t ∈ [a1, b1], we get

G1(u)(t) = γ1(t)(d11I1 + e11N1)
(
u(τ1)

)
>

cγ1‖γ1‖∞p111

max{‖γ1‖∞p112, ‖δ1‖∞p122}
u(τ1) max

{
‖γ1‖∞p112, ‖δ1‖∞p122

}
.

Thus we obtain
min

t∈[a1,b1]
T1(u, v)(t) > c1

∥∥T1(u, v)
∥∥
∞.

Moreover, we have T1(u, v)(t) > 0. Hence we have T1(u, v) ∈ K̃1. In a similar manner
we proceed for T2(u, v).

Furthermore, the map T is compact since the components Ti are sum of compact
maps: the compactness of Fi is well-known; the compactness of the term Gi follows, in a
similar way as in [57], from Lemma 1; since γi, δi, Hi, Li are continuous, the remaining
terms map bounded sets into bounded subsets of a finite dimensional space.

3 Fixed point index calculations

3.1 Preliminaries and notations

We recall some basic facts regarding the classical fixed point index for compact maps,
see, for example, [54, 55].

Let K be a cone in a Banach space X . If Ω is a bounded open subset of K (in the
relative topology) we denote by Ω and ∂Ω the closure and the boundary relative to K.
When Ω is an open bounded subset of X , we write ΩK = Ω ∩K, an open subset of K.

Theorem 1. LetK be a cone in a Banach spaceX and letΩ be an open bounded set with
0 ∈ ΩK and ΩK 6= K. Assume that T : ΩK → K is a compact map such that x 6= Tx
for x ∈ ∂ΩK . Then the fixed point index iK(T,ΩK) has the following properties:

(i) If there exists e ∈ K \ {0} such that x 6= Tx+ µe for all x ∈ ∂ΩK and all µ > 0,
then iK(T,ΩK) = 0.
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(ii) If Tx 6= µx for all x ∈ ∂ΩK and all µ > 1, then iK(T,ΩK) = 1.

(iii) Let Ω1 be open in X with Ω1
K ⊂ ΩK . If iK(T,ΩK) = 1 and iK(T,Ω1

K) = 0,
then T has a fixed point in ΩK \Ω1

K . The same result holds if iK(T,ΩK) = 0 and
iK(T,Ω1

K) = 1.

For our index calculations, we use the following (relative) open bounded sets in K:

Kρ =
{

(u, v) ∈ K:
∥∥(u, v)

∥∥ < ρ
}
,

and
Vρ =

{
(u, v) ∈ K: min

t∈[a1,b1]
u(t) < ρ and min

t∈[a2,b2]
v(t) < ρ

}
.

The set Vρ (in the context of systems) was introduced by the authors in [50] and is equal
to the set called Ωρ/c in [49]. From now on we set

c = min{c1, c2}.

We utilize the following lemma, the proof is similar to Lemma 5 of [49] and is omitted.

Lemma 3. The sets Kρ and Vρ have the following properties:

– Kρ ⊂ Vρ ⊂ Kρ/c.

– (w1, w2) ∈ ∂Vρ iff (w1, w2) ∈ K and mint∈[ai,bi] wi(t) = ρ for some i ∈ {1, 2}
and mint∈[ai,bi] wi(t) 6 ρ for each i ∈ {1, 2}.

– If (w1, w2) ∈ ∂Vρ, then for some i ∈ {1, 2} ρ 6 wi(t) 6 ρ/c for each t ∈ [ai, bi]
and for each i ∈ {1, 2} we have 0 6 wi(t) 6 ρ/c for each t ∈ [ai, bi] and
‖wi‖∞ 6 ρ/c.

We introduce, in a similar way as in [59], the linear functionals

α̃i[w] :=hi2αi[w] + pi12w(τi) :=

1∫
0

w(s) dÃi(s), i = 1, 2,

ᾱi[w] :=hi1αi[w] + pi11w(τi) :=

1∫
0

w(s) dĀi(s), i = 1, 2,

and, for a measure dC, we use the notation

KiC(s) :=

1∫
0

ki(t, s) dC(t).

We assume from now on that

• α̃1[γ1] < 1, and α̃2[γ2] < 1.
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3.2 Index on the set Kρ

We prove a result concerning the fixed point index on the set Kρ.

Lemma 4. Assume that

(I1
ρ) there exists ρ > 0 such that for every i = 1, 2(

‖γi‖∞α̃i[δi]
1− α̃i[γi]

+ ‖δi‖∞
)(
li2βi[1] + pi22

)
+ f0,ρ

i

(
1

mi
+
‖γi‖∞

1− α̃i[γi]

1∫
0

Ki
Ãi

(s)gi(s) ds

)
< 1, (7)

where

f0,ρ
i = sup

{
fi(t, u, v)

ρ
: (t, u, v) ∈ [0, 1]× [0, ρ]× [0, ρ]

}
and

1

mi
= sup
t∈[0,1]

1∫
0

ki(t, s)gi(s) ds.

Then iK(T,Kρ) = 1.

Proof. We show that T (u, v) 6= µ(u, v) for all µ > 1 when (u, v) ∈ ∂Kρ; this ensures,
that the index is 1 on Kρ. In fact, if this is not so, then there exist (u, v) ∈ K with
‖(u, v)‖ = ρ and µ > 1 such that µ(u, v)(t) = T (u, v)(t). Assume, without loss of
generality, that ‖u‖∞ = ρ and ‖v‖∞ 6 ρ. We have for t ∈ [0, 1]

µu(t) = γ1(t)
(
H1

(
α1[u]

)
+ χ(τ1,1](d11I1 + e11N1)

(
u(τ1)

))
+ δ1(t)

(
L1

(
β1[v]

)
+ χ[0,τ1](d12I1 + e12N1)

(
u(τ1)

))
+ F1(u, v)(t).

Since
α̃1[u] > H1

(
α1[u]

)
+ (d11I1 + e11N1)

(
u(τ1)

)
,

we obtain

µu(t) 6 γ1(t)α̃1[u] + δ1(t)
(
l12β1[v] +

(
d12I1 + e12N1

)(
u(τ1)

))
+ F1(u, v)(t),

and moreover, since v(t) 6 ρ and u(t) 6 ρ for all t ∈ [0, 1], we obtain

µu(t) 6 γ1(t)α̃1[u] + δ1(t)
(
l12β1[ρ] + p122u(τ1)

)
+ F1(u, v)(t)

6 γ1(t)α̃1[u] + δ1(t)ρ
(
l12β1[1] + p122

)
+ F1(u, v)(t). (8)

Applying α̃1 to both sides of (8) gives

µα̃1[u] 6 α̃1[γ1]α̃1[u] + α̃1[δ1]ρ
(
l12β1[1] + p122

)
+ α̃1

[
F1(u, v)

]
.
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Thus we have(
µ− α̃1[γ1]

)
α̃1[u] 6 α̃1[δ1]ρ

(
l12β1[1] + p122

)
+ α̃1

[
F1(u, v)

]
,

that is

α̃1[u] 6 ρ
α̃1[δ1](l12β1[1] + p122)

µ− α̃1[γ1]
+
α̃1[F1(u, v)]

µ− α̃1[γ1]
.

Substituting into (8) gives

µu(t) 6 γ1(t)

(
ρ
α̃1[δ1](l12β1[1] + p122)

µ− α̃1[γ1]
+
α̃1[F1(u, v)]

µ− α̃1[γ1]

)
+ δ1(t)ρ

(
l12β1[1] + p122

)
+ F1(u, v)(t)

= ρ
γ1(t)α̃1[δ1](l12β1[1] + p122)

µ− α̃1[γ1]
+ ρδ1(t)

(
l12β1[1] + p122

)
+

γ1(t)

µ− α̃1[γ1]

1∫
0

K1
Ã1

(s)g1(s)f1

(
s, u(s), v(s)

)
ds+ F1(u, v)(t).

Since µ > 1, we have 1/(µ− α̃1[γ1]) 6 1/(1− α̃1[γ1]) and therefore

µu(t) 6 ρ
γ1(t)α̃1[δ1](l12β1[1] + p122)

1− α̃1[γ1]
+ ρδ1(t)

(
l12β1[1] + p122

)
+

γ1(t)

1− α̃1[γ1]

1∫
0

K1
Ã1

(s)g1(s)f1

(
s, u(s), v(s)

)
ds+ F1(u, v)(t).

Taking the supremum of t on [0, 1] gives

µρ 6 ρ
‖γ1‖∞α̃1[δ1](l12β1[1] + p122)

1− α̃1[γ1]
+ ρ‖δ1‖∞

(
l12β1[1] + p122

)
+ ρ

‖γ1‖∞
1− α̃1[γ1]

f0,ρ
i

1∫
0

K1
Ã1

(s)g1(s) ds+ ρf0,ρ
i

1

m1
.

Using the hypothesis (7) we obtain µρ < ρ. This contradicts the fact that µ > 1 and
proves the result.

3.3 Index on the set Vρ

We give two lemma about the index on a set Vρ. In Lemma 5, we assume that the
nonlinearities f1, f2 have the same growth. The idea in Lemma 6 is similar to the one in
Lemma 4 of [51]: we control the growth of one nonlinearity fi, at the cost of having to
deal with a larger domain. For other results on the existence of solutions with different
growth on the nonlinearities see [53, 60].

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 413–431



422 G. Infante, P. Pietramala

Lemma 5. Assume that:

(I0
ρ) there exist ρ > 0 such that for every i = 1, 2

fi,(ρ,ρ/c)

(
cγi‖γi‖∞
1− ᾱi[γi]

bi∫
ai

KiĀi
(s)gi(s) ds+

1

Mi

)
> 1, (9)

where

f1,(ρ,ρ/c) = inf

{
f1(t, u, v)

ρ
: (t, u, v) ∈ [a1, b1]×

[
ρ,
ρ

c

]
×
[
0,
ρ

c

]}
,

f2,(ρ,ρ/c) = inf

{
f2(t, u, v)

ρ
: (t, u, v) ∈ [a2, b2]×

[
0,
ρ

c

]
×
[
ρ,
ρ

c

]}
and

1

Mi
= inf
t∈[ai,bi]

bi∫
ai

ki(t, s)gi(s) ds.

Then iK(T, Vρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0, 1]. Then (e, e) ∈ K. We prove that

(u, v) 6= T (u, v) + µ(e, e) for (u, v) ∈ ∂Vρ and µ > 0.

In fact, if this does not happen, there exist (u, v) ∈ ∂Vρ and µ > 0 such that (u, v) =
T (u, v) + µ(e, e). Without loss of generality, we can assume that for all t ∈ [a1, b1] we
have

ρ 6 u(t) 6
ρ

c
, minu(t) = ρ and 0 6 v(t) 6

ρ

c
.

For t ∈ [a1, b1], we have

u(t) = γ1(t)
(
H1

(
α1[u]

)
+ (d11I1 + e11N1)

(
u(τ1)

))
+ δ1(t)L1

(
β1[v]

)
+ F1(u, v)(t) + µe(t)

> γ1(t)
(
H1

(
α1[u]

)
+ (d11I1 + e11N1)

(
u(τ1)

))
+ F1(u, v)(t) + µe(t).

Since
ᾱ1[u] 6 H1

(
α1[u]

)
+ (d11I1 + e11N1)

(
u(τ1)

)
,

we have
u(t) > γ1(t)ᾱ1[u] + F1(u, v)(t) + µe(t). (10)

Applying ᾱ1 to both sides of (10) gives

ᾱ1[u] > ᾱ1[γ1]ᾱ1[u] + ᾱ1[F1(u, v)] + µᾱ1[e].
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This can be written in the form(
1− ᾱ1[γ1]

)
ᾱ1[u] > ᾱ1

[
F1(u, v)

]
+ µᾱ1[e],

that is

ᾱ1[u] >
ᾱ1[F1(u, v)]

1− ᾱ1[γ1]
+

µᾱ1[e]

1− ᾱ1[γ1]
.

Thus, (10) becomes

u(t) >
γ1(t)ᾱ1[F1(u, v)]

1− ᾱ1[γ1]
+
µγ1(t)ᾱ1[e]

1− ᾱ1[γ1]
+ F1(u, v)(t) + µe(t)

=
γ1(t)

1− ᾱ1[γ1]

1∫
0

K1
Āi

(s)g1(s)f1

(
s, u(s), v(s)

)
ds+

µγ1(t)ᾱ1[e]

1− ᾱ1[γ1]

+

1∫
0

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds+ µ.

Then we have, for t ∈ [a1, b1],

u(t) >
cγ1‖γ1‖∞
1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s)f1

(
s, u(s), v(s)

)
ds+

µcγi‖γ1‖∞ᾱ1[e]

1− ᾱ1[γ1]

+

b1∫
a1

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds+ µ

>
cγ1‖γ1‖∞
1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s)f1

(
s, u(s), v(s)

)
ds

+

b1∫
a1

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds+ µ.

Taking the minimum over [a1, b1] gives

ρ = min
t∈[a1,b1]

u(t) > ρf1,(ρ,ρ/c)
cγ1‖γ1‖∞
1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s) ds+ ρf1,(ρ,ρ/c)
1

M1
+ µ

= ρf1,(ρ,ρ/c)

(
cγ1‖γ1‖∞
1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s) ds+
1

M1

)
+ µ.

Using the hypothesis (9) we obtain ρ > ρ+ µ, a contradiction.
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Lemma 6. Assume that
(I0
ρ)
? there exist ρ > 0 such that for some i = 1, 2

f∗i,(0,ρ/c)

(
cγi‖γi‖∞
1− ᾱi[γi]

bi∫
ai

KiĀi
(s)gi(s) ds+

1

Mi

)
> 1, (11)

where

f∗i,(0,ρ/c) = inf

{
fi(t, u, v)

ρ
: (t, u, v) ∈ [ai, bi]×

[
0,
ρ

c

]
×
[
0,
ρ

c

]}
.

Then iK(T, Vρ) = 0.

Proof. Suppose that the condition (11) holds for i = 1. Let e(t) ≡ 1 for t ∈ [0, 1]. Then
(e, e) ∈ K. We prove that

(u, v) 6= T (u, v) + µ(e, e) for (u, v) ∈ ∂Vρ and µ > 0.

In fact, if this does not happen, there exist (u, v) ∈ ∂Vρ and µ > 0 such that (u, v) =
T (u, v)+µ(e, e). So, for all t ∈ [a1, b1], minu(t) 6 ρ and for t ∈ [a2, b2], min v(t) 6 ρ.
We obtain, for t ∈ [a1, b1], with the same proof of Lemma 5,

u(t) >
γ1(t)

1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s)f1

(
s, u(s), v(s)

)
ds

+

b1∫
a1

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds+ µ.

Then we have

min
t∈[a1,b1]

u(t) > ρf∗1,(0,ρ/c)
cγ1‖γ1‖∞
1− ᾱ1[γ1]

b1∫
a1

K1
Ā1

(s)g1(s) ds+ ρf∗1,(0,ρ/c)
1

M1
+ µ.

Using the hypothesis (11) we obtain mint∈[a1,b1] u(t) > ρ+ µ > ρ, a contradiction.

4 Existence and multiplicity of the solutions

By combining the above results on the index of the sets Vρ andKρ we obtain the following
theorem, in which we deal with the existence of at least one, two or three solutions. It
is possible to state results for four or more positive solutions by expanding the lists in
conditions (S5), (S6), see, for example, paper [61] for this type of results.

We omit the proof of Theorem 2 which follows from the properties of fixed point
index.
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Theorem 2. System (4) has at least one positive solution in K if either of the following
conditions hold:

(S1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1/c < ρ2 such that (I0
ρ1) [or (I0

ρ1)?], (I1
ρ2) hold.

(S2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (I1
ρ1), (I0

ρ2) hold.

System (4) has at least two positive solutions in K if one of the following conditions
hold:

(S3) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 such that (I0
ρ1) [or (I0

ρ1)?],
(I1
ρ2) and (I0

ρ3) hold.

(S4) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 such that (I1
ρ1), (I0

ρ2)
and (I1

ρ3) hold.

System (4) has at least three positive solutions in K if one of the following conditions
hold:

(S5) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1/c < ρ2 < ρ3 and ρ3/c < ρ4 such that
(I0
ρ1) [or (I0

ρ1)?], (I1
ρ2), (I0

ρ3) and (I1
ρ4) hold.

(S6) There exist ρ1, ρ2, ρ3, ρ4 ∈ (0,∞) with ρ1 < ρ2 and ρ2/c < ρ3 < ρ4 such that
(I1
ρ1), (I0

ρ2), (I1
ρ3) and (I0

ρ4) hold.

We illustrate the conditions that occur in the above Theorem in the following example,
where multi-point type BCs are considered.

Example 1. Consider the system

u′′ +
1

8

(
u3 + t3v3

)
+ 2 = 0, v′′ +

1

8

(√
tu+ 13v2

)
= 0, t ∈ (0, 1),

∆u|t=1/5 = I1

(
u

(
1

5

))
, ∆u′|t=1/5 = N1

(
u

(
1

5

))
,

∆v|t=2/5 = I2

(
v

(
2

5

))
, ∆v′|t=2/5 = N2

(
v

(
2

5

))
,

u(0) = H1

(
u

(
1

4

))
, u(1) = L1

(
v

(
3

4

))
,

v(0) = H2

(
v

(
1

3

))
, v′(1) = L2

(
u

(
2

3

))
.

(12)

This differential system can be rewritten in the integral form

u(t) = (1− t)H1

(
u

(
1

4

))
+ tL1

(
v

(
3

4

))
+G1(u)(t)

+

1∫
0

k1(t, s)g1(s)f1

(
s, u(s), v(s)

)
ds,
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v(t) = H2

(
v

(
1

3

))
+ tL2

(
u

(
2

3

))
+G2(v)(t)

+

1∫
0

k2(t, s)g2(s)f2

(
s, u(s), v(s)

)
ds,

where the Green’s functions

k1(t, s) =

{
s(1− t), s 6 t,

t(1− s), s > t,
and k2(t, s) =

{
s, s 6 t,

t, s > t,

are non-negative continuous functions on [0, 1] × [0, 1]. Here γ1(t) = 1 − t, γ2(t) = 1,
δ1(t) = t, δ2(t) = t, cγ1 = 1− b1, cγ2 = 1, cδ1 = a1 and cδ2 = a2. The intervals [a1, b1]
may be chosen arbitrarily in (1/5, 1) and [a2, b2] can be chosen arbitrarily in (2/5, 1]. It
is easy to check that

k1(t, s) 6 s(1− s) := Φ1(s), min
t∈[a1,b1]

k1(t, s) > cΦ1
s(1− s),

where cΦ1
= min{1− b1, a1}. Furthermore we have that

k2(t, s) 6 s := Φ2(s), min
t∈[a2,b2]

k2(t, s) > cΦ2Φ2(s),

where cΦ2 = a2. The choice [a1, b1] = [1/4, 3/4] and [a2, b2] = [1/2, 1] gives

c =
1

4
, m1 = 8, M1 = 16, m2 = 2, M2 = 4.

In our example, the nonlinearities used to illustrate the constants that occur in our theory
are taken in a similar way as in [6, 7, 51, 57]. We consider

H1(w) =

{
5
6w, 0 6 w 6 1,
1
3w + 1

2 , w > 1,
L1(w) =

1

30

(
1 + sin(w)

)
,

H2(w) =

{
1
19w, 0 6 w 6 2,
1
25w + 12

475 , w > 2,
L2(w) =

1

38

(
1 + cos(w)

)
.

The functions Hi and Li satisfy the conditions

hi1w 6 Hi(w) 6 hi2w, Li(w) 6 li2w

with

h11 =
1

3
, h12 =

5

6
, h21 =

1

25
, h22 =

1

19
, l12 =

1

15
, l22 =

1

75
.
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The functions

I1(w) =

{
1

100w, 0 6 w 6 1,
13

1400w + 1
1400 , w > 1,

N1(w) =

{
− 3

100w, 0 6 w 6 1,

− 39
1400w −

3
1400 , w > 1,

I2(w) =

{
1

300w, 0 6 w 6 1,
1

400w + 1
1200 , w > 1,

N2(w) =

{
− 1

30w, 0 6 w 6 1,

− 1
40w −

1
120 , w > 1,

satisfy the conditions for w ∈ [0,∞)

pi11w 6 (di1Ii + ei1Ni)(w) 6 pi12w, 0 6 (di2Ii + ei2Ni)(w) 6 pi22w

with

d11 = 1, d21 = 1, e11 = −1

5
, e21 = −2

5
,

d12 = −1, d22 = 0, e12 = −4

5
, e22 = −1,

p111 =
1

70
, p112 =

1

50
, p122 =

1

40
, p211 =

1

80
, p212 =

1

60
, p222 =

1

30
.

We have that

α̃1[γ1] =
641

1000
, α̃2[γ2] =

79

1140
, α̃1[δ1] =

634

3000
, α̃2[δ2] =

23

950
,

ᾱ1[γ1] =
183

700
, ᾱ2[γ2] =

21

400
, β1[1] = β2[1] = 1,

1∫
0

K1
Ã1

(s) ds =
3189

40000
,

1∫
0

K2
Ã2

(s) ds =
853

42750
,

3/4∫
1/4

K1
Ā1

(s) ds =
181

8400
,

1∫
1/2

K2
Ā2

(s) ds =
11

1200
.

The existence of multiple solutions of system (12) follows from Theorem 2. Then, for
ρ1 = 1/8, ρ2 = 1 and ρ3 = 11, we have (the constants that follow have been rounded to
2 decimal places unless exact)

inf

{
f1(t, u, v): (t, u, v) ∈

[
1

4
,

3

4

]
×
[
0,

1

2

]
×
[
0,

1

2

]}
= f1

(
1

4
, 0, 0

)
> 14.33ρ1,

sup
{
f1(t, u, v): (t, u, v) ∈ [0, 1]× [0, 1]× [0, 1]

}
= f1(1, 1, 1) < 2.46ρ2,

sup
{
f2(t, u, v): (t, u, v) ∈ [0, 1]× [0, 1]× [0, 1]

}
= f2(1, 1, 1) < 1.82ρ2,

inf

{
f1(t, u, v): (t, u, v) ∈

[
1

4
,

3

4

]
× [11, 44]× [0, 44]

}
= f1

(
1

4
, 11, 0

)
> 14.33ρ3,

inf

{
f2(t, u, v): (t, u, v) ∈

[
1

2
, 1

]
× [0, 44]× [11, 44]

}
= f2

(
1

2
, 0, 11

)
> 3.86ρ3,
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that is the conditions (I0
ρ1)?, (I1

ρ2) and (I0
ρ3) are satisfied; therefore system (12) has at

least two positive solutions in K.
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