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Abstract. The iterative methods for the solution of the system of the difference equations derived
from the elliptic equation with nonlocal conditions are considered. The case of the matrix of the
difference equations system being the M-matrix is investigated. Main results for the convergence
of the iterative methods are obtained considering the structure of the spectrum of the difference
operators with nonlocal conditions. Furthermore, the case when the matrix of the system of
difference equations has only positive eigenvalues was investigated. The survey of results on
convergence of iterative methods for difference problem with nonlocal condition is also presented.
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1 Introduction and problem statement

Boundary value problems for various differential equations with nonlocal boundary con-
ditions were actively investigated during the last three decades. A lot of attention was
given to numerical analysis of such problems. Research is motivated by both their interest
to pure mathematics and new applications in physics, mechanics, biochemistry, ecology.
The first articles dealing with parabolic equations with integral conditions were related to
heat equation [1] and the theory of linear thermoelasticity [2]. Many other applications of
problems with nonlocal boundary conditions can be found in books [3,4] while numerical
methods are reviewed in papers [5–10].
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One of the first papers, in which there were the new type boundary problems with
nonlocal conditions for the elliptic equations formulated and investigated, was article [11].
The nonlocal conditions introduced in this paper are the so called Bitsadze–Samarskii
nonlocal conditions. The finite difference methods for the solution of the elliptic equations
with the various nonlocal conditions were investigated in many works. However, these
methods were rarely investigated for the parabolic equations.

One of the first papers in this particular area was article [12]. In that paper, the finite
difference method for the linear elliptic equation with the Bitsadze–Samarskii nonlocal
condition was investigated. Latter, in the papers [13–19], the issues of the existence,
uniqueness and convergence of the solution of the difference problem for the elliptic
equations with the various types of the nonlocal conditions, including the integral ones,
were considered. The recent results and the bibliography may be found in the works
[20–26].

In the paper [23], the solution of the elliptic equation with the nonlocal conditions is
also investigated bringing this problem to the problem with the Dirichlet condition.

The idea to reduce the system of difference equations with nonlocal conditions to the
two systems of the same type with the Dirichlet conditions was also used earlier for the
solution of the elliptic equations with the nonlocal conditions of the special type [27, 28].
But in all quoted papers, the iterative methods for solutions of the systems of difference
equations with nonlocal conditions were not considered.

Iterative methods for finite difference systems obtained from elliptic equations with
nonlocal boundary conditions are insufficiently analysed. Matrices of these systems of
equations have a lot of specific properties. These matrices are usually nonsymmetric,
and their spectrum is relatively complicated and depends on parameters and functions of
nonlocal conditions.

Relatively simple one dimensional eigenvalue problem

d2u

dx2
+ λu = 0, 0 < x < 1,

u(0) = 0, u(1) = γu(ξ)

was investigated in article [28]. There were noticed that the matrix of the difference equa-
tion can have zero, negative, complex or multiple eigenvalues depending on the values of
γ and ξ. In the case of 2D elliptic problem, the spectrum of matrices of finite difference
schemes is even more complicated and affects the convergence of iterative methods.

We investigate a second order linear elliptic equation

∂

∂x

(
p(x, y)

∂u

∂x

)
+

∂

∂y

(
p(x, y)

∂u

∂y

)
− q(x, y)u = f(x, t), (x, y) ∈ D, (1)

with the Dirichlet and nonlocal conditions

u(0, y) =

1∫
0

α(x)u(x, y) dx+ µ1(y), (2)

u(1, y) = µ2(y), u(x, 0) = µ3(x), u(x, 1) = µ4(x), (3)
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where D = (0, 1) × (0, 1), p(x, y) > 0, q(x, y) > 0. The conditions for the weight
function α(x) will be formulated later.

Main aim of the paper is to investigate various methods for the solution of the system
of difference equations, corresponding to the differential problem (1)–(3). The conver-
gence of few simple iterative methods could be justified, requiring that function α(x)
should satisfy the conditions, guaranteeing that the matrix of the system of difference
equations is M-matrix. When p(x, y) = const, the convergence of more effective iterative
methods could be proven by investigating the structure of the spectrum of the matrix of
the system of difference equations. This matrix is nonsymmetric because of the nonlocal
condition (2), so, the structure of its spectrum might be more complicated than for the
Dirichlet conditions.

It is significant that, in the case of λ = 0, solution (for boundary value problem) is not
unique; λ < 0 (or λ ∈ C, Reλ < 0) may lead to instability of the difference scheme for
the parabolic problem or to divergence of the iteration method for the stationary problem.

The remaining part of this paper is organized as follows. In Section 2, we state the
difference problem. In Section 3, we analyse when the matrix of difference problem with
nonlocal conditions is a M-matrix. The structure of the spectrum of difference problem is
investigated in Section 4. In Sections 5 and 6, the convergence of the Chebyshev method
and the alternating direction method is considered. The results of numerical experiments
are presented in Section 7. Section 8 contains some brief conclusions and comments.

2 Finite-difference scheme

In the domain D, we introduce the grids:

ωh
x := {x0 = 0, x1, . . . , xN = 1}, h = xi − xi−1 =

1

N
,

ωh
y := {y0 = 0, y1, . . . , yN = 1}, h = yj − yj−1 =

1

N
,

ωh
x := {x1, . . . , xN−1}, ωh

y := {y1, . . . , yN−1}.

In D, we consider the rectangular grids ωh := ωh
x × ωh

y , ωh := ωh
x × ωh

y and ∂ωh :=

ωh r ωh.
If ω is one of these grids, we define the space of grid functions F(ω). We introduce

first and second order difference operators:

δxUij :=
Ui+1,j − Uij

h
, δyUij :=

Ui,j+1 − Uij

h
,

δx̄Uij :=
Uij − Ui−1,j

h
, δȳUij :=

Uij − Ui,j−1

h
,

δ2
xUij :=

Ui−1,j − 2Uij + Ui+1,j

h2
, δ2

yUij :=
Ui,j−1 − 2Uij + Ui,j+1

h2
.

The functions f , q are approximated by grid functions fij and qij on the grid ωh, (µ1)j ,
(µ2)j on the grid ωh

y , (µ3)i, (µ4)i on the grid ωh
x.
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Problem (1)–(3) in D̄ is replaced by a finite-difference scheme

δx(pi−0.5,jδx̄Uij) + δy(pi,j−0.5δȳUij)− qijUij = fij , i, j = 1, N − 1, (4)
Ui0 = (µ3)i, UiN = (µ4)i, UNj = (µ2)j (5)

with nonlocal condition

U0j = γh

(
α0U0j + αNUNj

2
+

N−1∑
i=1

αiUij

)
+ (µ1)j , j = 1, N − 1. (6)

The truncation error of the scheme is O(h2).

3 Problems with nonlocal conditions and M-matrices

Equations (4)–(6) can be rewritten in a matrix form

AU = F, (7)

where A = {akl} – square matrix, k, l = 1, n, n = N(N − 1), akk > 0. Now we give
a short summary of useful results from the theory of M-matrices. More details can be
found in [29,30]. The most important properties of M-matrices are the discrete maximum
principle and the guaranteed convergence of various linear solvers.

Definition. The square matrix A = {akl}, k, l = 1, n, is called M-matrix if akl 6 0 when
k 6= l and there exists the inverse matrix, whose all elements are nonnegative (A−1 > 0).

Lemma 1. If the elements of the matrix A = {akl} have a property akl 6 0 when k 6= l,
then three sequent statements are equivalent:

(i) A−1 exists and A−1 > 0;

(ii) real parts of all the eigenvalues of the matrix A are positive: Re λ(A) > 0;

(iii) matrix A can be expressed in the form

A = aI− S,

where S > 0, a > %(S).

So, each of the properties along with the property akl 6 0 when k 6= l could be treated
as a definition of the M-matrix.

Lemma 2. If A is M-matrix, then necessarily akk > 0.

Lemma 3. If akk > 0, akl 6 0 when k 6= l and matrix A is strongly diagonally dominant,
i.e.

akk >

n∑
l=1, l 6=k

|akl|,

then A is M-matrix.
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Lemma 4. If akk > 0, akl 6 0 when k 6= l and matrix A is a weakly diagonally dominant
and irreducible, then matrix A is M-matrix.

Remark. The diagonal dominance is not an necessary condition for matrix A to be
M-matrix.

Lemma 5. If A is an M-matrix and D is a diagonal matrix with the nonnegative elements,
then A + D is an M-matrix.

Lemma 6. If A is an M-matrix, then a matrix B, obtained from the matrix A by equating
to zero any non-diagonal element, is also an M-matrix.

Suppose, A is an M-matrix and A has a representation A = M−N, where M−1 > 0
and N > 0. In this case, A has a regular splitting A = M −N. One of these splittings
is referred in Lemma 1(iii): A = aI− S, where S > 0, a > %(S).

Lemma 7. If A is an M-matrix and A has a regular splitting A = M −N, M−1 > 0,
N > 0, then %(M−1N) < 1.

Corollary. If A is an M-matrix and A has a regular splitting A = M−N, then, for the
system

Ax = f ,

the iterative method
Mxk+1 = Nxk + f

converges.

The following statement will be proven for the system of difference equations (4)–(6),
rewritten in the matrix form (7). Before that, the auxiliary statement on the trapezoid rule
for the numerical integration will be formulated.

Lemma 8. If a function α(x) is characterized by the properties

α(x) > 0,

1∫
0

α(x) dx 6 % < 1 (8)

and |α′′(x)| 6M2 <∞, x ∈ [0, 1], then, for sufficiently small values of h, the inequality

h

(
α0 + αN

2
+

N−1∑
i=1

αi

)
6 %1 < 1 (9)

is valid.

The statement of Lemma 8 follows from properties (8) of the function α(x) and the
error estimation for trapezoid rule

|RN | 6
M2h

2

12
.
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Theorem 1. If p(x, y) > 0, q(x, y) > 0 and the conditions of Lemma 8 for the function
α(x) are satisfied, then, for all sufficiently small h, the matrix of system (7) is an M-matrix.

Proof. The matrix A is weakly diagonally dominant. The off-diagonal entries of this
matrix are nonpositive. Furthermore, the matrix of the system of difference equations (4)
in rectangle is irreducible. So, according to Lemma 4, the matrix A of system (7) is an
M-matrix.

Now we can provide a few converge iterative methods for the solution of system (7),
taking different regular splitting of the matrix A. With that aim, we will use the expression
of the matrix

A = −L + D−R,

where D, −L and −R are diagonal, strictly lower triangular and strictly upper triangular
parts of A, respectively. Obviously, D > 0, L > 0, R > 0.

According to this expression, we define three different regular splittings

A = Mi −Ni, i = 1, 2, 3.

In the case M1 = D, N1 = L + R, we give Jacobi method. The choice M2 = D + L,
N2 = R determines Gauss–Seidel method. And the splitting with M3 = aI, N3 =
(aI−D) + L + R leads us to the fixed point iteration

Uk+1 = Uk − 1

a

(
AUk − F

)
.

All these iterative methods converge under the conditions of Theorem 1.
We should admit that condition α(x) > 0 in (8) is a necessary condition for the

matrix A to be a M-matrix. In contrast, nondiagonal elements in equations (6) would be
of different signs.

For one-dimensional parabolic equations, a bit different condition [31] could be for-
mulated instead of conditions (8):

1∫
0

∣∣α(x)
∣∣dx < 1. (10)

For problem (1)–(3) and condition (10), we investigated that the conclusion that the
matrix of system (7) would be an M-matrix does not follow. But this matrix is diagonally
dominant under condition (10). This is enough for the reasoning of the methods of Jacobi,
Gauss–Seidel and fixed point iterations.

As it follows from conditions (8) and (10), in the case of nonconstant α(x), maxα(x)
could be a sufficiently big number. But in the case when α(x) = const, it follows from (8)
that Theorem 1 is true only under condition |α| < 1.

In the next section, we will demonstrate that, in the case of problem (1)–(3) when
α(x) is a constant, the limitation α < 1 is not necessarily condition for the matrix A of
system (7) to be an M-matrix. To this end, we consider the eigenvalue problem for the
difference operator with the nonlocal condition.

www.mii.lt/NA



On iterative methods for some elliptic equations with nonlocal conditions 523

4 Structure of the spectrum of the difference operator

Let us take the constant coefficients in problem (1)–(3), i.e. p(x, y) = 1, q(x, y) = 0,
α(x) = γ > 0. So, we consider the differential problem

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (11)

u(0, y) = γ

1∫
0

u(x, y) dx+ µ1(y), (12)

u(1, y) = µ2(y), u(x, 0) = µ3(x), u(x, 1) = µ4(x). (13)

The corresponding difference problem could be written as follows:

δ2
xUij + δ2

yUij = fij , (14)

U0j = γh

(
U0j + UNj

2
+

N−1∑
i=1

Uij

)
+ (µ1)j , j = 1, N − 1, (15)

UNj = (µ2)j , Ui0 = (µ3)i, UiN = (µ4)i. (16)

Let us express U0j from equations (15):

U0j = hα̃

N−1∑
i=1

Uij + (µ̃1)j , (17)

where

α̃ =
γ

1− hγ/2
, µ̃ij =

µ1j + (hγ/2)µ2j

1− hγ/2
.

Substituting the expression of U0j into the equations (14), when i = 1, we get

δ2
xUij + δ2

yUij = fij , i = 2, N − 1, j = 1, N − 1, (18)

hα̃
∑N−1

i=1 Uij − 2U1j + U2j

h2
+ δ2

yU1j = f1j −
(µ̃1)j
h2

, j = 1, N − 1, (19)

with the boundary conditions (16). For expression (17) to be always valid, it is enough to
assume that h depending on γ would be sufficiently small, i.e.

h <
2

γ
.

Under that presumption, we get α̃ > 0. Let us change the sign on the both sides of
equations (18), (19) and rewrite this system in a matrix form

A1U = F. (20)

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 517–535
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This system of the equations is composed analogically as system (7). The main difference
is that the order of the matrix A1 is (N − 1)2 instead of N(N − 1) and the vector U is
constructed from the values Uij taken from the internal points of the domain ωh.

By solving this system, the values of U0j , j = 1, N − 1, could be obtained according
to formulas (17).

Lemma 9. The eigenvalue problem of the matrix A1

A1U = λU (21)

is an equivalent problem for the difference problem with the nonlocal conditions

δ2
xUij + δ2

yUij + λUij = 0, i, j = 1, N − 1, (22)

U0j = γh

(
U0j + UNj

2
+

N−1∑
i=1

Uij

)
, j = 1, N − 1, (23)

UNj = Ui0 = UiN = 0. (24)

Proof. We express

U0j = γhα̃

N−1∑
i=1

Uij , α̃ =
γ

1− hγ/2
(25)

from equations (23). We get (21) substituting these expressions into equation (23), when
i = 1. Now, let us consider problem (21). Let us define the values U0j , j = 1, N − 1, by
formulas (25). Then we could rewrite problem (21) using expressions (25) in the form of
(22)–(24). The equivalence of the statement is proven.

Corollary. The number of the eigenvalues of the difference problem with the nonlocal
conditions (22)–(24) is (N − 1)2.

Now we should investigate, what are the conditions required for the matrix A1 to be
an M-matrix. The matrix A1 as well as A has the property: akl 6 0, when k 6= l, if
γ > 0 and h < 2/γ. To answer the question when would A1 be an M-matrix, we should
investigate the eigenvalue problem (22)– (24), or in other words, we should investigate
the spectrum of the matrix A1.

Let us write the discrete solution of problem (22)–(24) as

Uij = ViWj , i, j = 0, . . . , N.

So, we consider two auxiliary problems:
(I) Problem with the nonlocal boundary conditions

Vi−1 − 2Vi + Vi+1

h2
+ ηVi = 0, i = 1, N − 1, (26)

V0 = γh

[
V0 + VN

2
+

N−1∑
i=1

Vi

]
, VN = 0; (27)
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(II) Classical problem

Wj−1 − 2Wj +Wj+1

h2
+ µWj = 0, j = 1, N − 1, (28)

W0 = 0, WN = 0. (29)

The eigenvalues of problem (22)–(24) can be written as

λkl = ηk + µl, k, l = 1, N − 1, (30)

here
µl =

4

h2
sin2 πlh

2
, l = 1, N − 1,

are the eigenvalues for the second auxiliary problem (28)–(29).
The eigenvalue problem (26)–(27) has been considered in [32, 33]. We can formulate

the main results of these papers in the following lemma.

Lemma 10. All eigenvalues ηk, k = 1, N − 1, of problem (26)–(27) are real and different
for all γ and:

(i) If γ = 2, then η = 0 exists, other N − 2 eigenvalues are positive;

(ii) If γ > 2 and h < 2/γ, then there exists η1 < 0: η1 = −(4/h2) sinh2(βh/2), other
N − 2 eigenvalues are positive, where β is a simple positive root of the equation

tanh
β

2
=

2

hγ
tanh

βh

2
; (31)

(iii) If γ < 2, then all eigenvalues are positive.

There are no complex eigenvalues for problem (26)–(27).
From expressions (30) and Lemma 10 we derive the following statement.

Lemma 11. If µ1 > |η1|, then all eigenvalues of the matrix A1 are positive. If µ1 = |η1|,
then one eigenvalue of the matrix A1 is zero, other eigenvalues are positive.

Now we can formulate and prove the theorem on the condition when the matrix A1 is
an M-matrix.

Theorem 2. There exists such a number γ0 > 2 that, for all the numbers 0 6 γ 6 γ0,
the matrix A1 is an M-matrix.

Proof. Suppose 0 6 γ < 2. Then all the eigenvalues ηk are positive according to
Lemma 10. The eigenvalues µl are positive independent of γ. There exists only one
eigenvalue η1 = 0 when γ = 2. So, λkl > 0 if 0 6 γ < 2. When γ > 2, just one
and only one eigenvalue η1 is negative

η1 = − 4

h2
sinh2 βh

2
.
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The number β is the unique positive root of equation (31) that grows up as γ grows. Let
us indicate the value of β0 as the value of β, when µ1 = |η1|, i.e.

4

h2
sin2 πh

2
=

4

h2
sinh2 β0h

2
.

From this point

β0 =
2

h
ln

(
sin

πh

2
+

√
sin2 πh

2
+ 1

)
. (32)

Equation (31) could be interpreted as the expression, from which we could obtain γ
when β = β0 is known. Let us denote

γ0 =
2 tanh(β0h/2)

h tanh(β0/2)
. (33)

So, if 0 6 γ < γ0, then λkl > 0, k, l = 1, N − 1. In addition, λ11 = 0 when γ = γ0, and
λ11 < 0 when γ > γ0. According to Lemma 1, the matrix A1 is a M-matix.

Remark. For sufficiently small h, the value of β0 described by formula (32) could be
written approximately β0 ≈ π.

Note that β0 < π and β0 = π +O(h). So, for sufficiently small h, γ0 ≈ 3.42.
Let us now we take a more general equation instead of equation (11)

∂2u

∂x2
+
∂2u

∂y2
− q(x, y)u = f(x, t), q(x, y) > 0. (34)

Let us consider the difference problem for the boundary value problem (34), (12), (13),
analogous to the difference problem (14)–(16). We can write the system of these differ-
ence equations in the matrix form

A2U = F. (35)

It is easy to see that matrix A2 could be obtained from the matrix A1 by adding qij to
the diagonal elements of the matrix A1. So, according to Lemma 5 and Theorem 2, the
following statement is true.

Theorem 3. There exists such a number γ0 > 2 (defined by formula (33)) that, for all
values of 0 6 γ 6 γ0, the matrix A2 is an M-matrix.

5 Chebyshev method

In Sections 3 and 4, the systems of difference equations (7) and (21) were considered.
Both the systems were contained with the specific feature, the matrix of the system was M-
matrix. This property allowed to construct the convergent iterative methods. We should
note that the following condition was necessary to fulfill, the function α(x) in the nonlocal
condition (2) and the parameter γ in analogous condition (12) should be nonnegative.
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In this and the following sections, we will emphasize another property of the matrix
of the system of difference equations, all the eigenvalues of the matrix of the system are
positive, and the matrix itself is diagonalizable (the system of the eigenvectors of this
matrix is complete or, in other words, the matrix is of the simple structure). Precisely,
this property, along with certain conditions, is typical for many systems of difference
equations, arising from the elliptic equation with various types of the nonlocal conditions.
We admit that the nonlocal integral conditions derive that the matrix of the system of
difference equations (21) is always nonsymmetric.

Lemma 12. If −∞ < γ 6 γ0, where γ0 is defined by formula (33), then all the
eigenvalues of matrix A1 of the system of difference equations (21) are positive, and
the corresponding eigenvectors are linearly independent.

Proof. It follows from definition (30) of the eigenvalues of the matrix A1, Lemma 10
(when γ < 2) and Theorem 2 (when 0 6 γ < γ0) that all the eigenvalues of the
matrix A1 are positive. Furthermore, the eigenvalue problems (26)–(27) and (28)–(29)
are characterized by the feature that their systems of the eigenvectors Vk = {V k

i },
k, i = 1, N − 1, and Wl = {W l

j}, l, j = 1, N − 1, are complete in the vector space
Rn−1. Then it follows from the equality

Uk,l =
{
V k
i W

l
j

}
= Vk ⊗Wl

that the eigenvectors Uk,l of the matrix A1 are linearly independent (for more details,
see [20]).

We define iteration

Uk+1 = Uk − τk+1

(
A1U

k − F
)
, (36)

where

τk =
2

b+ a+ (b− a)tk
, tk = cos

(2k − 1)π

2n
, k = 1,m.

The iterative method (36) is usually referred to as the Chebyshev method or the
Richardson method, the set τk, k = 1,m, is a Chebyshev set of iterative parameters. In
the case of a symmetric positive defined matrix with the eigenvalues in [a, b], 0 < a < b,
the Chebyshev iteration is optimal over all other polynomial based methods. The iterative
method has the best convergence rate after m > 1 iterations.

For the estimation of the convergence rate of the Chebyshev iterative method (36) in
the case of a difference system with the nonlocal conditions, it is necessary to introduce
norms for the vectors and the matrices. To this end, we define the matrix norm in a
special way [6, 34]. By P we denote a matrix whose columns are linearly independent
eigenvectors Uk,l of the matrix A1 (of the eigenvalue problem (22)–(24)). We define a
norm of an arbitrary square matrix B of order (N − 1)2 by formula

‖B‖∗ =
∥∥P−1BP

∥∥ = %
(
P−1BP

)
.

For this definition, we have
‖A1‖∗ = %(A1).
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The norm of (N−1)2-dimensional vector U, compatible with this matrix norm, is defined
as follows:

‖U‖∗ =
∥∥P−1U

∥∥,
where ‖U‖ = (U,U)1/2. Note that

‖U‖∗ =
∥∥P−1U

∥∥ =
(
P−1U,P−1U

)1/2
=
(
(PP)−1U,U

)1/2
,

where (PP)−1 is a symmetric positive definite matrix. In this sense, the norm ‖U‖∗ is
the same as the energy norm considered in [35].

The following theorem is true.

Theorem 4. If −∞ < γ 6 γ0, where γ0 is defined by (33), then the Chebyshev iterative
method (36) is convergent and the next estimate is true:

‖Un −U‖∗
‖Un −U0‖∗

6 qn,

where qn = 2ρn/(1 + ρ2n), ρ = (1 −
√
ξ)/(1 +

√
ξ), ξ = α/β, α = mink,l λkl,

β = maxk,l λkl, and U is the exact solution of system (21).

The theorem was proved under more general conditions in [34].
As far as we are aware, the Chebyshev iterative method for the system of the difference

equations with the nonlocal boundary conditions was considered for the first time in
papers [34, 36]. The Chebyshev method for solution of the system of the linear equations
with nonsymmetric matrix was investigated early in [37].

6 Peaceman–Rachford ADI method

The study of the structure of the spectrum of the difference operators with the nonlocal
boundary conditions can be successfully applied in the investigation of convergence of
alternating direction methods.

Let us consider the differential problem (11)–(13) again. We use the Peaceman–
Rachford alternating direction implicit method for the solution of the corresponding dif-
ference problem (14)–(16) [38]

U
k+1/2
ij −Uk

ij

τk+1
= δ2

xU
k+1/2
ij + δ2

yU
k
ij − fij , (37)

Uk+1
ij −U

k+1/2
ij

τk+1
= δ2

xU
k+1/2
ij + δ2

yU
k+1
ij − fij , (38)

where {τk+1} are the iterative parameters.
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For each fixed value j = 1, N − 1, the system of equations (37) is solved with the
nonlocal boundary condition

U
k+1/2
0j = γh

(
U

k+1/2
0j + U

k+1/2
Nj

2
+

N−1∑
i=1

U
k+1/2
ij

)
+ µ1j (39)

and condition
U

k+1/2
Nj = (µ2)j . (40)

Analogously, for each fixed value i = 1, N − 1, system (38) is solved with the Dirichlet
boundary conditions

Uk+1
i0 = (µ3)i, Uk+1

iN = (µ4)i. (41)

We rewrite the iterative method (37)–(38) with the corresponding boundary conditions in
the matrix form. For this end, we introduce two (N − 1)-order matrices

Λx =
1

h2


−2 + α̃ 1 + α̃ α̃ . . . α̃ α̃

1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −2 1
0 0 0 . . . 1 −2

 ,

where α̃ = γ/(1− hγ/2), and

Λy =
1

h2


−2 1 0 . . . 0 0
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . −2 1
0 0 0 . . . 1 −2

 .

Now we can definite two matrices Ã1 and Ã2 of the order (N −1)2, using the Kronecker
(tensor) product of matrices

Ã1 = −IN−1 ⊗ Λx, Ã2 = −Λy ⊗ IN−1,

where IN−1 is an identity matrix of the order (N − 1). The iterative Peaceman–Rachford
method (37)–(41) can be written in matrix form:

Uk+1 = SkU
k + F̄, (42)

where Sk = (I + τk+1Ã2)−1(I − τk+1Ã1)(I + τk+1Ã1)−1(I − τk+1Ã2), U is
(N − 1)2-order vector.

We can verify directly that the next statements are valid.

Lemma 13. The matrices Ã1 and Ã2 commute, i.e.

Ã1Ã2 = Ã2Ã1 = −Λy ⊗ Λx.
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Lemma 14. For the eigenvalues of the matrix S, the following equality is valid

λij(Sk) =
(1− τk+1λi(Ã1))(1− τk+1λj(Ã2))

(1 + τk+1λi(Ã1))(1 + τk+1λj(Ã2))
. (43)

Lemma 15. If λ(Ã1) = a+ ib and a > 0, τk+1 > 0, then∣∣λ(Sk)
∣∣ < 1.

The validity of next theorem follows from Lemma 10 and Lemma 15.

Theorem 5. If −∞ < γ < 2 and τk+1 > 0, then the Peaceman–Rachford ADI method
(37)–(41) converges.

We note now that, in the case γ < 2, all eigenvalues λi(Ã1) and λj(Ã2), i, j =
1, N − 1, are positive. But this limitation is not necessary. It follows from Lemma 15 that
the Peaceman–Rachford method converges then the difference operator with the nonlocal
conditions has complex eigenvalues with positive real part. Such situation is possible for
the differential equation (11) with the nonlocal condition (2) [39].

In the case of the difference problem (14)–(16), we represent the expression for
λij(Sk) in a next way:

λij(Sk) = λi(S̃1)λj(S̃2),

where

λi(S̃1) =
1− τk+1λi(Ã1)

1 + τk+1λi(Ã1)
, λj(S̃2) =

1− τk+1λj(Ã2)

1 + τk+1λj(Ã2)
.

We note that |λi(S̃1)| < 1 and |λj(S̃2)| < 1 if |λi(Ã1)| > 0, |λj(Ã2)| > 0 and τk+1 > 0.
If there exists λi(Ã1) < 0, we give |λi(S̃1)| > 1. But |λj(S̃2)| 6 % < 1 and it is possible
that ∣∣λij(Sk)

∣∣ < 1

for λi(Ã1) < 0 under a condition that |λi(Ã1)| is small enough. Such situation we
observed in the numerical experiment. The same questions of the Peaceman–Rachford
ADI method for the two-dimensional differential equation with the integral conditions
were considered in [40–43]. Various modifications of the alternating direction method
and the locally one-dimensional methods were used in [44–46] for parabolic equations
with the nonlocal conditions.

7 Numerical experiment

We consider a model problem

∂2u

∂x2
+
∂2u

∂y2
− u = f(x, y), (x, y) ∈ D,
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u(0, y) = γ0

1∫
0

u(x, y) dx+ µl(y), u(1, y) = γ1

1∫
0

u(x, y) dx+ µ2(y),

u(x, 0) = µ3(x), u(x, 1) = µ4(x)

in a unit square domain D = [0, 1] × [0, 1]. We set a reaction term q(x, y) = 1 and
a weight function α(x) = 1.

A source function f(x, y), the initial and boundary conditions were prescribed to
satisfy a given exact solution

u(x, y) = 1 + ex+y.

We consider the uniform grids with the different mesh sizes h and analyze the convergence
and the accuracy of the computed solution from the present ADI scheme. We compute
the maximum norm of the error of the numerical solution with the respect to the exact
solution, which is defined as

εh = max
j=1,...,n

max
i=1,...,n

∣∣u(xi, yj)− Uij

∣∣.
We define a number p as

p =
ε2h

εh
,

which theoretically must be approximately p ≈ 4.
Test problems were solved with the different values of the parameters γ and h. The

numerical tests were carried out on the grids 2k × 2k, k = 2, . . . , 6. The computational
results are reported in Tables 1 and 2.

We can clearly observe a second-order convergence in the maximum norm for all
choices of γ0 and γ1. We note that the Peaceman–Rachford method converges (Table 2)
also for some cases λj(Ã1) < 0. The set of optimal iterative parameters of the ADI
method has been chosen according to the monograph [47], where the symmetric matrices
of an iterative process were used.

Table 1. Accuracy of the solution and the number of the iterations for the case in which
λj(−Λx) > 0 for all j.

γ0 γ1 h εh p number of iter. ln(1/h)

0.0 0.0 0.25 2.05123 · 10−3 10 1.38629
0.125 5.44055 · 10−4 3.7703 15 2.07944
0.0625 1.39955 · 10−4 3.8874 19 2.77259
0.03125 3.50853 · 10−5 3.9890 24 3.46574

0.0 1.0 0.25 2.83824 · 10−3 11 1.38629
0.125 7.23830 · 10−4 3.9211 15 2.07944
0.0625 1.84531 · 10−4 3.9225 20 2.77259
0.03125 4.62943 · 10−5 3.9860 24 3.46574

−1.0 1.0 0.25 2.392 · 10−3 10 1.38629
0.125 6.233 · 10−4 3.838 15 2.07944
0.0625 1.595 · 10−4 3.909 19 2.77259
0.03125 4.000 · 10−5 3.987 24 3.46574
0.015625 1.001 · 10−5 3.995 28 4.159
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Table 2. The solution accuracy and the number of the iterations for the presence of at least
one negative eigenvalue of the matrix −Λx: λ1(−Λx) < 0.

γ0 γ1 h εh p number of iter. ln(1/h)

−1.0 4.0 0.250 0.00680 16 1.39
0.125 0.001357 5.012 21 2.08
0.0625 3.229 · 10−3 4.202 25 2.77
0.03125 7.975 · 10−4 4.048 29 3.47
0.015625 1.990 · 10−4 4.008 34 4.16

6.0 −3.0 0.250 0.1020 16 1.386
0.125 0.02035 5.012 21 2.079
0.0625 4.843 · 10−3 4.202 25 2.773
0.03125 1.196 · 10−3 4.049 29 3.466
0.015625 2.985 · 10−4 4.007 34 4.159

6 −2.6 0.0625 0.1176 35 2.773
0.03125 0.02191 5.368 38 3.466
0.015625 5.150 · 10−3 4.255 43 4.159

8 Conclusions and remarks

The iterative methods can be used for a numerical solution of the elliptic equations with
the nonlocal conditions. Under some conditions on weight function α(x), the matrix of
the system of difference equations is M-matrix. A linear system with an M-matrix can
be efficiently solved by basic iterative methods, for example, by Gauss–Seidel method.
When p(x, y) = const, the convergence of faster iterative methods was proven by investi-
gating the structure of the spectrum of the matrix of the corresponding difference problem.
This matrix is nonsymmetric because of the nonlocal condition (2), so, the structure of
its spectrum is more complicated than for the Dirichlet conditions. The nonlocal integral
conditions with γ never cause more problems than the classical conditions in both the
number of the iterations and the precision of the solution. But these conditions affect the
region of the convergence of the method. The convergence domain depends essentially
on the coefficients of the nonlocality. The value of the parameter γ in nonlocal boundary
conditions is essential for the stability of iterative methods.

The results of the numerical experiment are in good agreement with the existing
theoretical results for a two-dimensional elliptic equation in a rectangle domain with
integral boundary conditions in one coordinate direction.
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40. M. Sapagovas, O. Štikonienė, A fourth-order alternating direction method for difference
schemes with nonlocal condition, Lith. Math. J., 49(3):309–317, 2009.
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43. M. Sapagovas, A. Štikonas, O. Štikonienė, Alternating direction method for the Poisson equa-
tion with variable weight coefficients in an integral condition, Differ. Equ., 47(8):1163–1174,
2011.

44. M. Dehghan, A New ADI technique for two-dimensional parabolic equation with an integral
condition, Comp. Math. Appl., 12(43):1477–1488, 2002.
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